Abstract

This paper reports the design analysis of a microfabricatable mid-infrared (mid-IR) surface plasmon resonance (SPR) sensor platform. The proposed platform has periodic heavily doped profiles implanted into intrinsic silicon and a thin gold layer deposited on top, making a physically flat grating SPR coupler. A rigorous coupled-wave analysis was conducted to prove the design feasibility, characterize the sensor's performance, and determine geometric parameters of the heavily doped profiles. Finite element analysis (FEA) was also employed to compute the electromagnetic field distributions at the plasmon resonance. Obtained results reveal that the proposed structure can excite the SPR on the normal incidence of mid-IR light, resulting in a large probing depth that will facilitate the study of larger analytes. Furthermore, the whole structure can be microfabricated with well-established batch protocols, providing tunability in the SPR excitation wavelength for specific biosensing needs with a low manufacturing cost. When the SPR sensor is to be used in a Fourier-transform infrared (FTIR) spectroscopy platform, its detection sensitivity and limit of detection are estimated to be 3022 nm/RIU and ~70 pg/mm2, respectively, at a sample layer thickness of 100 nm. The design analysis performed in the present study will allow the fabrication of a tunable, disposable mid-IR SPR sensor that combines advantages of conventional prism and metallic grating SPR sensors.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  2. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
    [CrossRef] [PubMed]
  3. C. Y. Yang, E. Brooks, Y. Li, P. Denny, C. M. Ho, F. Qi, W. Shi, L. Wolinsky, B. Wu, D. T. W. Wong, and C. D. Montemagno, “Detection of picomolar levels of interleukin-8 in human saliva by SPR,” Lab Chip 5(10), 1017–1023 (2005).
    [CrossRef] [PubMed]
  4. E. Suraniti, E. Sollier, R. Calemczuk, T. Livache, P. N. Marche, M. B. Villiers, and Y. Roupioz, “Real-time detection of lymphocytes binding on an antibody chip using SPR imaging,” Lab Chip 7(9), 1206–1208 (2007).
    [CrossRef] [PubMed]
  5. K. S. Phillips and Q. Cheng, “Recent advances in surface plasmon resonance based techniques for bioanalysis,” Anal. Bioanal. Chem. 387(5), 1831–1840 (2007).
    [CrossRef] [PubMed]
  6. X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
    [CrossRef] [PubMed]
  7. K. Johansen, H. Arwin, I. Lundstrom, and B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations,” Rev. Sci. Instrum. 71(9), 3530–3538 (2000).
    [CrossRef]
  8. areS. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, “Properties and sensing characteristics of surface-plasmon resonance in infrared light,” J. Opt. Soc. Am. A 20(8), 1644–1650 (2003).
    [CrossRef]
  9. R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, “Infrared surface plasmon resonance: a novel tool for real time sensing of variations in living cells,” Biophys. J. 90(7), 2592–2599 (2006).
    [CrossRef] [PubMed]
  10. Y. B. Chen, “Development of mid-infrared surface plasmon resonance-based sensors with highly-doped silicon for biomedical and chemical applications,” Opt. Express 17(5), 3130–3140 (2009).
    [CrossRef] [PubMed]
  11. J. Homola, S. Yee, and G. Gauglitz, “Surface Plasmon Resonance Sensors: Review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
    [CrossRef]
  12. M. Piliarik, H. Vaisocherová, and J. Homola, “Surface plasmon resonance biosensing,” Methods Mol. Biol. 503, 65–88 (2009).
    [CrossRef] [PubMed]
  13. S. Basu, B. Lee, and Z. Zhang, “Infrared Radiative Properties of Heavily Doped Silicon at Room Temperature,” J. Heat Transfer 132(2), 023301 (2010).
    [CrossRef]
  14. J. G. Huang, C. L. Lee, H. M. Lin, T. L. Chuang, W. S. Wang, R. H. Juang, C. H. Wang, C. K. Lee, S. M. Lin, and C. W. Lin, “A miniaturized germanium-doped silicon dioxide-based surface plasmon resonance waveguide sensor for immunoassay detection,” Biosens. Bioelectron. 22(4), 519–525 (2006).
    [CrossRef] [PubMed]
  15. H. Sai, H. Yugami, Y. Akiyama, Y. Kanamori, and K. Hane, “Spectral control of thermal emission by periodic microstructured surfaces in the near-infrared region,” J. Opt. Soc. Am. A 18(7), 1471–1476 (2001).
    [CrossRef]
  16. M. Laroche, F. Marquier, R. Carminati, and J. Greffet, “Tailoring Silicon Radiative Properties,” Opt. Commun. 250(4-6), 316–320 (2005).
    [CrossRef]
  17. B. Lee, Y. Chen, and Z. Zhang, “Transmission Enhancement Through Nanoscale Metallic Slit Arrays from the Visible to Mid-Infrared,” J. Comput. Theo. Nano. 5, 201–213 (2008).
  18. M. Moharam, E. Grann, D. Pommet, and T. Gaylord, “Formulation for Stable and Efficient Implementation of the Rigorous Coupled-Wave Analysis of Binary Gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995).
    [CrossRef]
  19. M. Moharam and T. Gaylord, “Rigorous Coupled-Wave Analysis of Planar-Grating Diffraction,” J. Opt. Soc. Am. 71(7), 811–818 (1981).
    [CrossRef]
  20. W. Lee and F. Degertekin, “Rigorous Coupled-Wave Analysis of Multilayered Grating Structures,” J. Lightwave Technol. 22(10), 2359–2363 (2004).
    [CrossRef]
  21. K. Byun, S. Kim, and D. Kim, “Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis,” Opt. Express 13(10), 3737–3742 (2005).
    [CrossRef] [PubMed]
  22. D. Zhang, P. Wang, X. Jiao, G. Yuan, J. Zhang, C. Chen, H. Ming, and R. Rao, “Investigation of the Sensitivity of H-Shaped Nano-Grating Surface Plasmon Resonance Biosensors Using Rigorous Coupled Wave Analysis,” Appl. Phys. Lett. A 89(2), 407–411 (2007).
    [CrossRef]
  23. B. Wu and Q. Wang, “High Sensitivity Transmission-Type SPR Sensor by using Metallic-Dielectric Mixed Gratings,” Chin. Phys. Lett. 25(5), 1668–1671 (2008).
    [CrossRef]
  24. B. Lee, Y. Chen, and Z. Zhang, “Confinement of Infrared Radiation to Nanometer Scales Through Metallic Slit Arrays,” J. Quant. Spectrosc. Radiat. Transf. 109(4), 608–619 (2008).
    [CrossRef]
  25. J. Jin, The Finite Element Method in Electromagnetics (Wiley-IEEE Press, 2002).
  26. E. D. Palik, Handbook of Optical Constants of Solids II (Academic Press, 1991).
  27. F. Marquier, K. Joulain, J. Mulet, R. Carminati, J. Greffet, and Y. Chen, “Coherent Spontaneous Emission of Light by Thermal Sources,” Phys. Rev. B 69(15), 155412 (2004).
    [CrossRef]
  28. J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
    [CrossRef] [PubMed]
  29. K. Park, B. Lee, C. Fu, and Z. Zhang, “Study of the surface and bulk polaritons with a negative index metamaterial,” J. Opt. Soc. Am. B 22(5), 1016–1023 (2005).
    [CrossRef]
  30. J. De Feijter, J. Benjamins, and F. Veer, “Ellipsometry as a Tool to Study the Adsorption Behavior of Synthetic and Biopolymers at the Air-Water Interface,” Biopolymers 17, 3530–3538 (2000).
  31. T. Tumolo, L. Angnes, and M. S. Baptista, “Determination of the refractive index increment (dn/dc) of molecule and macromolecule solutions by surface plasmon resonance,” Anal. Biochem. 333(2), 273–279 (2004).
    [CrossRef] [PubMed]
  32. S. J. Chen, F. C. Chien, G. Y. Lin, and K. C. Lee, “Enhancement of the resolution of surface plasmon resonance biosensors by control of the size and distribution of nanoparticles,” Opt. Lett. 29(12), 1390–1392 (2004).
    [CrossRef] [PubMed]

