Abstract

We have proposed and experimentally demonstrated a 60-GHz bidirectional radio-over-fiber system with downstream orthogonal frequency division multiplexing address (OFDMA) and wavelength reuse upstream single-carrier frequency division multiple address (SC-FDMA). In the downstream, a 3-dB optical coupler is used for two-carrier injection-locking a distributed feedback (DFB) laser in order to realize the single-sideband modulation. In the upstream, the weakly modulated one of the two downstream carriers is filtered out for wavelength reuse. Transmission of 9.65-Gb/s 16-QAM downstream OFDMA on 60-GHz carrier and 5-Gb/s QPSK upstream SC-FDMA (2.5 Gb/s for each user) are both successfully demonstrated over 53-km standard single mode fiber without chromatic dispersion compensation. The crosstalk between the downstream OFDMA and the upstream SC-FDMA can be neglected.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Wells, “Faster than fiber: The future of multi-G/s wireless,” IEEE Microw. Mag. 10(3), 104–112 (2009).
    [CrossRef]
  2. H. Ogawa, D. Polifko, and S. Banba, “Millimeter-wave fiber optics systems for personal radio-communication,” IEEE Trans. Microw. Theory Tech. 40(12), 2285–2293 (1992).
    [CrossRef]
  3. L. Noel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high-capacity 60-GHz fiber-radio transmission systems,” IEEE Trans. Microw. Theory Tech. 45(8), 1416–1423 (1997).
    [CrossRef]
  4. T. Kuri, K. Kitayama, A. Stohr, and Y. Ogawa, “Fiber-Optic Millimeter-Wave Downlink System using 60 GHz-Band External Modulation,” J. Lightwave Technol. 17(5), 799–806 (1999).
    [CrossRef]
  5. J. Yu, Z. Jia, L. Yi, Y. Su, G. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
    [CrossRef]
  6. P.-T. Shih, C.-T. Lin, W.-J. Jiang, Y.-H. Chen, J. J. Chen, and S. Chi, “Full duplex 60-GHz RoF link employing tandem single sideband modulation scheme and high spectral efficiency modulation format,” Opt. Express 17(22), 19501–19508 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-22-19501 .
    [CrossRef] [PubMed]
  7. 3rd Generation Partnership Project, “Physical Layer Aspects for Evolved Universal Terrestrial Radio Access (UTRA),” (2006), http://www.3gpp.org/ftp/Specs/html-info/25814.htm .
  8. H. Ekström, A. Furuskär, J. Karlsson, M. Meyer, S. Parkvall, J. Torsner, and M. Wahlqvist, “Technical Solutions for the 3G Long-Term Evolution,” IEEE Commun. Mag. 44(3), 38–45 (2006).
    [CrossRef]
  9. A. J. Lowery, L. Du, and J. Armstrong, Orthogonal Frequency Division Multiplexing for Adaptive Dispersion Compensation in Long Haul WDM Systems,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper PDP39.
  10. M. Mayrock, and H. Haunstein, “PMD Tolerant Direct-Detection Optical OFDM System,” in Proc. 33th European Conf. on Opt. Commun. (ECOC 2007), paper Tu. 5.2.5, 2007.
  11. D. Qian, J. Hu, J. Yu, P. N. Ji, L. Xu, T. Wang, M. Cvijetic, and T. Kusano, “Experimental demonstration of a novel OFDMA-based 10 Gb/s PON architecture,” in Proc. 33th European Conf. on Opt. Commun. (ECOC 2007), paper Mo 5.4.1, 2007.
  12. J. Yu, J. Hu, D. Qian, Z. Jia, G. K. Chang, and T. Wang, “Transmission of Microwave-Photonics Generated 16Gbit/s Super Broadband OFDM Signals in Radio-over-Fiber System,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OThP2.
  13. C.-T. Lin, Y.-M. Lin, J. J. Chen, S.-P. Dai, P. T. Shih, P.-C. Peng, and S. Chi, “Optical direct-detection OFDM signal generation for radio-over-fiber link using frequency doubling scheme with carrier suppression,” Opt. Express 16(9), 6056–6063 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-9-6056 .
    [CrossRef] [PubMed]
  14. M. Mohamed, B. Hraimel, X. Zhang, M. N. Sakib, and K. Wu, “Frequency Quadrupler for Millimeter-Wave Multiband OFDM Ultrawideband Wireless Signals and Distribution over Fiber Systems,” J. Opt. Commun. Netw. 1(5), 428–438 (2009).
    [CrossRef]
  15. L. Chen, J. G. Yu, S. Wen, J. Lu, Z. Dong, M. Huang, and G. K. Chang, “A Novel Scheme for Seamless Integration of ROF With Centralized Lightwave OFDM-WDM-PON System,” J. Lightwave Technol. 27(14), 2786–2791 (2009).
    [CrossRef]
  16. Z. Cao, Z. Dong, J. Lu, M. Xia, and L. Chen, Optical OFDM Signal Generation by Optical Phase Modulator and Its Application in ROF System,” in Proc. 35th European Conf. on Opt. Commun. (ECOC 2009), paper 2.4.4, 2009.
