Abstract

A record broadly tunable high-power external cavity InAs/GaAs quantum-dot diode laser with a tuning range of 202 nm (1122 nm-1324 nm) is demonstrated. A maximum output power of 480 mW and a side-mode suppression ratio greater than 45 dB are achieved in the central part of the tuning range. We exploit a number of strategies for enhancing the tuning range of external cavity quantum-dot lasers. Different waveguide designs, laser configurations and operation conditions (pump current and temperature) are investigated for optimization of output power and tunability.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. C. Woodworth, D. T. Cassidy, and M. J. Hamp, “Sensitive absorption spectroscopy by use of an asymmetric multiple-quantum-well diode laser in an external cavity,” Appl. Opt. 40(36), 6719–6724 (2001).
    [CrossRef]
  2. N. Kuramoto and K. Fujii, “Volume determination of a silicon sphere using an improved interferometer with optical frequency tuning,” IEEE Trans. Instrum. Meas. 54(2), 868–871 (2005).
    [CrossRef]
  3. S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14(6), 955–966 (1996).
    [CrossRef]
  4. B. J. Stevens, D. T. D. Childs, K. M. Groom, M. Hopkinson, and R. A. Hogg, “All semiconductor swept laser source utilizing quantum dots,” Appl. Phys. Lett. 91(12), 121119 (2007).
    [CrossRef]
  5. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28(20), 1981–1983 (2003).
    [CrossRef] [PubMed]
  6. M. E. Brezinski and J. G. Fujimoto, “Optical coherence tomography: High-resolution imaging in nontransparent tissue,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1185–1192 (1999).
    [CrossRef]
  7. K. A. Fedorova, M. A. Cataluna, A. Abdolvand, P. Battle, I. Krestnikov, D. A. Livshits, M. Khomylev, and E. U. Rafailov, “Generation of orange light from a PPKTP waveguide end-pumped by a quantum-dot tuneable laser,” in The European Conference on Lasers and Electro-Optics 2009, paper CD.P. 26 (2009). http://www.opticsinfobase.org/abstract.cfm?URI=CLEO_E-2009-CD_P26
  8. E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
    [CrossRef]
  9. A. Kovsh, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, and A. Zhukov, “Quantum dot laser with 75 nm broad spectrum of emission,” Opt. Lett. 32(7), 793–795 (2007).
    [CrossRef] [PubMed]
  10. H. Li, G. T. Liu, P. M. Varangis, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “150-nm tuning range in a grating-coupled external cavity quantum-dot laser,” IEEE Photon. Technol. Lett. 12(7), 759–761 (2000).
    [CrossRef]
  11. P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Low-threshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36(18), 1544–1545 (2000).
    [CrossRef]
  12. A. Yu. Nevsky, U. Bressel, I. Ernsting, Ch. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, “A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral range,” Appl. Phys. B 92(4), 501–507 (2008).
    [CrossRef]
  13. X. Q. Lv, P. Jin, W. Y. Wang, and Z. G. Wang, “Broadband external cavity tunable quantum dot lasers with low injection current density,” Opt. Express 18(9), 8916–8922 (2010).
    [CrossRef] [PubMed]
  14. M. Rossetti, L. Lianhe, A. Markus, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, I. Krestnikov, and A. Kovsh, “Characterization and Modeling of Broad Spectrum InAs-GaAs Quantum-Dot Superluminescent Diodes Emitting at 1.2-1.3 μm,” IEEE J. Quantum Electron. 43(8), 676–686 (2007).
    [CrossRef]
  15. P. G. Eliseev, H. Li, T. Liu, T. C. Newell, L. F. Lester, and K. J. Malloy, “Ground-state emission and gain in ultralow-threshold InAs-InGaAs quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 7(2), 135–142 (2001).
    [CrossRef]
  16. H. Huang and D. G. Deppe, “Rate equation model for nonequilibrium operating conditions in a self-organized quantum-dot laser,” IEEE J. Quantum Electron. 37(5), 691–698 (2001).
    [CrossRef]
  17. H. Tabuchi and H. Ishikawa, “External grating tunable MQW laser with wide tuning range of 240 nm,” Electron. Lett. 26(11), 742–743 (1990).
    [CrossRef]
  18. L. Ching-Fuh and J. Chaur-Shiuann, “Superluminescent diodes with bent waveguide,” IEEE Photon. Technol. Lett. 8(2), 206–208 (1996).
    [CrossRef]

2010 (1)

2008 (1)