2010 (1)

S. Basu, B. Lee, and Z. Zhang, “Infrared Radiative Properties of Heavily Doped Silicon at Room Temperature,” J. Heat Transfer 132(2), 023301 (2010).
[CrossRef]

2009 (2)

2008 (3)

B. Lee, Y. Chen, and Z. Zhang, “Transmission Enhancement Through Nanoscale Metallic Slit Arrays from the Visible to Mid-Infrared,” J. Comput. Theo. Nano. 5, 201–213 (2008).

B. Wu and Q. Wang, “High Sensitivity Transmission-Type SPR Sensor by using Metallic-Dielectric Mixed Gratings,” Chin. Phys. Lett. 25(5), 1668–1671 (2008).
[CrossRef]

B. Lee, Y. Chen, and Z. Zhang, “Confinement of Infrared Radiation to Nanometer Scales Through Metallic Slit Arrays,” J. Quant. Spectrosc. Radiat. Transf. 109(4), 608–619 (2008).
[CrossRef]

2007 (4)

D. Zhang, P. Wang, X. Jiao, G. Yuan, J. Zhang, C. Chen, H. Ming, and R. Rao, “Investigation of the Sensitivity of H-Shaped Nano-Grating Surface Plasmon Resonance Biosensors Using Rigorous Coupled Wave Analysis,” Appl. Phys. Lett. A 89(2), 407–411 (2007).
[CrossRef]

E. Suraniti, E. Sollier, R. Calemczuk, T. Livache, P. N. Marche, M. B. Villiers, and Y. Roupioz, “Real-time detection of lymphocytes binding on an antibody chip using SPR imaging,” Lab Chip 7(9), 1206–1208 (2007).
[CrossRef] [PubMed]

K. S. Phillips and Q. Cheng, “Recent advances in surface plasmon resonance based techniques for bioanalysis,” Anal. Bioanal. Chem. 387(5), 1831–1840 (2007).
[CrossRef] [PubMed]

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
[CrossRef] [PubMed]

2006 (2)

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, “Infrared surface plasmon resonance: a novel tool for real time sensing of variations in living cells,” Biophys. J. 90(7), 2592–2599 (2006).
[CrossRef] [PubMed]

J. G. Huang, C. L. Lee, H. M. Lin, T. L. Chuang, W. S. Wang, R. H. Juang, C. H. Wang, C. K. Lee, S. M. Lin, and C. W. Lin, “A miniaturized germanium-doped silicon dioxide-based surface plasmon resonance waveguide sensor for immunoassay detection,” Biosens. Bioelectron. 22(4), 519–525 (2006).
[CrossRef] [PubMed]

2005 (4)

M. Laroche, F. Marquier, R. Carminati, and J. Greffet, “Tailoring Silicon Radiative Properties,” Opt. Commun. 250(4-6), 316–320 (2005).
[CrossRef]

C. Y. Yang, E. Brooks, Y. Li, P. Denny, C. M. Ho, F. Qi, W. Shi, L. Wolinsky, B. Wu, D. T. W. Wong, and C. D. Montemagno, “Detection of picomolar levels of interleukin-8 in human saliva by SPR,” Lab Chip 5(10), 1017–1023 (2005).
[CrossRef] [PubMed]

K. Byun, S. Kim, and D. Kim, “Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis,” Opt. Express 13(10), 3737–3742 (2005).
[CrossRef] [PubMed]

K. Park, B. Lee, C. Fu, and Z. Zhang, “Study of the surface and bulk polaritons with a negative index metamaterial,” J. Opt. Soc. Am. B 22(5), 1016–1023 (2005).
[CrossRef]

2004 (4)

W. Lee and F. Degertekin, “Rigorous Coupled-Wave Analysis of Multilayered Grating Structures,” J. Lightwave Technol. 22(10), 2359–2363 (2004).
[CrossRef]