  17. M. Huang, J. Yu, D. Qian, N. Cvijetic, and G. Chang, “Lightwave Centralized WDM-OFDM-PON Network Employing Cost-Effective Directly Modulated Laser,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OMV5.
  18. B. Liu, X. Xin, L. Zhang, K. Zhao, and C. Yu, “Broad Convergence of 32QAM-OFDM ROF and WDM-OFDM-PON System Using an Integrated Modulator for Bidirectional Access Networks,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JThA26.
  19. J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fiber chromatic dispersion penalty on 1550 nm millimeter-wave optical transmission,” Electron. Lett. 33(6), 512–513 (1997).
    [CrossRef]
  20. Y. Shen, X. Zhang, and K. Chen, “Optical Single Sideband Modulation of 11-GHz RoF System Using Stimulated Brillouin Scattering,” IEEE Photon. Technol. Lett. 17(6), 1277–1279 (2005).
    [CrossRef]
  21. R. Hofstetter, H. Schmuck, and R. Heidemann, “Dispersion effects in optical millimeter-wave systems using self-heterodyne method for transport and generation,” IEEE Trans. Microw. Theory Tech. 43(9), 2263–2269 (1995).
    [CrossRef]
  22. A. Wiberg, B.-E. Olsson, P. O. Hedekvist, and P. A. Andrekson, “Dispersion-Tolerant Millimeter-Wave Photonic Link Using Polarization-Dependent Modulation,” J. Lightwave Technol. 25(10), 2984–2991 (2007).
    [CrossRef]
  23. C. Lin, S. Dai, J. Chen, P. Shih, P. Peng, and S. Chi, “A novel direct detection microwave photonic vector modulation scheme for radio-over-fiber system,” IEEE Photon. Technol. Lett. 20(13), 1106–1108 (2008).
    [CrossRef]
  24. Z. Jia, J. Yu, Y. Hsueh, A. Chowdhury, H. Chien, J. A. Buck, and G. Chang, “Multiband Signal Generation and Dispersion-Tolerant Transmission Based on Photonic Frequency Tripling Technology for 60-GHz Radio-Over-Fiber Systems,” IEEE Photon. Technol. Lett. 20(17), 1470–1472 (2008).
    [CrossRef]
  25. H.-K. Sung, E. K. Lau, and M. C. Wu, “Optical single sideband modulation using strong optical injection-locked semiconductor laser,” IEEE Photon. Technol. Lett. 19(13), 1005–1007 (2007).
    [CrossRef]
  26. M. Schuster, S. Randel, C. Bunge, S. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally efficient compatible single sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett. 20(9), 670–672 (2008).
    [CrossRef]
  27. A. Ng'oma, D. Fortusini, D. Parekh, W. Yang, M. Sauer, S. Benjamin, W. Hofmann, M. C. Amann, and C. J. Chang-Hasnain, “Performance of a Multi-Gb/s 60 GHz Radio Over Fiber System Employing a Directly Modulated Optically Injection-Locked VCSEL,” J. Lightwave Technol. 28(16), 2436–2444 (2010).
    [CrossRef]
  28. C. Hong, M. Li, C. Zhang, C. Peng, W. Hu, A. Xu, and Z. Chen, “Single Mode Modulation using Injection Locked DFB Lasers for Millimetre Wave Radio over Fibre System,” in Proceedings of International Nano-Optoelectronics Workshop, (Academic, Tokyo, Japan, 2008), pp. 129–130.
  29. C. Zhang, M. Li, S. Liu, C. Hong, W. Hu, and Z. Chen, “Single-mode Modulation Using Injection-locked Fabry-Perot Laser in Radio-over-Fiber system,” in Proceedings of Progress in Electromagnetics Research Symposium, (Academic, Beijing, China, 2009), pp. 614–616.
  30. C. Hong, C. Zhang, M. Li, L. Zhu, L. Li, W. Hu, A. Xu, and Z. Chen, “Single Sideband Modulation Based on an Injection-Locked DFB Laser in Radio-over-Fiber Systems,” IEEE Photon. Technol. Lett. 22(7), 462–464 (2010).
    [CrossRef]
  31. C. Zhang, C. Hong, P. Guo, J. Duan, W. Hu, and Z. Chen, “Single-Sideband Modulation of Vector Signals Based on an Injection-Locked DFB Laser in 60-GHz RoF Systems,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CThK5.
  32. Y. Y. Won, H. S. Kim, and S. K. Han, “1.25 Gbit/s millimetre-wave band wired/wireless radio-over-fibre system based on RSOA using injection-locking effect,” Electron. Lett. 45(7), 365–366 (2009).
    [CrossRef]
  33. X. Zhao and C. J. Chang-Hasnain, “A New Amplifier Model for Resonance Enhancement of Optically Injection-Locked Lasers,” IEEE Photon. Technol. Lett. 20(6), 395–397 (2008).
    [CrossRef]
  34. V. J. Urick, J. X. Qiu, and F. Bucholtz, “Wide-band QAM-over-fiber using phase modulation and interferometric demodulation,” IEEE Photon. Technol. Lett. 16(10), 2374–2376 (2004).
    [CrossRef]