A. Yu. Nevsky, U. Bressel, I. Ernsting, Ch. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, “A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral range,” Appl. Phys. B 92(4), 501–507 (2008).
[CrossRef]

2007 (4)

M. Rossetti, L. Lianhe, A. Markus, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, I. Krestnikov, and A. Kovsh, “Characterization and Modeling of Broad Spectrum InAs-GaAs Quantum-Dot Superluminescent Diodes Emitting at 1.2-1.3 μm,” IEEE J. Quantum Electron. 43(8), 676–686 (2007).
[CrossRef]

B. J. Stevens, D. T. D. Childs, K. M. Groom, M. Hopkinson, and R. A. Hogg, “All semiconductor swept laser source utilizing quantum dots,” Appl. Phys. Lett. 91(12), 121119 (2007).
[CrossRef]

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[CrossRef]

A. Kovsh, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, and A. Zhukov, “Quantum dot laser with 75 nm broad spectrum of emission,” Opt. Lett. 32(7), 793–795 (2007).
[CrossRef] [PubMed]

2005 (1)

N. Kuramoto and K. Fujii, “Volume determination of a silicon sphere using an improved interferometer with optical frequency tuning,” IEEE Trans. Instrum. Meas. 54(2), 868–871 (2005).
[CrossRef]

2003 (1)

2001 (3)

P. G. Eliseev, H. Li, T. Liu, T. C. Newell, L. F. Lester, and K. J. Malloy, “Ground-state emission and gain in ultralow-threshold InAs-InGaAs quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 7(2), 135–142 (2001).
[CrossRef]

H. Huang and D. G. Deppe, “Rate equation model for nonequilibrium operating conditions in a self-organized quantum-dot laser,” IEEE J. Quantum Electron. 37(5), 691–698 (2001).
[CrossRef]

S. C. Woodworth, D. T. Cassidy, and M. J. Hamp, “Sensitive absorption spectroscopy by use of an asymmetric multiple-quantum-well diode laser in an external cavity,” Appl. Opt. 40(36), 6719–6724 (2001).
[CrossRef]

2000 (2)

H. Li, G. T. Liu, P. M. Varangis, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “150-nm tuning range in a grating-coupled external cavity quantum-dot laser,” IEEE Photon. Technol. Lett. 12(7), 759–761 (2000).
[CrossRef]

P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Low-threshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36(18), 1544–1545 (2000).
[CrossRef]

1999 (1)

M. E. Brezinski and J. G. Fujimoto, “Optical coherence tomography: High-resolution imaging in nontransparent tissue,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1185–1192 (1999).
[CrossRef]

1996 (2)

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14(6), 955–966 (1996).
[CrossRef]

L. Ching-Fuh and J. Chaur-Shiuann, “Superluminescent diodes with bent waveguide,” IEEE Photon. Technol. Lett. 8(2), 206–208 (1996).
[CrossRef]

1990 (1)

H. Tabuchi and H. Ishikawa, “External grating tunable MQW laser with wide tuning range of 240 nm,” Electron. Lett. 26(11), 742–743 (1990).
[CrossRef]

Boudoux, C.

Bouma, B. E.

Bressel, U.

A. Yu. Nevsky, U. Bressel, I. Ernsting, Ch. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, “A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral range,” Appl. Phys. B 92(4), 501–507 (2008).
[CrossRef]

Brezinski, M. E.

M. E. Brezinski and J. G. Fujimoto, “Optical coherence tomography: High-resolution imaging in nontransparent tissue,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1185–1192 (1999).
[CrossRef]

Cassidy, D. T.

Cataluna, M. A.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[CrossRef]

Chaur-Shiuann, J.

L. Ching-Fuh and J. Chaur-Shiuann, “Superluminescent diodes with bent waveguide,” IEEE Photon. Technol. Lett. 8(2), 206–208 (1996).
[CrossRef]

Childs, D. T. D.

B. J. Stevens, D. T. D. Childs, K. M. Groom, M. Hopkinson, and R. A. Hogg, “All semiconductor swept laser source utilizing quantum dots,” Appl. Phys. Lett. 91(12), 121119 (2007).
[CrossRef]

Ching-Fuh, L.

L. Ching-Fuh and J. Chaur-Shiuann, “Superluminescent diodes with bent waveguide,” IEEE Photon. Technol. Lett. 8(2), 206–208 (1996).
[CrossRef]

Deppe, D. G.

