Abstract

We have compared cerebral hemodynamic changes measured by near-infrared spectroscopy (NIRS) with simultaneously acquired BOLD fMRI signals during breath hold challenge in humans. The oxy- and deoxyhemoglobin concentration changes were obtained from the same broadband NIRS data using four different quantitation methods. One method used only two wavelengths (690 nm and 830 nm), and three other methods used broadband data with different spectral fitting algorithms. We found that the broadband techniques employing spectral derivatives were significantly superior to the multi-wavelength methods in terms of the correlation with the BOLD signals. In two cases out of six we found that the time courses of the deoxyhemoglobin changes produced by the two-wavelength method were qualitatively inconsistent with the BOLD fMRI signals.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Gibson and H. Dehghani, “Diffuse optical imaging,” Philos. Transact. A Math. Phys. Eng. Sci. 367(1900), 3055–3072 (2009).
    [CrossRef] [PubMed]
  2. S. Perrey, “Non-invasive NIR spectroscopy of human brain function during exercise,” Methods 45(4), 289–299 (2008).
    [CrossRef] [PubMed]
  3. M. Calderon-Arnulphi, A. Alaraj, and K. V. Slavin, “Near infrared technology in neuroscience: past, present and future,” Neurol. Res. 31(6), 605–614 (2009).
    [CrossRef] [PubMed]
  4. G. Pfurtscheller, G. Bauernfeind, S. C. Wriessnegger, and C. Neuper, “Focal frontal (de)oxyhemoglobin responses during simple arithmetic,” Int. J. Psychophysiol. 76(3), 186–192 (2010).
    [CrossRef] [PubMed]
  5. C. Fedorow and H. P. Grocott, “Cerebral monitoring to optimize outcomes after cardiac surgery,” Curr. Opin. Anaesthesiol. 23(1), 89–94 (2010).
    [CrossRef]
  6. M. E. Martin, M. Wabuyele, M. Panjehpour, B. Overholt, R. DeNovo, S. Kennel, G. Cunningham, and T. Vo-Dinh, “An AOTF-based dual-modality hyperspectral imaging system (DMHSI) capable of simultaneous fluorescence and reflectance imaging,” Med. Eng. Phys. 28(2), 149–155 (2006).
    [CrossRef]
  7. S. C. Gebhart, R. C. Thompson, and A. Mahadevan-Jansen, “Liquid-crystal tunable filter spectral imaging for brain tumor demarcation,” Appl. Opt. 46(10), 1896–1910 (2007).
    [CrossRef] [PubMed]
  8. S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39(1), 177–196 (1994).
    [CrossRef] [PubMed]
  9. C. E. Cooper, C. E. Elwell, J. H. Meek, S. J. Matcher, J. S. Wyatt, M. Cope, and D. T. Delpy, “The noninvasive measurement of absolute cerebral deoxyhemoglobin concentration and mean optical path length in the neonatal brain by second derivative near infrared spectroscopy,” Pediatr. Res. 39(1), 32–38 (1996).
    [CrossRef] [PubMed]
  10. B. J. MacIntosh, L. M. Klassen, and R. S. Menon, “Transient hemodynamics during a breath hold challenge in a two part functional imaging study with simultaneous near-infrared spectroscopy in adult humans,” Neuroimage 20(2), 1246–1252 (2003).
    [CrossRef] [PubMed]
  11. L. P. Safonova, A. Michalos, U. Wolf, M. Wolf, D. M. Hueber, J. H. Choi, R. Gupta, C. Polzonetti, W. W. Mantulin, and E. Gratton, “Age-correlated changes in cerebral hemodynamics assessed by near-infrared spectroscopy,” Arch. Gerontol. Geriatr. 39(3), 207–225 (2004).
    [CrossRef] [PubMed]
  12. L. M. Klassen, B. J. MacIntosh, and R. S. Menon, “Influence of hypoxia on wavelength dependence of differential pathlength and near-infrared quantification,” Phys. Med. Biol. 47(9), 1573–1589 (2002).
    [CrossRef] [PubMed]
  13. V. Toronov, A. Webb, J. H. Choi, M. Wolf, L. Safonova, U. Wolf, and E. Gratton, “Study of local cerebral hemodynamics by frequency-domain near-infrared spectroscopy and correlation with simultaneously acquired functional magnetic resonance imaging,” Opt. Express 9(8), 417–427 (2001), http://www.opticsinfobase.org/oe/viewmedia.cfm?URI=oe-9-8-417&seq=0 .
    [CrossRef] [PubMed]
  14. A. F. N. I. Main Page, http://afni.nimh.nih.gov/afni
  15. A. Sassaroli, B. deB Frederick, Y. Tong, P. F. Renshaw, and S. Fantini, “Spatially weighted BOLD signal for comparison of functional magnetic resonance imaging and near-infrared imaging of the brain,” Neuroimage 33(2), 505–514 (2006).
    [CrossRef] [PubMed]
  16. T. J. Huppert, R. D. Hoge, A. M. Dale, M. A. Franceschini, and D. A. Boas, “Quantitative spatial comparison of diffuse optical imaging with blood oxygen level-dependent and arterial spin labeling-based functional magnetic resonance imaging,” J. Biomed. Opt. 11(6), 064018 (2006).
    [CrossRef]
  17. L. P. Safonova, A. Michalos, U. Wolf, M. Wolf, D. M. Hueber, J. H. Choi, R. Gupta, C. Polzonetti, W. W. Mantulin, and E. Gratton, “Age-correlated changes in cerebral hemodynamics assessed by near-infrared spectroscopy,” Arch. Gerontol. Geriatr. 39(3), 207–225 (2004).
    [CrossRef] [PubMed]
  18. J. Virtanen, T. Noponen, and P. Meriläinen, “Comparison of principal and independent component analysis in removing extracerebral interference from near-infrared spectroscopy signals,” J. Biomed. Opt. 14(5), 054032 (2009).
    [CrossRef] [PubMed]

2010 (2)

G. Pfurtscheller, G. Bauernfeind, S. C. Wriessnegger, and C. Neuper, “Focal frontal (de)oxyhemoglobin responses during simple arithmetic,” Int. J. Psychophysiol. 76(3), 186–192 (2010).
[CrossRef] [PubMed]

C. