Abstract

In Angular Domain Imaging, image contrast and resolution are position dependent. The objective of this work was to characterize the contrast and resolution of an ADI system at a multitude of locations within the imaging plane, then compare the reconstructions of different targets using filtered back projection and iterative reconstruction algorithms. Contrast varied significantly with depth and minimally with lateral position, while resolution varied significantly with lateral position and minimally with depth. The iterative reconstruction algorithm was robust against ring and streak artifacts. The back projection reconstructions suffered from artifacts related to a lack of projection data.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Sharpe, “Optical projection tomography as a new tool for studying embryo anatomy,” J. Anat. 202(2), 175–181 (2003).
    [CrossRef] [PubMed]
  2. G. Yoon, A. Welch, M. Motamedi, and M. Gemert, “Development and application of three-dimensional light distribution model for laser irradiated tissue,” IEEE J. Quantum Electron. 23(10), 1721–1733 (1987).
    [CrossRef]
  3. M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20(5), 426–428 (1995).
    [CrossRef] [PubMed]
  4. K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J. Biomed. Opt. 5(2), 144–154 (2000).
    [CrossRef] [PubMed]
  5. W. Cai, S. K. Gayen, M. Xu, M. Zevallos, M. Alrubaiee, M. Lax, and R. R. Alfano, “Optical tomographic image reconstruction from ultrafast time-sliced transmission measurements,” Appl. Opt. 38(19), 4237–4246 (1999).
    [CrossRef]
  6. M. Niedre and V. Ntziachristos, “Comparison of fluorescence tomographic imaging in mice with early-arriving and quasi-continuous-wave photons,” Opt. Lett. 35(3), 369–371 (2010).
    [CrossRef] [PubMed]
  7. F. Vasefi, E. Ng, B. Kaminska, G. H. Chapman, K. Jordan, and J. J. L. Carson, “Transmission and fluorescence angular domain optical projection tomography of turbid media,” Appl. Opt. 48(33), 6448–6457 (2009).
    [CrossRef] [PubMed]
  8. A. C. Boccara, “Imaging through scattering media,” in Encyclopedia of Modern Optics, (Academic Press, 2004).
  9. G. H. Chapman, M. Trinh, N. Pfeiffer, G. Chu, and D. Lee, “Angular domain imaging of objects within highly scattering media using silicon micromachined collimating arrays,” IEEE J. Sel. Top. Quantum Electron. 9(2), 257–266 (2003).
    [CrossRef]
  10. F. Vasefi, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Angular distribution of quasi-ballistic light measured through turbid media using angular domain optical imaging” Proc. SPIE 7175, (2009).
  11. F. Vasefi, B. S. L. Hung, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Angular domain optical imaging of turbid media using enhanced micro-tunnel filter arrays” Proc. SPIE 7369, (2009).
  12. F. Vasefi, M. Najiminaini, E. Ng, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Angular domain trans-illumination imaging optimization with an ultra-fast gated camera,” J. Biomed. Opt. (to be published).
    [PubMed]
  13. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
    [CrossRef] [PubMed]
  14. R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express 16(8), 5907–5925 (2008).
    [CrossRef] [PubMed]
  15. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12(5), 510–519 (1992).
    [CrossRef] [PubMed]
  16. E. Ng, F. Vasefi, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Contrast and resolution analysis of angular domain imaging for iterative optical projection tomography reconstruction” Proc. SPIE 7557, (2010).
  17. J. C. Hebden, “Evaluating the spatial resolution performance of a time-resolved optical imaging system,” Med. Phys. 19(4), 1081–1087 (1992).
    [CrossRef] [PubMed]
  18. F. Vasefi, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Image contrast enhancement in angular domain optical imaging of turbid media,” Opt. Express 16(26), 21492–21504 (2008).
    [CrossRef] [PubMed]

2010 (1)

2009 (1)

2008 (2)

2005 (1)

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[CrossRef] [PubMed]

2003 (2)

J. Sharpe, “Optical projection tomography as a new tool for studying embryo anatomy,” J. Anat. 202(2), 175–181 (2003).
[CrossRef] [PubMed]