F. Marquier, K. Joulain, J. Mulet, R. Carminati, J. Greffet, and Y. Chen, “Coherent Spontaneous Emission of Light by Thermal Sources,” Phys. Rev. B 69(15), 155412 (2004).
[CrossRef]

T. Tumolo, L. Angnes, and M. S. Baptista, “Determination of the refractive index increment (dn/dc) of molecule and macromolecule solutions by surface plasmon resonance,” Anal. Biochem. 333(2), 273–279 (2004).
[CrossRef] [PubMed]

S. J. Chen, F. C. Chien, G. Y. Lin, and K. C. Lee, “Enhancement of the resolution of surface plasmon resonance biosensors by control of the size and distribution of nanoparticles,” Opt. Lett. 29(12), 1390–1392 (2004).
[CrossRef] [PubMed]

2003 (2)

2002 (1)

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

2001 (1)

2000 (2)

K. Johansen, H. Arwin, I. Lundstrom, and B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations,” Rev. Sci. Instrum. 71(9), 3530–3538 (2000).
[CrossRef]

J. De Feijter, J. Benjamins, and F. Veer, “Ellipsometry as a Tool to Study the Adsorption Behavior of Synthetic and Biopolymers at the Air-Water Interface,” Biopolymers 17, 3530–3538 (2000).

1999 (1)

J. Homola, S. Yee, and G. Gauglitz, “Surface Plasmon Resonance Sensors: Review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

1995 (1)

1981 (1)

Akiyama, Y.

Angnes, L.

T. Tumolo, L. Angnes, and M. S. Baptista, “Determination of the refractive index increment (dn/dc) of molecule and macromolecule solutions by surface plasmon resonance,” Anal. Biochem. 333(2), 273–279 (2004).
[CrossRef] [PubMed]

Aroeti, B.

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, “Infrared surface plasmon resonance: a novel tool for real time sensing of variations in living cells,” Biophys. J. 90(7), 2592–2599 (2006).
[CrossRef] [PubMed]

Arwin, H.

K. Johansen, H. Arwin, I. Lundstrom, and B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations,” Rev. Sci. Instrum. 71(9), 3530–3538 (2000).
[CrossRef]

Baptista, M. S.

T. Tumolo, L. Angnes, and M. S. Baptista, “Determination of the refractive index increment (dn/dc) of molecule and macromolecule solutions by surface plasmon resonance,” Anal. Biochem. 333(2), 273–279 (2004).
[CrossRef] [PubMed]

Basu, S.

S. Basu, B. Lee, and Z. Zhang, “Infrared Radiative Properties of Heavily Doped Silicon at Room Temperature,” J. Heat Transfer 132(2), 023301 (2010).
[CrossRef]

Benjamins, J.

J. De Feijter, J. Benjamins, and F. Veer, “Ellipsometry as a Tool to Study the Adsorption Behavior of Synthetic and Biopolymers at the Air-Water Interface,” Biopolymers 17, 3530–3538 (2000).

Brooks, E.

C. Y. Yang, E. Brooks, Y. Li, P. Denny, C. M. Ho, F. Qi, W. Shi, L. Wolinsky, B. Wu, D. T. W. Wong, and C. D. Montemagno, “Detection of picomolar levels of interleukin-8 in human saliva by SPR,” Lab Chip 5(10), 1017–1023 (2005).
[CrossRef] [PubMed]

Byun, K.

Calemczuk, R.

E. Suraniti, E. Sollier, R. Calemczuk, T. Livache, P. N. Marche, M. B. Villiers, and Y. Roupioz, “Real-time detection of lymphocytes binding on an antibody chip using SPR imaging,” Lab Chip 7(9), 1206–1208 (2007).
[CrossRef] [PubMed]

Carminati, R.

M. Laroche, F. Marquier, R. Carminati, and J. Greffet, “Tailoring Silicon Radiative Properties,” Opt. Commun. 250(4-6), 316–320 (2005).
[CrossRef]

F. Marquier, K. Joulain, J. Mulet, R. Carminati, J. Greffet, and Y. Chen, “Coherent Spontaneous Emission of Light by Thermal Sources,” Phys. Rev. B 69(15), 155412 (2004).
[CrossRef]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Chen, C.

D. Zhang, P. Wang, X. Jiao, G. Yuan, J. Zhang, C. Chen, H. Ming, and R. Rao, “Investigation of the Sensitivity of H-Shaped Nano-Grating Surface Plasmon Resonance Biosensors Using Rigorous Coupled Wave Analysis,” Appl. Phys. Lett. A 89(2), 407–411 (2007).
[CrossRef]

Chen, S. J.

Chen, Y.

B. Lee, Y. Chen, and Z. Zhang, “Confinement of Infrared Radiation to Nanometer Scales Through Metallic Slit Arrays,” J. Quant. Spectrosc. Radiat. Transf. 109(4), 608–619 (2008).
[CrossRef]

B. Lee, Y. Chen, and Z. Zhang, “Transmission Enhancement Through Nanoscale Metallic Slit Arrays from the Visible to Mid-Infrared,” J. Comput. Theo. Nano. 5, 201–213 (2008).

F. Marquier, K. Joulain, J. Mulet, R. Carminati, J. Greffet, and Y. Chen, “Coherent Spontaneous Emission of Light by Thermal Sources,” Phys. Rev. B 69(15), 155412 (2004).
[CrossRef]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Chen, Y. B.

Cheng, Q.

K. S. Phillips and Q. Cheng, “Recent advances in surface plasmon resonance based techniques for bioanalysis,” Anal. Bioanal. Chem. 387(5), 1831–1840 (2007).
[CrossRef] [PubMed]

Chien, F. C.

Chuang, T. L.