H. Huang and D. G. Deppe, “Rate equation model for nonequilibrium operating conditions in a self-organized quantum-dot laser,” IEEE J. Quantum Electron. 37(5), 691–698 (2001).
[CrossRef]

Eisele, Ch.

A. Yu. Nevsky, U. Bressel, I. Ernsting, Ch. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, “A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral range,” Appl. Phys. B 92(4), 501–507 (2008).
[CrossRef]

Eliseev, P. G.

P. G. Eliseev, H. Li, T. Liu, T. C. Newell, L. F. Lester, and K. J. Malloy, “Ground-state emission and gain in ultralow-threshold InAs-InGaAs quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 7(2), 135–142 (2001).
[CrossRef]

Ernsting, I.

A. Yu. Nevsky, U. Bressel, I. Ernsting, Ch. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, “A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral range,” Appl. Phys. B 92(4), 501–507 (2008).
[CrossRef]

Fiore, A.

M. Rossetti, L. Lianhe, A. Markus, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, I. Krestnikov, and A. Kovsh, “Characterization and Modeling of Broad Spectrum InAs-GaAs Quantum-Dot Superluminescent Diodes Emitting at 1.2-1.3 μm,” IEEE J. Quantum Electron. 43(8), 676–686 (2007).
[CrossRef]

Fuchs, B.

P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Low-threshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36(18), 1544–1545 (2000).
[CrossRef]

H. Li, G. T. Liu, P. M. Varangis, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “150-nm tuning range in a grating-coupled external cavity quantum-dot laser,” IEEE Photon. Technol. Lett. 12(7), 759–761 (2000).
[CrossRef]

Fujii, K.

N. Kuramoto and K. Fujii, “Volume determination of a silicon sphere using an improved interferometer with optical frequency tuning,” IEEE Trans. Instrum. Meas. 54(2), 868–871 (2005).
[CrossRef]

Fujimoto, J. G.

M. E. Brezinski and J. G. Fujimoto, “Optical coherence tomography: High-resolution imaging in nontransparent tissue,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1185–1192 (1999).
[CrossRef]

Groom, K. M.

B. J. Stevens, D. T. D. Childs, K. M. Groom, M. Hopkinson, and R. A. Hogg, “All semiconductor swept laser source utilizing quantum dots,” Appl. Phys. Lett. 91(12), 121119 (2007).
[CrossRef]

Gubenko, A.

A. Yu. Nevsky, U. Bressel, I. Ernsting, Ch. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, “A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral range,” Appl. Phys. B 92(4), 501–507 (2008).
[CrossRef]

Hamp, M. J.

Hogg, R. A.

B. J. Stevens, D. T. D. Childs, K. M. Groom, M. Hopkinson, and R. A. Hogg, “All semiconductor swept laser source utilizing quantum dots,” Appl. Phys. Lett. 91(12), 121119 (2007).
[CrossRef]

Hopkinson, M.

B. J. Stevens, D. T. D. Childs, K. M. Groom, M. Hopkinson, and R. A. Hogg, “All semiconductor swept laser source utilizing quantum dots,” Appl. Phys. Lett. 91(12), 121119 (2007).
[CrossRef]

Huang, H.

H. Huang and D. G. Deppe, “Rate equation model for nonequilibrium operating conditions in a self-organized quantum-dot laser,” IEEE J. Quantum Electron. 37(5), 691–698 (2001).
[CrossRef]

Ishikawa, H.

H. Tabuchi and H. Ishikawa, “External grating tunable MQW laser with wide tuning range of 240 nm,” Electron. Lett. 26(11), 742–743 (1990).
[CrossRef]

Jin, P.

Kovsh, A.

A. Yu. Nevsky, U. Bressel, I. Ernsting, Ch. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, “A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral range,” Appl. Phys. B 92(4), 501–507 (2008).
[CrossRef]

M. Rossetti, L. Lianhe, A. Markus, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, I. Krestnikov, and A. Kovsh, “Characterization and Modeling of Broad Spectrum InAs-GaAs Quantum-Dot Superluminescent Diodes Emitting at 1.2-1.3 μm,” IEEE J. Quantum Electron. 43(8), 676–686 (2007).
[CrossRef]

A. Kovsh, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, and A. Zhukov, “Quantum dot laser with 75 nm broad spectrum of emission,” Opt. Lett. 32(7), 793–795 (2007).
[CrossRef] [PubMed]

Krestnikov, I.