G. H. Chapman, M. Trinh, N. Pfeiffer, G. Chu, and D. Lee, “Angular domain imaging of objects within highly scattering media using silicon micromachined collimating arrays,” IEEE J. Sel. Top. Quantum Electron. 9(2), 257–266 (2003).
[CrossRef]

2000 (1)

K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J. Biomed. Opt. 5(2), 144–154 (2000).
[CrossRef] [PubMed]

1999 (1)

1995 (1)

1992 (2)

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12(5), 510–519 (1992).
[CrossRef] [PubMed]

J. C. Hebden, “Evaluating the spatial resolution performance of a time-resolved optical imaging system,” Med. Phys. 19(4), 1081–1087 (1992).
[CrossRef] [PubMed]

1987 (1)

G. Yoon, A. Welch, M. Motamedi, and M. Gemert, “Development and application of three-dimensional light distribution model for laser irradiated tissue,” IEEE J. Quantum Electron. 23(10), 1721–1733 (1987).
[CrossRef]

Alfano, R. R.

Alrubaiee, M.

Boas, D. A.

Cai, W.

Carson, J. J. L.

Chance, B.

Chapman, G. H.

F. Vasefi, E. Ng, B. Kaminska, G. H. Chapman, K. Jordan, and J. J. L. Carson, “Transmission and fluorescence angular domain optical projection tomography of turbid media,” Appl. Opt. 48(33), 6448–6457 (2009).
[CrossRef] [PubMed]

F. Vasefi, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Image contrast enhancement in angular domain optical imaging of turbid media,” Opt. Express 16(26), 21492–21504 (2008).
[CrossRef] [PubMed]

G. H. Chapman, M. Trinh, N. Pfeiffer, G. Chu, and D. Lee, “Angular domain imaging of objects within highly scattering media using silicon micromachined collimating arrays,” IEEE J. Sel. Top. Quantum Electron. 9(2), 257–266 (2003).
[CrossRef]

F. Vasefi, M. Najiminaini, E. Ng, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Angular domain trans-illumination imaging optimization with an ultra-fast gated camera,” J. Biomed. Opt. (to be published).
[PubMed]

Chen, K.

K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J. Biomed. Opt. 5(2), 144–154 (2000).
[CrossRef] [PubMed]

Chu, G.

G. H. Chapman, M. Trinh, N. Pfeiffer, G. Chu, and D. Lee, “Angular domain imaging of objects within highly scattering media using silicon micromachined collimating arrays,” IEEE J. Sel. Top. Quantum Electron. 9(2), 257–266 (2003).
[CrossRef]

Dasari, R. R.

K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J. Biomed. Opt. 5(2), 144–154 (2000).
[CrossRef] [PubMed]

Feld, M. S.

K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J. Biomed. Opt. 5(2), 144–154 (2000).
[CrossRef] [PubMed]

Flock, S. T.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12(5), 510–519 (1992).
[CrossRef] [PubMed]

Foschum, F.

Gayen, S. K.

Gemert, M.

G. Yoon, A. Welch, M. Motamedi, and M. Gemert, “Development and application of three-dimensional light distribution model for laser irradiated tissue,” IEEE J. Quantum Electron. 23(10), 1721–1733 (1987).
[CrossRef]

Hebden, J. C.

J. C. Hebden, “Evaluating the spatial resolution performance of a time-resolved optical imaging system,” Med. Phys. 19(4), 1081–1087 (1992).
[CrossRef] [PubMed]

Jacques, S. L.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12(5), 510–519 (1992).
[CrossRef] [PubMed]

Jordan, K.

Kaminska, B.

Kienle, A.

Lax, M.

Lee, D.

G. H. Chapman, M. Trinh, N. Pfeiffer, G. Chu, and D. Lee, “Angular domain imaging of objects within highly scattering media using silicon micromachined collimating arrays,” IEEE J. Sel. Top. Quantum Electron. 9(2), 257–266 (2003).
[CrossRef]

Michels, R.

Motamedi, M.

G. Yoon, A. Welch, M. Motamedi, and M. Gemert, “Development and application of three-dimensional light distribution model for laser irradiated tissue,” IEEE J. Quantum Electron. 23(10), 1721–1733 (1987).
[CrossRef]

Najiminaini, M.