2010 (2)

A. Ng'oma, D. Fortusini, D. Parekh, W. Yang, M. Sauer, S. Benjamin, W. Hofmann, M. C. Amann, and C. J. Chang-Hasnain, “Performance of a Multi-Gb/s 60 GHz Radio Over Fiber System Employing a Directly Modulated Optically Injection-Locked VCSEL,” J. Lightwave Technol. 28(16), 2436–2444 (2010).
[CrossRef]

C. Hong, C. Zhang, M. Li, L. Zhu, L. Li, W. Hu, A. Xu, and Z. Chen, “Single Sideband Modulation Based on an Injection-Locked DFB Laser in Radio-over-Fiber Systems,” IEEE Photon. Technol. Lett. 22(7), 462–464 (2010).
[CrossRef]

2009 (5)

2008 (5)

C. Lin, S. Dai, J. Chen, P. Shih, P. Peng, and S. Chi, “A novel direct detection microwave photonic vector modulation scheme for radio-over-fiber system,” IEEE Photon. Technol. Lett. 20(13), 1106–1108 (2008).
[CrossRef]

Z. Jia, J. Yu, Y. Hsueh, A. Chowdhury, H. Chien, J. A. Buck, and G. Chang, “Multiband Signal Generation and Dispersion-Tolerant Transmission Based on Photonic Frequency Tripling Technology for 60-GHz Radio-Over-Fiber Systems,” IEEE Photon. Technol. Lett. 20(17), 1470–1472 (2008).
[CrossRef]

M. Schuster, S. Randel, C. Bunge, S. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally efficient compatible single sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett. 20(9), 670–672 (2008).
[CrossRef]

C.-T. Lin, Y.-M. Lin, J. J. Chen, S.-P. Dai, P. T. Shih, P.-C. Peng, and S. Chi, “Optical direct-detection OFDM signal generation for radio-over-fiber link using frequency doubling scheme with carrier suppression,” Opt. Express 16(9), 6056–6063 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-9-6056 .
[CrossRef] [PubMed]

X. Zhao and C. J. Chang-Hasnain, “A New Amplifier Model for Resonance Enhancement of Optically Injection-Locked Lasers,” IEEE Photon. Technol. Lett. 20(6), 395–397 (2008).
[CrossRef]

2007 (2)

A. Wiberg, B.-E. Olsson, P. O. Hedekvist, and P. A. Andrekson, “Dispersion-Tolerant Millimeter-Wave Photonic Link Using Polarization-Dependent Modulation,” J. Lightwave Technol. 25(10), 2984–2991 (2007).
[CrossRef]

H.-K. Sung, E. K. Lau, and M. C. Wu, “Optical single sideband modulation using strong optical injection-locked semiconductor laser,” IEEE Photon. Technol. Lett. 19(13), 1005–1007 (2007).
[CrossRef]

2006 (2)

J. Yu, Z. Jia, L. Yi, Y. Su, G. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[CrossRef]

H. Ekström, A. Furuskär, J. Karlsson, M. Meyer, S. Parkvall, J. Torsner, and M. Wahlqvist, “Technical Solutions for the 3G Long-Term Evolution,” IEEE Commun. Mag. 44(3), 38–45 (2006).
[CrossRef]

2005 (1)

Y. Shen, X. Zhang, and K. Chen, “Optical Single Sideband Modulation of 11-GHz RoF System Using Stimulated Brillouin Scattering,” IEEE Photon. Technol. Lett. 17(6), 1277–1279 (2005).
[CrossRef]

2004 (1)

V. J. Urick, J. X. Qiu, and F. Bucholtz, “Wide-band QAM-over-fiber using phase modulation and interferometric demodulation,” IEEE Photon. Technol. Lett. 16(10), 2374–2376 (2004).
[CrossRef]

1999 (1)

1997 (2)

L. Noel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high-capacity 60-GHz fiber-radio transmission systems,” IEEE Trans. Microw. Theory Tech. 45(8), 1416–1423 (1997).
[CrossRef]

J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fiber chromatic dispersion penalty on 1550 nm millimeter-wave optical transmission,” Electron. Lett. 33(6), 512–513 (1997).
[CrossRef]

1995 (1)

R. Hofstetter, H. Schmuck, and R. Heidemann, “Dispersion effects in optical millimeter-wave systems using self-heterodyne method for transport and generation,” IEEE Trans. Microw. Theory Tech. 43(9), 2263–2269 (1995).
[CrossRef]

1992 (1)

H. Ogawa, D. Polifko, and S. Banba, “Millimeter-wave fiber optics systems for personal radio-communication,” IEEE Trans. Microw. Theory Tech. 40(12), 2285–2293 (1992).
[CrossRef]

Amann, M. C.

Andrekson, P. A.

Banba, S.

H. Ogawa, D. Polifko, and S. Banba, “Millimeter-wave fiber optics systems for personal radio-communication,” IEEE Trans. Microw. Theory Tech. 40(12), 2285–2293 (1992).
[CrossRef]

Benjamin, S.

Breyer, F.

M. Schuster, S. Randel, C. Bunge, S. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally efficient compatible single sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett. 20(9), 670–672 (2008).
[CrossRef]

Bucholtz, F.

V. J. Urick, J. X. Qiu, and F. Bucholtz, “Wide-band QAM-over-fiber using phase modulation and interferometric demodulation,” IEEE Photon. Technol. Lett. 16(10), 2374–2376 (2004).
[CrossRef]

Buck, J. A.

Z. Jia, J. Yu, Y. Hsueh, A. Chowdhury, H. Chien, J. A. Buck, and G. Chang, “Multiband Signal Generation and Dispersion-Tolerant Transmission Based on Photonic Frequency Tripling Technology for 60-GHz Radio-Over-Fiber Systems,” IEEE Photon. Technol. Lett. 20(17), 1470–1472 (2008).
[CrossRef]

Bunge, C.

M. Schuster, S. Randel, C. Bunge, S. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally efficient compatible single sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett. 20(9), 670–672 (2008).
[CrossRef]

Chang, G.