A. Yu. Nevsky, U. Bressel, I. Ernsting, Ch. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, “A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral range,” Appl. Phys. B 92(4), 501–507 (2008).
[CrossRef]

M. Rossetti, L. Lianhe, A. Markus, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, I. Krestnikov, and A. Kovsh, “Characterization and Modeling of Broad Spectrum InAs-GaAs Quantum-Dot Superluminescent Diodes Emitting at 1.2-1.3 μm,” IEEE J. Quantum Electron. 43(8), 676–686 (2007).
[CrossRef]

A. Kovsh, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, and A. Zhukov, “Quantum dot laser with 75 nm broad spectrum of emission,” Opt. Lett. 32(7), 793–795 (2007).
[CrossRef] [PubMed]

Kuramoto, N.

N. Kuramoto and K. Fujii, “Volume determination of a silicon sphere using an improved interferometer with optical frequency tuning,” IEEE Trans. Instrum. Meas. 54(2), 868–871 (2005).
[CrossRef]

Lester, L. F.

P. G. Eliseev, H. Li, T. Liu, T. C. Newell, L. F. Lester, and K. J. Malloy, “Ground-state emission and gain in ultralow-threshold InAs-InGaAs quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 7(2), 135–142 (2001).
[CrossRef]

H. Li, G. T. Liu, P. M. Varangis, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “150-nm tuning range in a grating-coupled external cavity quantum-dot laser,” IEEE Photon. Technol. Lett. 12(7), 759–761 (2000).
[CrossRef]

P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Low-threshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36(18), 1544–1545 (2000).
[CrossRef]

Li, H.

P. G. Eliseev, H. Li, T. Liu, T. C. Newell, L. F. Lester, and K. J. Malloy, “Ground-state emission and gain in ultralow-threshold InAs-InGaAs quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 7(2), 135–142 (2001).
[CrossRef]

H. Li, G. T. Liu, P. M. Varangis, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “150-nm tuning range in a grating-coupled external cavity quantum-dot laser,” IEEE Photon. Technol. Lett. 12(7), 759–761 (2000).
[CrossRef]

P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Low-threshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36(18), 1544–1545 (2000).
[CrossRef]

Lianhe, L.

M. Rossetti, L. Lianhe, A. Markus, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, I. Krestnikov, and A. Kovsh, “Characterization and Modeling of Broad Spectrum InAs-GaAs Quantum-Dot Superluminescent Diodes Emitting at 1.2-1.3 μm,” IEEE J. Quantum Electron. 43(8), 676–686 (2007).
[CrossRef]

Liu, G. T.

P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Low-threshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36(18), 1544–1545 (2000).
[CrossRef]

H. Li, G. T. Liu, P. M. Varangis, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “150-nm tuning range in a grating-coupled external cavity quantum-dot laser,” IEEE Photon. Technol. Lett. 12(7), 759–761 (2000).
[CrossRef]

Liu, T.

P. G. Eliseev, H. Li, T. Liu, T. C. Newell, L. F. Lester, and K. J. Malloy, “Ground-state emission and gain in ultralow-threshold InAs-InGaAs quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 7(2), 135–142 (2001).
[CrossRef]

Livshits, D.

A. Yu. Nevsky, U. Bressel, I. Ernsting, Ch. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, “A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral range,” Appl. Phys. B 92(4), 501–507 (2008).
[CrossRef]

A. Kovsh, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, and A. Zhukov, “Quantum dot laser with 75 nm broad spectrum of emission,” Opt. Lett. 32(7), 793–795 (2007).
[CrossRef] [PubMed]

Lv, X. Q.

Malloy, K. J.

P. G. Eliseev, H. Li, T. Liu, T. C. Newell, L. F. Lester, and K. J. Malloy, “Ground-state emission and gain in ultralow-threshold InAs-InGaAs quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 7(2), 135–142 (2001).
[CrossRef]

P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Low-threshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36(18), 1544–1545 (2000).
[CrossRef]

H. Li, G. T. Liu, P. M. Varangis, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “150-nm tuning range in a grating-coupled external cavity quantum-dot laser,” IEEE Photon. Technol. Lett. 12(7), 759–761 (2000).
[CrossRef]

Markus, A.

M. Rossetti, L. Lianhe, A. Markus, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, I. Krestnikov, and A. Kovsh, “Characterization and Modeling of Broad Spectrum InAs-GaAs Quantum-Dot Superluminescent Diodes Emitting at 1.2-1.3 μm,” IEEE J. Quantum Electron. 43(8), 676–686 (2007).
[CrossRef]

Mikhrin, S.