F. Vasefi, M. Najiminaini, E. Ng, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Angular domain trans-illumination imaging optimization with an ultra-fast gated camera,” J. Biomed. Opt. (to be published).
[PubMed]

Ng, E.

F. Vasefi, E. Ng, B. Kaminska, G. H. Chapman, K. Jordan, and J. J. L. Carson, “Transmission and fluorescence angular domain optical projection tomography of turbid media,” Appl. Opt. 48(33), 6448–6457 (2009).
[CrossRef] [PubMed]

F. Vasefi, M. Najiminaini, E. Ng, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Angular domain trans-illumination imaging optimization with an ultra-fast gated camera,” J. Biomed. Opt. (to be published).
[PubMed]

Niedre, M.

Ntziachristos, V.

M. Niedre and V. Ntziachristos, “Comparison of fluorescence tomographic imaging in mice with early-arriving and quasi-continuous-wave photons,” Opt. Lett. 35(3), 369–371 (2010).
[CrossRef] [PubMed]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[CrossRef] [PubMed]

O’Leary, M. A.

Perelman, L. T.

K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J. Biomed. Opt. 5(2), 144–154 (2000).
[CrossRef] [PubMed]

Pfeiffer, N.

G. H. Chapman, M. Trinh, N. Pfeiffer, G. Chu, and D. Lee, “Angular domain imaging of objects within highly scattering media using silicon micromachined collimating arrays,” IEEE J. Sel. Top. Quantum Electron. 9(2), 257–266 (2003).
[CrossRef]

Ripoll, J.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[CrossRef] [PubMed]

Sharpe, J.

J. Sharpe, “Optical projection tomography as a new tool for studying embryo anatomy,” J. Anat. 202(2), 175–181 (2003).
[CrossRef] [PubMed]

Star, W. M.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12(5), 510–519 (1992).
[CrossRef] [PubMed]

Trinh, M.

G. H. Chapman, M. Trinh, N. Pfeiffer, G. Chu, and D. Lee, “Angular domain imaging of objects within highly scattering media using silicon micromachined collimating arrays,” IEEE J. Sel. Top. Quantum Electron. 9(2), 257–266 (2003).
[CrossRef]

van Gemert, M. J.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12(5), 510–519 (1992).
[CrossRef] [PubMed]

Vasefi, F.

Wang, L. V.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[CrossRef] [PubMed]

Weissleder, R.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[CrossRef] [PubMed]

Welch, A.

G. Yoon, A. Welch, M. Motamedi, and M. Gemert, “Development and application of three-dimensional light distribution model for laser irradiated tissue,” IEEE J. Quantum Electron. 23(10), 1721–1733 (1987).
[CrossRef]

Wilson, B. C.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12(5), 510–519 (1992).
[CrossRef] [PubMed]

Xu, M.

Yodh, A. G.

Yoon, G.

G. Yoon, A. Welch, M. Motamedi, and M. Gemert, “Development and application of three-dimensional light distribution model for laser irradiated tissue,” IEEE J. Quantum Electron. 23(10), 1721–1733 (1987).
[CrossRef]

Zevallos, M.

Zhang, Q.

K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J. Biomed. Opt. 5(2), 144–154 (2000).
[CrossRef] [PubMed]

Appl. Opt. (2)

IEEE J. Quantum Electron. (1)

G. Yoon, A. Welch, M. Motamedi, and M. Gemert, “Development and application of three-dimensional light distribution model for laser irradiated tissue,” IEEE J. Quantum Electron. 23(10), 1721–1733 (1987).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

G. H. Chapman, M. Trinh, N. Pfeiffer, G. Chu, and D. Lee, “Angular domain imaging of objects within highly scattering media using silicon micromachined collimating arrays,” IEEE J. Sel. Top. Quantum Electron. 9(2), 257–266 (2003).
[CrossRef]

J. Anat. (1)

J. Sharpe, “Optical projection tomography as a new tool for studying embryo anatomy,” J. Anat. 202(2), 175–181 (2003).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J. Biomed. Opt. 5(2), 144–154 (2000).
[CrossRef] [PubMed]

F. Vasefi, M. Najiminaini, E. Ng, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Angular domain trans-illumination imaging optimization with an ultra-fast gated camera,” J. Biomed. Opt. (to be published).
[PubMed]

Lasers Surg. Med. (1)

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12(5), 510–519 (1992).
[CrossRef] [PubMed]

Med. Phys. (1)

J. C. Hebden, “Evaluating the spatial resolution performance of a time-resolved optical imaging system,” Med. Phys. 19(4), 1081–1087 (1992).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Other (4)

E. Ng, F. Vasefi, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Contrast and resolution analysis of angular domain imaging for iterative optical projection tomography reconstruction” Proc. SPIE 7557, (2010).