J. G. Huang, C. L. Lee, H. M. Lin, T. L. Chuang, W. S. Wang, R. H. Juang, C. H. Wang, C. K. Lee, S. M. Lin, and C. W. Lin, “A miniaturized germanium-doped silicon dioxide-based surface plasmon resonance waveguide sensor for immunoassay detection,” Biosens. Bioelectron. 22(4), 519–525 (2006).
[CrossRef] [PubMed]

Davidov, D.

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, “Infrared surface plasmon resonance: a novel tool for real time sensing of variations in living cells,” Biophys. J. 90(7), 2592–2599 (2006).
[CrossRef] [PubMed]

De Feijter, J.

J. De Feijter, J. Benjamins, and F. Veer, “Ellipsometry as a Tool to Study the Adsorption Behavior of Synthetic and Biopolymers at the Air-Water Interface,” Biopolymers 17, 3530–3538 (2000).

Degertekin, F.

Denny, P.

C. Y. Yang, E. Brooks, Y. Li, P. Denny, C. M. Ho, F. Qi, W. Shi, L. Wolinsky, B. Wu, D. T. W. Wong, and C. D. Montemagno, “Detection of picomolar levels of interleukin-8 in human saliva by SPR,” Lab Chip 5(10), 1017–1023 (2005).
[CrossRef] [PubMed]

Fu, C.

Gauglitz, G.

J. Homola, S. Yee, and G. Gauglitz, “Surface Plasmon Resonance Sensors: Review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Gaylord, T.

Grann, E.

Greffet, J.

M. Laroche, F. Marquier, R. Carminati, and J. Greffet, “Tailoring Silicon Radiative Properties,” Opt. Commun. 250(4-6), 316–320 (2005).
[CrossRef]

F. Marquier, K. Joulain, J. Mulet, R. Carminati, J. Greffet, and Y. Chen, “Coherent Spontaneous Emission of Light by Thermal Sources,” Phys. Rev. B 69(15), 155412 (2004).
[CrossRef]

Greffet, J. J.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Hane, K.

Ho, C. M.

C. Y. Yang, E. Brooks, Y. Li, P. Denny, C. M. Ho, F. Qi, W. Shi, L. Wolinsky, B. Wu, D. T. W. Wong, and C. D. Montemagno, “Detection of picomolar levels of interleukin-8 in human saliva by SPR,” Lab Chip 5(10), 1017–1023 (2005).
[CrossRef] [PubMed]

Hoa, X. D.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
[CrossRef] [PubMed]

Homola, J.

M. Piliarik, H. Vaisocherová, and J. Homola, “Surface plasmon resonance biosensing,” Methods Mol. Biol. 503, 65–88 (2009).
[CrossRef] [PubMed]

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[CrossRef] [PubMed]

J. Homola, S. Yee, and G. Gauglitz, “Surface Plasmon Resonance Sensors: Review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Huang, J. G.

J. G. Huang, C. L. Lee, H. M. Lin, T. L. Chuang, W. S. Wang, R. H. Juang, C. H. Wang, C. K. Lee, S. M. Lin, and C. W. Lin, “A miniaturized germanium-doped silicon dioxide-based surface plasmon resonance waveguide sensor for immunoassay detection,” Biosens. Bioelectron. 22(4), 519–525 (2006).
[CrossRef] [PubMed]

Jiao, X.

D. Zhang, P. Wang, X. Jiao, G. Yuan, J. Zhang, C. Chen, H. Ming, and R. Rao, “Investigation of the Sensitivity of H-Shaped Nano-Grating Surface Plasmon Resonance Biosensors Using Rigorous Coupled Wave Analysis,” Appl. Phys. Lett. A 89(2), 407–411 (2007).
[CrossRef]

Johansen, K.

K. Johansen, H. Arwin, I. Lundstrom, and B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations,” Rev. Sci. Instrum. 71(9), 3530–3538 (2000).
[CrossRef]

Joulain, K.

F. Marquier, K. Joulain, J. Mulet, R. Carminati, J. Greffet, and Y. Chen, “Coherent Spontaneous Emission of Light by Thermal Sources,” Phys. Rev. B 69(15), 155412 (2004).
[CrossRef]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Juang, R. H.

J. G. Huang, C. L. Lee, H. M. Lin, T. L. Chuang, W. S. Wang, R. H. Juang, C. H. Wang, C. K. Lee, S. M. Lin, and C. W. Lin, “A miniaturized germanium-doped silicon dioxide-based surface plasmon resonance waveguide sensor for immunoassay detection,” Biosens. Bioelectron. 22(4), 519–525 (2006).
[CrossRef] [PubMed]

Kabashin, A. V.

Kanamori, Y.

Kim, D.

Kim, S.

Kirk, A. G.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
[CrossRef] [PubMed]

Laroche, M.

M. Laroche, F. Marquier, R. Carminati, and J. Greffet, “Tailoring Silicon Radiative Properties,” Opt. Commun. 250(4-6), 316–320 (2005).
[CrossRef]

Lee, B.

S. Basu, B. Lee, and Z. Zhang, “Infrared Radiative Properties of Heavily Doped Silicon at Room Temperature,” J. Heat Transfer 132(2), 023301 (2010).
[CrossRef]

B. Lee, Y. Chen, and Z. Zhang, “Transmission Enhancement Through Nanoscale Metallic Slit Arrays from the Visible to Mid-Infrared,” J. Comput. Theo. Nano. 5, 201–213 (2008).

B. Lee, Y. Chen, and Z. Zhang, “Confinement of Infrared Radiation to Nanometer Scales Through Metallic Slit Arrays,” J. Quant. Spectrosc. Radiat. Transf. 109(4), 608–619 (2008).
[CrossRef]

K. Park, B. Lee, C. Fu, and Z. Zhang, “Study of the surface and bulk polaritons with a negative index metamaterial,” J. Opt. Soc. Am. B 22(5), 1016–1023 (2005).
[CrossRef]

Lee, C. K.

J. G. Huang, C. L. Lee, H. M. Lin, T. L. Chuang, W. S. Wang, R. H. Juang, C. H. Wang, C. K. Lee, S. M. Lin, and C. W. Lin, “A miniaturized germanium-doped silicon dioxide-based surface plasmon resonance waveguide sensor for immunoassay detection,” Biosens. Bioelectron. 22(4), 519–525 (2006).
[CrossRef] [PubMed]

Lee, C. L.