Z. Jia, J. Yu, Y. Hsueh, A. Chowdhury, H. Chien, J. A. Buck, and G. Chang, “Multiband Signal Generation and Dispersion-Tolerant Transmission Based on Photonic Frequency Tripling Technology for 60-GHz Radio-Over-Fiber Systems,” IEEE Photon. Technol. Lett. 20(17), 1470–1472 (2008).
[CrossRef]

J. Yu, Z. Jia, L. Yi, Y. Su, G. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[CrossRef]

Chang, G. K.

Chang-Hasnain, C. J.

Chen, J.

C. Lin, S. Dai, J. Chen, P. Shih, P. Peng, and S. Chi, “A novel direct detection microwave photonic vector modulation scheme for radio-over-fiber system,” IEEE Photon. Technol. Lett. 20(13), 1106–1108 (2008).
[CrossRef]

Chen, J. J.

Chen, K.

Y. Shen, X. Zhang, and K. Chen, “Optical Single Sideband Modulation of 11-GHz RoF System Using Stimulated Brillouin Scattering,” IEEE Photon. Technol. Lett. 17(6), 1277–1279 (2005).
[CrossRef]

Chen, L.

Chen, Y.-H.

Chen, Z.

C. Hong, C. Zhang, M. Li, L. Zhu, L. Li, W. Hu, A. Xu, and Z. Chen, “Single Sideband Modulation Based on an Injection-Locked DFB Laser in Radio-over-Fiber Systems,” IEEE Photon. Technol. Lett. 22(7), 462–464 (2010).
[CrossRef]

Chi, S.

Chien, H.

Z. Jia, J. Yu, Y. Hsueh, A. Chowdhury, H. Chien, J. A. Buck, and G. Chang, “Multiband Signal Generation and Dispersion-Tolerant Transmission Based on Photonic Frequency Tripling Technology for 60-GHz Radio-Over-Fiber Systems,” IEEE Photon. Technol. Lett. 20(17), 1470–1472 (2008).
[CrossRef]

Chowdhury, A.

Z. Jia, J. Yu, Y. Hsueh, A. Chowdhury, H. Chien, J. A. Buck, and G. Chang, “Multiband Signal Generation and Dispersion-Tolerant Transmission Based on Photonic Frequency Tripling Technology for 60-GHz Radio-Over-Fiber Systems,” IEEE Photon. Technol. Lett. 20(17), 1470–1472 (2008).
[CrossRef]

Dai, S.

C. Lin, S. Dai, J. Chen, P. Shih, P. Peng, and S. Chi, “A novel direct detection microwave photonic vector modulation scheme for radio-over-fiber system,” IEEE Photon. Technol. Lett. 20(13), 1106–1108 (2008).
[CrossRef]

Dai, S.-P.

Dong, Z.

Ekström, H.

H. Ekström, A. Furuskär, J. Karlsson, M. Meyer, S. Parkvall, J. Torsner, and M. Wahlqvist, “Technical Solutions for the 3G Long-Term Evolution,” IEEE Commun. Mag. 44(3), 38–45 (2006).
[CrossRef]

Fortusini, D.

Furuskär, A.

H. Ekström, A. Furuskär, J. Karlsson, M. Meyer, S. Parkvall, J. Torsner, and M. Wahlqvist, “Technical Solutions for the 3G Long-Term Evolution,” IEEE Commun. Mag. 44(3), 38–45 (2006).
[CrossRef]

Han, S. K.

Y. Y. Won, H. S. Kim, and S. K. Han, “1.25 Gbit/s millimetre-wave band wired/wireless radio-over-fibre system based on RSOA using injection-locking effect,” Electron. Lett. 45(7), 365–366 (2009).
[CrossRef]

Hedekvist, P. O.

Heidemann, R.

R. Hofstetter, H. Schmuck, and R. Heidemann, “Dispersion effects in optical millimeter-wave systems using self-heterodyne method for transport and generation,” IEEE Trans. Microw. Theory Tech. 43(9), 2263–2269 (1995).
[CrossRef]

Hofmann, W.

Hofstetter, R.

R. Hofstetter, H. Schmuck, and R. Heidemann, “Dispersion effects in optical millimeter-wave systems using self-heterodyne method for transport and generation,” IEEE Trans. Microw. Theory Tech. 43(9), 2263–2269 (1995).
[CrossRef]

Hong, C.

C. Hong, C. Zhang, M. Li, L. Zhu, L. Li, W. Hu, A. Xu, and Z. Chen, “Single Sideband Modulation Based on an Injection-Locked DFB Laser in Radio-over-Fiber Systems,” IEEE Photon. Technol. Lett. 22(7), 462–464 (2010).
[CrossRef]

Hraimel, B.

Hsueh, Y.

Z. Jia, J. Yu, Y. Hsueh, A. Chowdhury, H. Chien, J. A. Buck, and G. Chang, “Multiband Signal Generation and Dispersion-Tolerant Transmission Based on Photonic Frequency Tripling Technology for 60-GHz Radio-Over-Fiber Systems,” IEEE Photon. Technol. Lett. 20(17), 1470–1472 (2008).
[CrossRef]

Hu, W.

C. Hong, C. Zhang, M. Li, L. Zhu, L. Li, W. Hu, A. Xu, and Z. Chen, “Single Sideband Modulation Based on an Injection-Locked DFB Laser in Radio-over-Fiber Systems,” IEEE Photon. Technol. Lett. 22(7), 462–464 (2010).
[CrossRef]

Huang, M.