A. Yu. Nevsky, U. Bressel, I. Ernsting, Ch. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, “A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral range,” Appl. Phys. B 92(4), 501–507 (2008).
[CrossRef]

M. Rossetti, L. Lianhe, A. Markus, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, I. Krestnikov, and A. Kovsh, “Characterization and Modeling of Broad Spectrum InAs-GaAs Quantum-Dot Superluminescent Diodes Emitting at 1.2-1.3 μm,” IEEE J. Quantum Electron. 43(8), 676–686 (2007).
[CrossRef]

A. Kovsh, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, and A. Zhukov, “Quantum dot laser with 75 nm broad spectrum of emission,” Opt. Lett. 32(7), 793–795 (2007).
[CrossRef] [PubMed]

Nevsky, A. Yu.

A. Yu. Nevsky, U. Bressel, I. Ernsting, Ch. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, “A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral range,” Appl. Phys. B 92(4), 501–507 (2008).
[CrossRef]

Newell, T. C.

P. G. Eliseev, H. Li, T. Liu, T. C. Newell, L. F. Lester, and K. J. Malloy, “Ground-state emission and gain in ultralow-threshold InAs-InGaAs quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 7(2), 135–142 (2001).
[CrossRef]

H. Li, G. T. Liu, P. M. Varangis, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “150-nm tuning range in a grating-coupled external cavity quantum-dot laser,” IEEE Photon. Technol. Lett. 12(7), 759–761 (2000).
[CrossRef]

P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Low-threshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36(18), 1544–1545 (2000).
[CrossRef]

Occhi, L.

M. Rossetti, L. Lianhe, A. Markus, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, I. Krestnikov, and A. Kovsh, “Characterization and Modeling of Broad Spectrum InAs-GaAs Quantum-Dot Superluminescent Diodes Emitting at 1.2-1.3 μm,” IEEE J. Quantum Electron. 43(8), 676–686 (2007).
[CrossRef]

Okhapkin, M.

A. Yu. Nevsky, U. Bressel, I. Ernsting, Ch. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, “A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral range,” Appl. Phys. B 92(4), 501–507 (2008).
[CrossRef]

Rafailov, E. U.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[CrossRef]

Rossetti, M.

M. Rossetti, L. Lianhe, A. Markus, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, I. Krestnikov, and A. Kovsh, “Characterization and Modeling of Broad Spectrum InAs-GaAs Quantum-Dot Superluminescent Diodes Emitting at 1.2-1.3 μm,” IEEE J. Quantum Electron. 43(8), 676–686 (2007).
[CrossRef]

Schiller, S.

A. Yu. Nevsky, U. Bressel, I. Ernsting, Ch. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, “A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral range,” Appl. Phys. B 92(4), 501–507 (2008).
[CrossRef]

Sibbett, W.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[CrossRef]

Stevens, B. J.

B. J. Stevens, D. T. D. Childs, K. M. Groom, M. Hopkinson, and R. A. Hogg, “All semiconductor swept laser source utilizing quantum dots,” Appl. Phys. Lett. 91(12), 121119 (2007).
[CrossRef]

Stintz, A.

P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Low-threshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36(18), 1544–1545 (2000).
[CrossRef]

H. Li, G. T. Liu, P. M. Varangis, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “150-nm tuning range in a grating-coupled external cavity quantum-dot laser,” IEEE Photon. Technol. Lett. 12(7), 759–761 (2000).
[CrossRef]

Tabuchi, H.

H. Tabuchi and H. Ishikawa, “External grating tunable MQW laser with wide tuning range of 240 nm,” Electron. Lett. 26(11), 742–743 (1990).
[CrossRef]

Tearney, G. J.

Varangis, P. M.

H. Li, G. T. Liu, P. M. Varangis, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “150-nm tuning range in a grating-coupled external cavity quantum-dot laser,” IEEE Photon. Technol. Lett. 12(7), 759–761 (2000).
[CrossRef]

P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Low-threshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36(18), 1544–1545 (2000).
[CrossRef]

Velez, C.

M. Rossetti, L. Lianhe, A. Markus, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, I. Krestnikov, and A. Kovsh, “Characterization and Modeling of Broad Spectrum InAs-GaAs Quantum-Dot Superluminescent Diodes Emitting at 1.2-1.3 μm,” IEEE J. Quantum Electron. 43(8), 676–686 (2007).
[CrossRef]

Wang, W. Y.