J. G. Huang, C. L. Lee, H. M. Lin, T. L. Chuang, W. S. Wang, R. H. Juang, C. H. Wang, C. K. Lee, S. M. Lin, and C. W. Lin, “A miniaturized germanium-doped silicon dioxide-based surface plasmon resonance waveguide sensor for immunoassay detection,” Biosens. Bioelectron. 22(4), 519–525 (2006).
[CrossRef] [PubMed]

Lee, K. C.

Lee, W.

Li, Y.

C. Y. Yang, E. Brooks, Y. Li, P. Denny, C. M. Ho, F. Qi, W. Shi, L. Wolinsky, B. Wu, D. T. W. Wong, and C. D. Montemagno, “Detection of picomolar levels of interleukin-8 in human saliva by SPR,” Lab Chip 5(10), 1017–1023 (2005).
[CrossRef] [PubMed]

Liedberg, B.

K. Johansen, H. Arwin, I. Lundstrom, and B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations,” Rev. Sci. Instrum. 71(9), 3530–3538 (2000).
[CrossRef]

Lin, C. W.

J. G. Huang, C. L. Lee, H. M. Lin, T. L. Chuang, W. S. Wang, R. H. Juang, C. H. Wang, C. K. Lee, S. M. Lin, and C. W. Lin, “A miniaturized germanium-doped silicon dioxide-based surface plasmon resonance waveguide sensor for immunoassay detection,” Biosens. Bioelectron. 22(4), 519–525 (2006).
[CrossRef] [PubMed]

Lin, G. Y.

Lin, H. M.

J. G. Huang, C. L. Lee, H. M. Lin, T. L. Chuang, W. S. Wang, R. H. Juang, C. H. Wang, C. K. Lee, S. M. Lin, and C. W. Lin, “A miniaturized germanium-doped silicon dioxide-based surface plasmon resonance waveguide sensor for immunoassay detection,” Biosens. Bioelectron. 22(4), 519–525 (2006).
[CrossRef] [PubMed]

Lin, S. M.

J. G. Huang, C. L. Lee, H. M. Lin, T. L. Chuang, W. S. Wang, R. H. Juang, C. H. Wang, C. K. Lee, S. M. Lin, and C. W. Lin, “A miniaturized germanium-doped silicon dioxide-based surface plasmon resonance waveguide sensor for immunoassay detection,” Biosens. Bioelectron. 22(4), 519–525 (2006).
[CrossRef] [PubMed]

Lirtsman, V.

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, “Infrared surface plasmon resonance: a novel tool for real time sensing of variations in living cells,” Biophys. J. 90(7), 2592–2599 (2006).
[CrossRef] [PubMed]

Livache, T.

E. Suraniti, E. Sollier, R. Calemczuk, T. Livache, P. N. Marche, M. B. Villiers, and Y. Roupioz, “Real-time detection of lymphocytes binding on an antibody chip using SPR imaging,” Lab Chip 7(9), 1206–1208 (2007).
[CrossRef] [PubMed]

Lundstrom, I.

K. Johansen, H. Arwin, I. Lundstrom, and B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations,” Rev. Sci. Instrum. 71(9), 3530–3538 (2000).
[CrossRef]

Luong, J. H. T.

Mainguy, S.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Marche, P. N.

E. Suraniti, E. Sollier, R. Calemczuk, T. Livache, P. N. Marche, M. B. Villiers, and Y. Roupioz, “Real-time detection of lymphocytes binding on an antibody chip using SPR imaging,” Lab Chip 7(9), 1206–1208 (2007).
[CrossRef] [PubMed]

Marquier, F.

M. Laroche, F. Marquier, R. Carminati, and J. Greffet, “Tailoring Silicon Radiative Properties,” Opt. Commun. 250(4-6), 316–320 (2005).
[CrossRef]

F. Marquier, K. Joulain, J. Mulet, R. Carminati, J. Greffet, and Y. Chen, “Coherent Spontaneous Emission of Light by Thermal Sources,” Phys. Rev. B 69(15), 155412 (2004).
[CrossRef]

Meunier, M.

Ming, H.

D. Zhang, P. Wang, X. Jiao, G. Yuan, J. Zhang, C. Chen, H. Ming, and R. Rao, “Investigation of the Sensitivity of H-Shaped Nano-Grating Surface Plasmon Resonance Biosensors Using Rigorous Coupled Wave Analysis,” Appl. Phys. Lett. A 89(2), 407–411 (2007).
[CrossRef]

Moharam, M.

Montemagno, C. D.

C. Y. Yang, E. Brooks, Y. Li, P. Denny, C. M. Ho, F. Qi, W. Shi, L. Wolinsky, B. Wu, D. T. W. Wong, and C. D. Montemagno, “Detection of picomolar levels of interleukin-8 in human saliva by SPR,” Lab Chip 5(10), 1017–1023 (2005).
[CrossRef] [PubMed]

Mulet, J.

F. Marquier, K. Joulain, J. Mulet, R. Carminati, J. Greffet, and Y. Chen, “Coherent Spontaneous Emission of Light by Thermal Sources,” Phys. Rev. B 69(15), 155412 (2004).
[CrossRef]

Mulet, J. P.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Park, K.

Patskovsky, S.

Phillips, K. S.

K. S. Phillips and Q. Cheng, “Recent advances in surface plasmon resonance based techniques for bioanalysis,” Anal. Bioanal. Chem. 387(5), 1831–1840 (2007).
[CrossRef] [PubMed]

Piliarik, M.

M. Piliarik, H. Vaisocherová, and J. Homola, “Surface plasmon resonance biosensing,” Methods Mol. Biol. 503, 65–88 (2009).
[CrossRef] [PubMed]

Pommet, D.

Qi, F.