Jia, Z.

Z. Jia, J. Yu, Y. Hsueh, A. Chowdhury, H. Chien, J. A. Buck, and G. Chang, “Multiband Signal Generation and Dispersion-Tolerant Transmission Based on Photonic Frequency Tripling Technology for 60-GHz Radio-Over-Fiber Systems,” IEEE Photon. Technol. Lett. 20(17), 1470–1472 (2008).
[CrossRef]

J. Yu, Z. Jia, L. Yi, Y. Su, G. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[CrossRef]

Jiang, W.-J.

Karlsson, J.

H. Ekström, A. Furuskär, J. Karlsson, M. Meyer, S. Parkvall, J. Torsner, and M. Wahlqvist, “Technical Solutions for the 3G Long-Term Evolution,” IEEE Commun. Mag. 44(3), 38–45 (2006).
[CrossRef]

Kim, H. S.

Y. Y. Won, H. S. Kim, and S. K. Han, “1.25 Gbit/s millimetre-wave band wired/wireless radio-over-fibre system based on RSOA using injection-locking effect,” Electron. Lett. 45(7), 365–366 (2009).
[CrossRef]

Kitayama, K.

Kuri, T.

Lau, E. K.

H.-K. Sung, E. K. Lau, and M. C. Wu, “Optical single sideband modulation using strong optical injection-locked semiconductor laser,” IEEE Photon. Technol. Lett. 19(13), 1005–1007 (2007).
[CrossRef]

Lau, K. Y.

J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fiber chromatic dispersion penalty on 1550 nm millimeter-wave optical transmission,” Electron. Lett. 33(6), 512–513 (1997).
[CrossRef]

Lee, S.

M. Schuster, S. Randel, C. Bunge, S. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally efficient compatible single sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett. 20(9), 670–672 (2008).
[CrossRef]

Li, L.

C. Hong, C. Zhang, M. Li, L. Zhu, L. Li, W. Hu, A. Xu, and Z. Chen, “Single Sideband Modulation Based on an Injection-Locked DFB Laser in Radio-over-Fiber Systems,” IEEE Photon. Technol. Lett. 22(7), 462–464 (2010).
[CrossRef]

Li, M.

C. Hong, C. Zhang, M. Li, L. Zhu, L. Li, W. Hu, A. Xu, and Z. Chen, “Single Sideband Modulation Based on an Injection-Locked DFB Laser in Radio-over-Fiber Systems,” IEEE Photon. Technol. Lett. 22(7), 462–464 (2010).
[CrossRef]

Lin, C.

C. Lin, S. Dai, J. Chen, P. Shih, P. Peng, and S. Chi, “A novel direct detection microwave photonic vector modulation scheme for radio-over-fiber system,” IEEE Photon. Technol. Lett. 20(13), 1106–1108 (2008).
[CrossRef]

Lin, C.-T.

Lin, Y.-M.

Lu, J.

Marcenac, D. D.

L. Noel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high-capacity 60-GHz fiber-radio transmission systems,” IEEE Trans. Microw. Theory Tech. 45(8), 1416–1423 (1997).
[CrossRef]

Meyer, M.

H. Ekström, A. Furuskär, J. Karlsson, M. Meyer, S. Parkvall, J. Torsner, and M. Wahlqvist, “Technical Solutions for the 3G Long-Term Evolution,” IEEE Commun. Mag. 44(3), 38–45 (2006).
[CrossRef]

Mohamed, M.

Moodie, D. G.

L. Noel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high-capacity 60-GHz fiber-radio transmission systems,” IEEE Trans. Microw. Theory Tech. 45(8), 1416–1423 (1997).
[CrossRef]

Nesset, D.

L. Noel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high-capacity 60-GHz fiber-radio transmission systems,” IEEE Trans. Microw. Theory Tech. 45(8), 1416–1423 (1997).
[CrossRef]

Ng'oma, A.

Noel, L.

L. Noel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high-capacity 60-GHz fiber-radio transmission systems,” IEEE Trans. Microw. Theory Tech. 45(8), 1416–1423 (1997).
[CrossRef]

Ogawa, H.

H. Ogawa, D. Polifko, and S. Banba, “Millimeter-wave fiber optics systems for personal radio-communication,” IEEE Trans. Microw. Theory Tech. 40(12), 2285–2293 (1992).
[CrossRef]

Ogawa, Y.

Olsson, B.-E.

Parekh, D.

Park, J.

J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fiber chromatic dispersion penalty on 1550 nm millimeter-wave optical transmission,” Electron. Lett. 33(6), 512–513 (1997).
[CrossRef]

Parkvall, S.

H. Ekström, A. Furuskär, J. Karlsson, M. Meyer, S. Parkvall, J. Torsner, and M. Wahlqvist, “Technical Solutions for the 3G Long-Term Evolution,” IEEE Commun. Mag. 44(3), 38–45 (2006).
[CrossRef]

Peng, P.

C. Lin, S. Dai, J. Chen, P. Shih, P. Peng, and S. Chi, “A novel direct detection microwave photonic vector modulation scheme for radio-over-fiber system,” IEEE Photon. Technol. Lett. 20(13), 1106–1108 (2008).
[CrossRef]

Peng, P.-C.

Petermann, K.

M. Schuster, S. Randel, C. Bunge, S. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally efficient compatible single sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett. 20(9), 670–672 (2008).
[CrossRef]

Polifko, D.