A. C. Boccara, “Imaging through scattering media,” in Encyclopedia of Modern Optics, (Academic Press, 2004).

F. Vasefi, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Angular distribution of quasi-ballistic light measured through turbid media using angular domain optical imaging” Proc. SPIE 7175, (2009).

F. Vasefi, B. S. L. Hung, B. Kaminska, G. H. Chapman, and J. J. L. Carson, “Angular domain optical imaging of turbid media using enhanced micro-tunnel filter arrays” Proc. SPIE 7369, (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

a) Diagram of AFA: 80 μm x 80 μm x 2 cm (channel count and dimensions not to scale) b) SEM image (micro-channel opening view) of a Reflection-trapped AFA used to minimize internal reflections (top plate removed)

Fig. 2
Fig. 2

Experimental setup, side view

Fig. 3
Fig. 3

Graphite rod (0.5 mm in diameter) positioned near the center of the field of view, 7 mm from the AFA side of the cuvette. a) Raw subtracted signal (blue). Smoothed signal (red). Target position determined by algorithm (green). b) Gradient of smoothed signal.

Fig. 4
Fig. 4

(a) Position dependent contrast for 0.5 mm graphite rod in OD for a field of view 1 cm x 1 cm. (b) Depth dependent contrast for three different cylindrical targets: 0.7 mm-green, 0.5 mm-red, 0.2 mm-blue in a dilution of 0.6% Intralipid (c) Depth dependent contrast for 0.2 mm target at three different Intralipid dilution levels: 0.6%-blue, 0.55%-red, 0.5%-green. Depth was the distance measured from the AFA side of the cuvette.

Fig. 5
Fig. 5

(a) Position dependent measured width for a 0.5 mm graphite rod (μm) for a field of view of 1 cm x 1 cm. (b) Measured width at different lateral positions for a depth at the center of the cuvette. (c) Resolution map computed from knife edge profiles for a field of view of 1 cm x 1 cm. (d) Line spread function for a knife (razor blade) positioned parallel to the lateral direction with the edge positioned at the center of the cuvette.

Fig. 6
Fig. 6

Reconstructed images of absorbing targets a) 1.2 mm & 2 mm Allen key, b) 0.2 mm, 0.5 mm, 0.7 mm, 0.9 mm cylindrical rods in water and reconstructed with 720 projections using filtered back-projection. The reconstructed field of view was 1 cm x 1 cm.

Fig. 7
Fig. 7

Reconstruction of a 1.2 and 2 mm hex key with (a-c) iterative (d-f) filtered back-projection reconstruction. Images reconstructed from (a, d) 60 projections, (b, e) 30 projections, (c, f) 15 projections. The reconstruction field of view was 1 cm x 1 cm.

Fig. 8
Fig. 8

Reconstruction of 4 rods, 0.2 mm, 0.5 mm, 0.7 mm, 0.9 mm (a-c) iterative (d-f) filtered back-projection reconstruction. Images reconstructed from (a, d) 60 projections, (b, e) 30 projections, (c, f) 15 projections. The reconstruction field of view was 1 cm x 1 cm.

Fig. 9
Fig. 9

a) Measured sinogram of a 4 cylindrical rods (0.2, 0.5, 0.7, 0.9 mm) with 60 projections. b) Reconstruction estimate of the measured sinogram

Fig. 10
Fig. 10

Reconstruction of a 2 cm diameter grape with 60 projections, a) filtered back-projection b) iterative reconstruction. c) Photograph of slice through grape. FOV = 1 cm x 1 cm

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

C o n t r a s t = | I O b j e c t I B a c k g r o u n d |
P k , s = i , j I ( θ , i , j ) S i , j , s + j I ( θ , s , j ) Q j
I ' ( θ , i , j ) = P ' k , s n ( s )

Metrics