C. Y. Yang, E. Brooks, Y. Li, P. Denny, C. M. Ho, F. Qi, W. Shi, L. Wolinsky, B. Wu, D. T. W. Wong, and C. D. Montemagno, “Detection of picomolar levels of interleukin-8 in human saliva by SPR,” Lab Chip 5(10), 1017–1023 (2005).
[CrossRef] [PubMed]

Rao, R.

D. Zhang, P. Wang, X. Jiao, G. Yuan, J. Zhang, C. Chen, H. Ming, and R. Rao, “Investigation of the Sensitivity of H-Shaped Nano-Grating Surface Plasmon Resonance Biosensors Using Rigorous Coupled Wave Analysis,” Appl. Phys. Lett. A 89(2), 407–411 (2007).
[CrossRef]

Roupioz, Y.

E. Suraniti, E. Sollier, R. Calemczuk, T. Livache, P. N. Marche, M. B. Villiers, and Y. Roupioz, “Real-time detection of lymphocytes binding on an antibody chip using SPR imaging,” Lab Chip 7(9), 1206–1208 (2007).
[CrossRef] [PubMed]

Sai, H.

Shi, W.

C. Y. Yang, E. Brooks, Y. Li, P. Denny, C. M. Ho, F. Qi, W. Shi, L. Wolinsky, B. Wu, D. T. W. Wong, and C. D. Montemagno, “Detection of picomolar levels of interleukin-8 in human saliva by SPR,” Lab Chip 5(10), 1017–1023 (2005).
[CrossRef] [PubMed]

Sollier, E.

E. Suraniti, E. Sollier, R. Calemczuk, T. Livache, P. N. Marche, M. B. Villiers, and Y. Roupioz, “Real-time detection of lymphocytes binding on an antibody chip using SPR imaging,” Lab Chip 7(9), 1206–1208 (2007).
[CrossRef] [PubMed]

Suraniti, E.

E. Suraniti, E. Sollier, R. Calemczuk, T. Livache, P. N. Marche, M. B. Villiers, and Y. Roupioz, “Real-time detection of lymphocytes binding on an antibody chip using SPR imaging,” Lab Chip 7(9), 1206–1208 (2007).
[CrossRef] [PubMed]

Tabrizian, M.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
[CrossRef] [PubMed]

Tumolo, T.

T. Tumolo, L. Angnes, and M. S. Baptista, “Determination of the refractive index increment (dn/dc) of molecule and macromolecule solutions by surface plasmon resonance,” Anal. Biochem. 333(2), 273–279 (2004).
[CrossRef] [PubMed]

Vaisocherová, H.

M. Piliarik, H. Vaisocherová, and J. Homola, “Surface plasmon resonance biosensing,” Methods Mol. Biol. 503, 65–88 (2009).
[CrossRef] [PubMed]

Veer, F.

J. De Feijter, J. Benjamins, and F. Veer, “Ellipsometry as a Tool to Study the Adsorption Behavior of Synthetic and Biopolymers at the Air-Water Interface,” Biopolymers 17, 3530–3538 (2000).

Villiers, M. B.

E. Suraniti, E. Sollier, R. Calemczuk, T. Livache, P. N. Marche, M. B. Villiers, and Y. Roupioz, “Real-time detection of lymphocytes binding on an antibody chip using SPR imaging,” Lab Chip 7(9), 1206–1208 (2007).
[CrossRef] [PubMed]

Wang, C. H.

J. G. Huang, C. L. Lee, H. M. Lin, T. L. Chuang, W. S. Wang, R. H. Juang, C. H. Wang, C. K. Lee, S. M. Lin, and C. W. Lin, “A miniaturized germanium-doped silicon dioxide-based surface plasmon resonance waveguide sensor for immunoassay detection,” Biosens. Bioelectron. 22(4), 519–525 (2006).
[CrossRef] [PubMed]

Wang, P.

D. Zhang, P. Wang, X. Jiao, G. Yuan, J. Zhang, C. Chen, H. Ming, and R. Rao, “Investigation of the Sensitivity of H-Shaped Nano-Grating Surface Plasmon Resonance Biosensors Using Rigorous Coupled Wave Analysis,” Appl. Phys. Lett. A 89(2), 407–411 (2007).
[CrossRef]

Wang, Q.

B. Wu and Q. Wang, “High Sensitivity Transmission-Type SPR Sensor by using Metallic-Dielectric Mixed Gratings,” Chin. Phys. Lett. 25(5), 1668–1671 (2008).
[CrossRef]

Wang, W. S.

J. G. Huang, C. L. Lee, H. M. Lin, T. L. Chuang, W. S. Wang, R. H. Juang, C. H. Wang, C. K. Lee, S. M. Lin, and C. W. Lin, “A miniaturized germanium-doped silicon dioxide-based surface plasmon resonance waveguide sensor for immunoassay detection,” Biosens. Bioelectron. 22(4), 519–525 (2006).
[CrossRef] [PubMed]

Wolinsky, L.

C. Y. Yang, E. Brooks, Y. Li, P. Denny, C. M. Ho, F. Qi, W. Shi, L. Wolinsky, B. Wu, D. T. W. Wong, and C. D. Montemagno, “Detection of picomolar levels of interleukin-8 in human saliva by SPR,” Lab Chip 5(10), 1017–1023 (2005).
[CrossRef] [PubMed]

Wong, D. T. W.

C. Y. Yang, E. Brooks, Y. Li, P. Denny, C. M. Ho, F. Qi, W. Shi, L. Wolinsky, B. Wu, D. T. W. Wong, and C. D. Montemagno, “Detection of picomolar levels of interleukin-8 in human saliva by SPR,” Lab Chip 5(10), 1017–1023 (2005).
[CrossRef] [PubMed]

Wu, B.