H. Ogawa, D. Polifko, and S. Banba, “Millimeter-wave fiber optics systems for personal radio-communication,” IEEE Trans. Microw. Theory Tech. 40(12), 2285–2293 (1992).
[CrossRef]

Qiu, J. X.

V. J. Urick, J. X. Qiu, and F. Bucholtz, “Wide-band QAM-over-fiber using phase modulation and interferometric demodulation,” IEEE Photon. Technol. Lett. 16(10), 2374–2376 (2004).
[CrossRef]

Randel, S.

M. Schuster, S. Randel, C. Bunge, S. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally efficient compatible single sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett. 20(9), 670–672 (2008).
[CrossRef]

Sakib, M. N.

Sauer, M.

Schmuck, H.

R. Hofstetter, H. Schmuck, and R. Heidemann, “Dispersion effects in optical millimeter-wave systems using self-heterodyne method for transport and generation,” IEEE Trans. Microw. Theory Tech. 43(9), 2263–2269 (1995).
[CrossRef]

Schuster, M.

M. Schuster, S. Randel, C. Bunge, S. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally efficient compatible single sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett. 20(9), 670–672 (2008).
[CrossRef]

Shen, Y.

Y. Shen, X. Zhang, and K. Chen, “Optical Single Sideband Modulation of 11-GHz RoF System Using Stimulated Brillouin Scattering,” IEEE Photon. Technol. Lett. 17(6), 1277–1279 (2005).
[CrossRef]

Shih, P.

C. Lin, S. Dai, J. Chen, P. Shih, P. Peng, and S. Chi, “A novel direct detection microwave photonic vector modulation scheme for radio-over-fiber system,” IEEE Photon. Technol. Lett. 20(13), 1106–1108 (2008).
[CrossRef]

Shih, P. T.

Shih, P.-T.

Sorin, W. V.

J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fiber chromatic dispersion penalty on 1550 nm millimeter-wave optical transmission,” Electron. Lett. 33(6), 512–513 (1997).
[CrossRef]

Spinnler, B.

M. Schuster, S. Randel, C. Bunge, S. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally efficient compatible single sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett. 20(9), 670–672 (2008).
[CrossRef]

Stohr, A.

Su, Y.

J. Yu, Z. Jia, L. Yi, Y. Su, G. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[CrossRef]

Sung, H.-K.

H.-K. Sung, E. K. Lau, and M. C. Wu, “Optical single sideband modulation using strong optical injection-locked semiconductor laser,” IEEE Photon. Technol. Lett. 19(13), 1005–1007 (2007).
[CrossRef]

Torsner, J.

H. Ekström, A. Furuskär, J. Karlsson, M. Meyer, S. Parkvall, J. Torsner, and M. Wahlqvist, “Technical Solutions for the 3G Long-Term Evolution,” IEEE Commun. Mag. 44(3), 38–45 (2006).
[CrossRef]

Urick, V. J.

V. J. Urick, J. X. Qiu, and F. Bucholtz, “Wide-band QAM-over-fiber using phase modulation and interferometric demodulation,” IEEE Photon. Technol. Lett. 16(10), 2374–2376 (2004).
[CrossRef]

Wahlqvist, M.

H. Ekström, A. Furuskär, J. Karlsson, M. Meyer, S. Parkvall, J. Torsner, and M. Wahlqvist, “Technical Solutions for the 3G Long-Term Evolution,” IEEE Commun. Mag. 44(3), 38–45 (2006).
[CrossRef]

Wake, D.

L. Noel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high-capacity 60-GHz fiber-radio transmission systems,” IEEE Trans. Microw. Theory Tech. 45(8), 1416–1423 (1997).
[CrossRef]

Wang, T.

J. Yu, Z. Jia, L. Yi, Y. Su, G. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[CrossRef]

Wells, J.

J. Wells, “Faster than fiber: The future of multi-G/s wireless,” IEEE Microw. Mag. 10(3), 104–112 (2009).
[CrossRef]

Wen, S.

Westbrook, L. D.

L. Noel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high-capacity 60-GHz fiber-radio transmission systems,” IEEE Trans. Microw. Theory Tech. 45(8), 1416–1423 (1997).
[CrossRef]

Wiberg, A.

Won, Y. Y.

Y. Y. Won, H. S. Kim, and S. K. Han, “1.25 Gbit/s millimetre-wave band wired/wireless radio-over-fibre system based on RSOA using injection-locking effect,” Electron. Lett. 45(7), 365–366 (2009).
[CrossRef]

Wu, K.

Wu, M. C.

H.-K. Sung, E. K. Lau, and M. C. Wu, “Optical single sideband modulation using strong optical injection-locked semiconductor laser,” IEEE Photon. Technol. Lett. 19(13), 1005–1007 (2007).
[CrossRef]

Xu, A.

C. Hong, C. Zhang, M. Li, L. Zhu, L. Li, W. Hu, A. Xu, and Z. Chen, “Single Sideband Modulation Based on an Injection-Locked DFB Laser in Radio-over-Fiber Systems,” IEEE Photon. Technol. Lett. 22(7), 462–464 (2010).
[CrossRef]

Yang, W.

Yi, L.

J. Yu, Z. Jia, L. Yi, Y. Su, G. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[CrossRef]

Yu, J.