Wang, Z. G.

Weimert, J.

Woodworth, S. C.

Yoo, S. J. B.

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14(6), 955–966 (1996).
[CrossRef]

Yun, S. H.

Zhukov, A.

Appl. Opt. (1)

Appl. Phys. B (1)

A. Yu. Nevsky, U. Bressel, I. Ernsting, Ch. Eisele, M. Okhapkin, S. Schiller, A. Gubenko, D. Livshits, S. Mikhrin, I. Krestnikov, and A. Kovsh, “A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral range,” Appl. Phys. B 92(4), 501–507 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

B. J. Stevens, D. T. D. Childs, K. M. Groom, M. Hopkinson, and R. A. Hogg, “All semiconductor swept laser source utilizing quantum dots,” Appl. Phys. Lett. 91(12), 121119 (2007).
[CrossRef]

Electron. Lett. (2)

P. M. Varangis, H. Li, G. T. Liu, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “Low-threshold quantum dot lasers with 201 nm tuning range,” Electron. Lett. 36(18), 1544–1545 (2000).
[CrossRef]

H. Tabuchi and H. Ishikawa, “External grating tunable MQW laser with wide tuning range of 240 nm,” Electron. Lett. 26(11), 742–743 (1990).
[CrossRef]

IEEE J. Quantum Electron. (2)

H. Huang and D. G. Deppe, “Rate equation model for nonequilibrium operating conditions in a self-organized quantum-dot laser,” IEEE J. Quantum Electron. 37(5), 691–698 (2001).
[CrossRef]

M. Rossetti, L. Lianhe, A. Markus, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, I. Krestnikov, and A. Kovsh, “Characterization and Modeling of Broad Spectrum InAs-GaAs Quantum-Dot Superluminescent Diodes Emitting at 1.2-1.3 μm,” IEEE J. Quantum Electron. 43(8), 676–686 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

P. G. Eliseev, H. Li, T. Liu, T. C. Newell, L. F. Lester, and K. J. Malloy, “Ground-state emission and gain in ultralow-threshold InAs-InGaAs quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 7(2), 135–142 (2001).
[CrossRef]

M. E. Brezinski and J. G. Fujimoto, “Optical coherence tomography: High-resolution imaging in nontransparent tissue,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1185–1192 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

H. Li, G. T. Liu, P. M. Varangis, T. C. Newell, A. Stintz, B. Fuchs, K. J. Malloy, and L. F. Lester, “150-nm tuning range in a grating-coupled external cavity quantum-dot laser,” IEEE Photon. Technol. Lett. 12(7), 759–761 (2000).
[CrossRef]

L. Ching-Fuh and J. Chaur-Shiuann, “Superluminescent diodes with bent waveguide,” IEEE Photon. Technol. Lett. 8(2), 206–208 (1996).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

N. Kuramoto and K. Fujii, “Volume determination of a silicon sphere using an improved interferometer with optical frequency tuning,” IEEE Trans. Instrum. Meas. 54(2), 868–871 (2005).
[CrossRef]

J. Lightwave Technol. (1)

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14(6), 955–966 (1996).
[CrossRef]

Nat. Photonics (1)

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Other (1)

K. A. Fedorova, M. A. Cataluna, A. Abdolvand, P. Battle, I. Krestnikov, D. A. Livshits, M. Khomylev, and E. U. Rafailov, “Generation of orange light from a PPKTP waveguide end-pumped by a quantum-dot tuneable laser,” in The European Conference on Lasers and Electro-Optics 2009, paper CD.P. 26 (2009). http://www.opticsinfobase.org/abstract.cfm?URI=CLEO_E-2009-CD_P26

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Electroluminescence spectra of the QD gain chip for different bias and temperature conditions.

Fig. 2
Fig. 2

Light-current characteristics for InAs/GaAs QD-ECDL at 10°C. Inset: Simplified schematics of the QD-ECDL configuration (DG – diffraction grating, L – aspheric lens, OC – output coupler, GC – gain chip).

Fig. 3
Fig. 3

Dependence of output power on wavelength for different temperatures and configurations (a) and spectra (b) of the QD-ECDL with the gain chip, tuned across the 1122.5 nm – 1324.5 nm wavelength range, under an applied constant current of 1.7 A.

Fig. 4
Fig. 4

Tuning range limits for the gain chip for different pump currents and temperatures without an output coupler (a) and with the 20% output coupler (b).

Metrics