B. Wu and Q. Wang, “High Sensitivity Transmission-Type SPR Sensor by using Metallic-Dielectric Mixed Gratings,” Chin. Phys. Lett. 25(5), 1668–1671 (2008).
[CrossRef]

C. Y. Yang, E. Brooks, Y. Li, P. Denny, C. M. Ho, F. Qi, W. Shi, L. Wolinsky, B. Wu, D. T. W. Wong, and C. D. Montemagno, “Detection of picomolar levels of interleukin-8 in human saliva by SPR,” Lab Chip 5(10), 1017–1023 (2005).
[CrossRef] [PubMed]

Yang, C. Y.

C. Y. Yang, E. Brooks, Y. Li, P. Denny, C. M. Ho, F. Qi, W. Shi, L. Wolinsky, B. Wu, D. T. W. Wong, and C. D. Montemagno, “Detection of picomolar levels of interleukin-8 in human saliva by SPR,” Lab Chip 5(10), 1017–1023 (2005).
[CrossRef] [PubMed]

Yee, S.

J. Homola, S. Yee, and G. Gauglitz, “Surface Plasmon Resonance Sensors: Review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Yuan, G.

D. Zhang, P. Wang, X. Jiao, G. Yuan, J. Zhang, C. Chen, H. Ming, and R. Rao, “Investigation of the Sensitivity of H-Shaped Nano-Grating Surface Plasmon Resonance Biosensors Using Rigorous Coupled Wave Analysis,” Appl. Phys. Lett. A 89(2), 407–411 (2007).
[CrossRef]

Yugami, H.

Zhang, D.

D. Zhang, P. Wang, X. Jiao, G. Yuan, J. Zhang, C. Chen, H. Ming, and R. Rao, “Investigation of the Sensitivity of H-Shaped Nano-Grating Surface Plasmon Resonance Biosensors Using Rigorous Coupled Wave Analysis,” Appl. Phys. Lett. A 89(2), 407–411 (2007).
[CrossRef]

Zhang, J.

D. Zhang, P. Wang, X. Jiao, G. Yuan, J. Zhang, C. Chen, H. Ming, and R. Rao, “Investigation of the Sensitivity of H-Shaped Nano-Grating Surface Plasmon Resonance Biosensors Using Rigorous Coupled Wave Analysis,” Appl. Phys. Lett. A 89(2), 407–411 (2007).
[CrossRef]

Zhang, Z.

S. Basu, B. Lee, and Z. Zhang, “Infrared Radiative Properties of Heavily Doped Silicon at Room Temperature,” J. Heat Transfer 132(2), 023301 (2010).
[CrossRef]

B. Lee, Y. Chen, and Z. Zhang, “Transmission Enhancement Through Nanoscale Metallic Slit Arrays from the Visible to Mid-Infrared,” J. Comput. Theo. Nano. 5, 201–213 (2008).

B. Lee, Y. Chen, and Z. Zhang, “Confinement of Infrared Radiation to Nanometer Scales Through Metallic Slit Arrays,” J. Quant. Spectrosc. Radiat. Transf. 109(4), 608–619 (2008).
[CrossRef]

K. Park, B. Lee, C. Fu, and Z. Zhang, “Study of the surface and bulk polaritons with a negative index metamaterial,” J. Opt. Soc. Am. B 22(5), 1016–1023 (2005).
[CrossRef]

Ziblat, R.

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, “Infrared surface plasmon resonance: a novel tool for real time sensing of variations in living cells,” Biophys. J. 90(7), 2592–2599 (2006).
[CrossRef] [PubMed]

Anal. Bioanal. Chem. (2)

K. S. Phillips and Q. Cheng, “Recent advances in surface plasmon resonance based techniques for bioanalysis,” Anal. Bioanal. Chem. 387(5), 1831–1840 (2007).
[CrossRef] [PubMed]

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[CrossRef] [PubMed]

Anal. Biochem. (1)

T. Tumolo, L. Angnes, and M. S. Baptista, “Determination of the refractive index increment (dn/dc) of molecule and macromolecule solutions by surface plasmon resonance,” Anal. Biochem. 333(2), 273–279 (2004).
[CrossRef] [PubMed]

Appl. Phys. Lett. A (1)

D. Zhang, P. Wang, X. Jiao, G. Yuan, J. Zhang, C. Chen, H. Ming, and R. Rao, “Investigation of the Sensitivity of H-Shaped Nano-Grating Surface Plasmon Resonance Biosensors Using Rigorous Coupled Wave Analysis,” Appl. Phys. Lett. A 89(2), 407–411 (2007).
[CrossRef]

Biophys. J. (1)

R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, “Infrared surface plasmon resonance: a novel tool for real time sensing of variations in living cells,” Biophys. J. 90(7), 2592–2599 (2006).
[CrossRef] [PubMed]

Biopolymers (1)

J. De Feijter, J. Benjamins, and F. Veer, “Ellipsometry as a Tool to Study the Adsorption Behavior of Synthetic and Biopolymers at the Air-Water Interface,” Biopolymers 17, 3530–3538 (2000).

Biosens. Bioelectron. (2)

J. G. Huang, C. L. Lee, H. M. Lin, T. L. Chuang, W. S. Wang, R. H. Juang, C. H. Wang, C. K. Lee, S. M. Lin, and C. W. Lin, “A miniaturized germanium-doped silicon dioxide-based surface plasmon resonance waveguide sensor for immunoassay detection,” Biosens. Bioelectron. 22(4), 519–525 (2006).
[CrossRef] [PubMed]

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
[CrossRef] [PubMed]

Chin. Phys. Lett. (1)

B. Wu and Q. Wang, “High Sensitivity Transmission-Type SPR Sensor by using Metallic-Dielectric Mixed Gratings,” Chin. Phys. Lett. 25(5), 1668–1671 (2008).
[CrossRef]

J. Comput. Theo. Nano. (1)

B. Lee, Y. Chen, and Z. Zhang, “Transmission Enhancement Through Nanoscale Metallic Slit Arrays from the Visible to Mid-Infrared,” J. Comput. Theo. Nano. 5, 201–213 (2008).