Z. Jia, J. Yu, Y. Hsueh, A. Chowdhury, H. Chien, J. A. Buck, and G. Chang, “Multiband Signal Generation and Dispersion-Tolerant Transmission Based on Photonic Frequency Tripling Technology for 60-GHz Radio-Over-Fiber Systems,” IEEE Photon. Technol. Lett. 20(17), 1470–1472 (2008).
[CrossRef]

J. Yu, Z. Jia, L. Yi, Y. Su, G. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[CrossRef]

Yu, J. G.

Zhang, C.

C. Hong, C. Zhang, M. Li, L. Zhu, L. Li, W. Hu, A. Xu, and Z. Chen, “Single Sideband Modulation Based on an Injection-Locked DFB Laser in Radio-over-Fiber Systems,” IEEE Photon. Technol. Lett. 22(7), 462–464 (2010).
[CrossRef]

Zhang, X.

M. Mohamed, B. Hraimel, X. Zhang, M. N. Sakib, and K. Wu, “Frequency Quadrupler for Millimeter-Wave Multiband OFDM Ultrawideband Wireless Signals and Distribution over Fiber Systems,” J. Opt. Commun. Netw. 1(5), 428–438 (2009).
[CrossRef]

Y. Shen, X. Zhang, and K. Chen, “Optical Single Sideband Modulation of 11-GHz RoF System Using Stimulated Brillouin Scattering,” IEEE Photon. Technol. Lett. 17(6), 1277–1279 (2005).
[CrossRef]

Zhao, X.

X. Zhao and C. J. Chang-Hasnain, “A New Amplifier Model for Resonance Enhancement of Optically Injection-Locked Lasers,” IEEE Photon. Technol. Lett. 20(6), 395–397 (2008).
[CrossRef]

Zhu, L.

C. Hong, C. Zhang, M. Li, L. Zhu, L. Li, W. Hu, A. Xu, and Z. Chen, “Single Sideband Modulation Based on an Injection-Locked DFB Laser in Radio-over-Fiber Systems,” IEEE Photon. Technol. Lett. 22(7), 462–464 (2010).
[CrossRef]

Electron. Lett. (2)

J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fiber chromatic dispersion penalty on 1550 nm millimeter-wave optical transmission,” Electron. Lett. 33(6), 512–513 (1997).
[CrossRef]

Y. Y. Won, H. S. Kim, and S. K. Han, “1.25 Gbit/s millimetre-wave band wired/wireless radio-over-fibre system based on RSOA using injection-locking effect,” Electron. Lett. 45(7), 365–366 (2009).
[CrossRef]

IEEE Commun. Mag. (1)

H. Ekström, A. Furuskär, J. Karlsson, M. Meyer, S. Parkvall, J. Torsner, and M. Wahlqvist, “Technical Solutions for the 3G Long-Term Evolution,” IEEE Commun. Mag. 44(3), 38–45 (2006).
[CrossRef]

IEEE Microw. Mag. (1)

J. Wells, “Faster than fiber: The future of multi-G/s wireless,” IEEE Microw. Mag. 10(3), 104–112 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (9)

J. Yu, Z. Jia, L. Yi, Y. Su, G. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[CrossRef]

X. Zhao and C. J. Chang-Hasnain, “A New Amplifier Model for Resonance Enhancement of Optically Injection-Locked Lasers,” IEEE Photon. Technol. Lett. 20(6), 395–397 (2008).
[CrossRef]

V. J. Urick, J. X. Qiu, and F. Bucholtz, “Wide-band QAM-over-fiber using phase modulation and interferometric demodulation,” IEEE Photon. Technol. Lett. 16(10), 2374–2376 (2004).
[CrossRef]

C. Hong, C. Zhang, M. Li, L. Zhu, L. Li, W. Hu, A. Xu, and Z. Chen, “Single Sideband Modulation Based on an Injection-Locked DFB Laser in Radio-over-Fiber Systems,” IEEE Photon. Technol. Lett. 22(7), 462–464 (2010).
[CrossRef]

Y. Shen, X. Zhang, and K. Chen, “Optical Single Sideband Modulation of 11-GHz RoF System Using Stimulated Brillouin Scattering,” IEEE Photon. Technol. Lett. 17(6), 1277–1279 (2005).
[CrossRef]

C. Lin, S. Dai, J. Chen, P. Shih, P. Peng, and S. Chi, “A novel direct detection microwave photonic vector modulation scheme for radio-over-fiber system,” IEEE Photon. Technol. Lett. 20(13), 1106–1108 (2008).
[CrossRef]

Z. Jia, J. Yu, Y. Hsueh, A. Chowdhury, H. Chien, J. A. Buck, and G. Chang, “Multiband Signal Generation and Dispersion-Tolerant Transmission Based on Photonic Frequency Tripling Technology for 60-GHz Radio-Over-Fiber Systems,” IEEE Photon. Technol. Lett. 20(17), 1470–1472 (2008).
[CrossRef]

H.-K. Sung, E. K. Lau, and M. C. Wu, “Optical single sideband modulation using strong optical injection-locked semiconductor laser,” IEEE Photon. Technol. Lett. 19(13), 1005–1007 (2007).
[CrossRef]

M. Schuster, S. Randel, C. Bunge, S. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally efficient compatible single sideband modulation for OFDM transmission with direct detection,” IEEE Photon. Technol. Lett. 20(9), 670–672 (2008).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (3)

R. Hofstetter, H. Schmuck, and R. Heidemann, “Dispersion effects in optical millimeter-wave systems using self-heterodyne method for transport and generation,” IEEE Trans. Microw. Theory Tech. 43(9), 2263–2269 (1995).
[CrossRef]