J. Heat Transfer (1)

S. Basu, B. Lee, and Z. Zhang, “Infrared Radiative Properties of Heavily Doped Silicon at Room Temperature,” J. Heat Transfer 132(2), 023301 (2010).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (3)

J. Opt. Soc. Am. B (1)

J. Quant. Spectrosc. Radiat. Transf. (1)

B. Lee, Y. Chen, and Z. Zhang, “Confinement of Infrared Radiation to Nanometer Scales Through Metallic Slit Arrays,” J. Quant. Spectrosc. Radiat. Transf. 109(4), 608–619 (2008).
[CrossRef]

Lab Chip (2)

C. Y. Yang, E. Brooks, Y. Li, P. Denny, C. M. Ho, F. Qi, W. Shi, L. Wolinsky, B. Wu, D. T. W. Wong, and C. D. Montemagno, “Detection of picomolar levels of interleukin-8 in human saliva by SPR,” Lab Chip 5(10), 1017–1023 (2005).
[CrossRef] [PubMed]

E. Suraniti, E. Sollier, R. Calemczuk, T. Livache, P. N. Marche, M. B. Villiers, and Y. Roupioz, “Real-time detection of lymphocytes binding on an antibody chip using SPR imaging,” Lab Chip 7(9), 1206–1208 (2007).
[CrossRef] [PubMed]

Methods Mol. Biol. (1)

M. Piliarik, H. Vaisocherová, and J. Homola, “Surface plasmon resonance biosensing,” Methods Mol. Biol. 503, 65–88 (2009).
[CrossRef] [PubMed]

Nature (1)

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Opt. Commun. (1)

M. Laroche, F. Marquier, R. Carminati, and J. Greffet, “Tailoring Silicon Radiative Properties,” Opt. Commun. 250(4-6), 316–320 (2005).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (1)

F. Marquier, K. Joulain, J. Mulet, R. Carminati, J. Greffet, and Y. Chen, “Coherent Spontaneous Emission of Light by Thermal Sources,” Phys. Rev. B 69(15), 155412 (2004).
[CrossRef]

Rev. Sci. Instrum. (1)

K. Johansen, H. Arwin, I. Lundstrom, and B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations,” Rev. Sci. Instrum. 71(9), 3530–3538 (2000).
[CrossRef]

Sens. Actuators B Chem. (1)

J. Homola, S. Yee, and G. Gauglitz, “Surface Plasmon Resonance Sensors: Review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Other (3)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

J. Jin, The Finite Element Method in Electromagnetics (Wiley-IEEE Press, 2002).

E. D. Palik, Handbook of Optical Constants of Solids II (Academic Press, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the doped-Si SPR biosensor platform (not scaled). The silicon diffraction grating couples the incident light to resonate surface charge density oscillations at the metal-analyte interface. The excited surface plasmon probes surface composition changes as a result of binding events between analyte and functionalized biomolecular recognition elements.

Fig. 2
Fig. 2

(a) Dispersion relation of the doped-Si SPR coupler. Due to the grating harmonics of the doped silicon regions, SPR is observed at a wavelength of 5.24 µm for the normal incidence of IR light. Two coupling points are observed at oblique incidence angles due to the periodicity of the grating structure. (b) Reflectance curves demonstrate normal incidence provides the best sharpness as compared to oblique setups.

Fig. 3
Fig. 3

FEA simulation displaying the normalized electric field magnitude in vicinity of the designed sensor for incident wavelengths of: (a) 4 µm, (b) 5.24 µm, and (c) 9 µm. At the SPR wavelength, (b), a standing surface wave is formed at the metal-dielectric interface which evanescently penetrates the dielectric medium to a skin depth of 3.9 µm. At other wavelengths, the incident IR light is predominantly reflected by the gold layer due to its high reflectance, while a small portion of light is transmitted through the thin gold layer at shorter wavelengths.

Fig. 4
Fig. 4

Proposed coupler offers ease in tuning SPR wavelength. (a) Examples of reflectance dip position shifts as a result of grating period change. Thus, the linear shift observed in (b) enables plasmon excitation at ends of the IR-spectrum through simple manipulation of implant trench periodicity.

Fig. 5
Fig. 5

RCWA-based parametric study on the SPR excitation. A small change in dip position is seen for increasing (a) gold layer thickness, (c) filling ratio, (e) grating thickness, and (g) doping concentration. The reflectance dip depth and FWHM also change for adjustment in (b) gold layer thickness, (d) filling ratio, (f) grating thickness, and (h) doping concentration.

Fig. 8
Fig. 8

Validation of surface plasmon excitation by the fabricated platform. Four phosphorous implants and the rapid thermal processing afterwards are required to produce a 800-nm deep grating structure, resulting in a non-uniform doping profile as shown in the inset. The RCWA calculation to account for the non-uniformity in doping concentration was completed for three different fabrication recipes: (a) a 8-nm gold layer deposited directly on the multi-step implanted Si grating, (b) a 2-nm Cr adhesion layer deposited prior to deposition of a 6-nm gold layer, and The calculation demonstrates that fabricated structures can excite a surface plasmon that is very similar to that of the ideal SPR platform, (c) a 8-nm gold layer deposited directly on the ideally doped Si grating.

Fig. 6
Fig. 6

Change in (a) position, (b) depth, and (c) FWHM of the reflectance dip with the refractive index change of 400-nm and 600-nm thick analyte-binding layers. For thicker samples, the dip geometries vary more drastically from the baseline point (n = 1.3). As the layer occupies a larger portion of the EM penetration depth, there is a substantial impact on the effective refractive index of the dielectric medium.

Fig. 7
Fig. 7

Limit of detection determined by RCWA. The four curves plotted (0.16 cm−1, 0.5 cm−1, 1 cm−1 and 4 cm−1) are typical spectral resolutions of an FTIR. All areas above the dashed curves in the plot can be measured for any combination of refractive index and sample layer thickness. Inset displays the detectable refractive index change of the analyte-binding layer as a function of the FTIR spectral resolution. Higher resolution settings will allow for the measurement of minute variations in surface composition.

Metrics