H. Ogawa, D. Polifko, and S. Banba, “Millimeter-wave fiber optics systems for personal radio-communication,” IEEE Trans. Microw. Theory Tech. 40(12), 2285–2293 (1992).
[CrossRef]

L. Noel, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, “Novel techniques for high-capacity 60-GHz fiber-radio transmission systems,” IEEE Trans. Microw. Theory Tech. 45(8), 1416–1423 (1997).
[CrossRef]

J. Lightwave Technol. (4)

J. Opt. Commun. Netw. (1)

Opt. Express (2)

Other (11)

3rd Generation Partnership Project, “Physical Layer Aspects for Evolved Universal Terrestrial Radio Access (UTRA),” (2006), http://www.3gpp.org/ftp/Specs/html-info/25814.htm .

Z. Cao, Z. Dong, J. Lu, M. Xia, and L. Chen, Optical OFDM Signal Generation by Optical Phase Modulator and Its Application in ROF System,” in Proc. 35th European Conf. on Opt. Commun. (ECOC 2009), paper 2.4.4, 2009.

M. Huang, J. Yu, D. Qian, N. Cvijetic, and G. Chang, “Lightwave Centralized WDM-OFDM-PON Network Employing Cost-Effective Directly Modulated Laser,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OMV5.

B. Liu, X. Xin, L. Zhang, K. Zhao, and C. Yu, “Broad Convergence of 32QAM-OFDM ROF and WDM-OFDM-PON System Using an Integrated Modulator for Bidirectional Access Networks,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JThA26.

A. J. Lowery, L. Du, and J. Armstrong, Orthogonal Frequency Division Multiplexing for Adaptive Dispersion Compensation in Long Haul WDM Systems,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper PDP39.

M. Mayrock, and H. Haunstein, “PMD Tolerant Direct-Detection Optical OFDM System,” in Proc. 33th European Conf. on Opt. Commun. (ECOC 2007), paper Tu. 5.2.5, 2007.

D. Qian, J. Hu, J. Yu, P. N. Ji, L. Xu, T. Wang, M. Cvijetic, and T. Kusano, “Experimental demonstration of a novel OFDMA-based 10 Gb/s PON architecture,” in Proc. 33th European Conf. on Opt. Commun. (ECOC 2007), paper Mo 5.4.1, 2007.

J. Yu, J. Hu, D. Qian, Z. Jia, G. K. Chang, and T. Wang, “Transmission of Microwave-Photonics Generated 16Gbit/s Super Broadband OFDM Signals in Radio-over-Fiber System,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OThP2.

C. Hong, M. Li, C. Zhang, C. Peng, W. Hu, A. Xu, and Z. Chen, “Single Mode Modulation using Injection Locked DFB Lasers for Millimetre Wave Radio over Fibre System,” in Proceedings of International Nano-Optoelectronics Workshop, (Academic, Tokyo, Japan, 2008), pp. 129–130.

C. Zhang, M. Li, S. Liu, C. Hong, W. Hu, and Z. Chen, “Single-mode Modulation Using Injection-locked Fabry-Perot Laser in Radio-over-Fiber system,” in Proceedings of Progress in Electromagnetics Research Symposium, (Academic, Beijing, China, 2009), pp. 614–616.

C. Zhang, C. Hong, P. Guo, J. Duan, W. Hu, and Z. Chen, “Single-Sideband Modulation of Vector Signals Based on an Injection-Locked DFB Laser in 60-GHz RoF Systems,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CThK5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The principle of the bidirectional ROF system with downstream OFDMA and wavelength reuse upstream SC-FDMA.

Fig. 2
Fig. 2

Time-domain and frequency-domain slots of downstream OFDMA or upstream SC-FDMA frames. Different colors of time/frequency slots represent the channel source assigned to different services or users. Each user will select those pre-assigned time/frequency slots to receive or transmit his information.

Fig. 3
Fig. 3

The proposed bidirectional WDM-ROF-PON System. (LD: laser diode, SLD: slave laser diode, MZM: Mach-Zehnder modulator, OBPF: optical band-pass filter)

Fig. 4
Fig. 4

The experiment setup of the proposed bidirectional ROF System. (FM: frequency multiplier, VOA: variable optical attenuator, OSA: optical spectrum analyzer).

Fig. 5
Fig. 5

The transmitter and receiver block diagram of (a) the downstream OFDMA and (b)upstream SC-FDMA (IFFT: inverse fast Fourier transform, DFT: discrete Fourier transform).

Fig. 6
Fig. 6

Optical spectra for (a) the injection locked DFB laser with and without OFDMA modulation and (b) the uplink after MZM with and without upstream SC-FDMA modulation. Insets: (i) down-converted electrical spectrum of downstream; (ii) received electrical spectrum of upstream from two users.

Fig. 7
Fig. 7

The received BER performance under different modulation intensity. (a) downstream OFDMA (2.5 dBm into PD); (b) upstream SC-FDMA (−11 dBm into PD).

Fig. 8
Fig. 8

BER performance of (a) the downstream 16-QAM OFDMA and (b) upstream QPSK SC-FDMA. Insets: Equalized constellation diagrams of (i) downstream in the BTB case; (ii) downstream after SSMF transmission; (iii) upstream from User-1 after SSMF transmission with downstream on; (iv) upstream from User-2 after SSMF transmission with downstream on.

Metrics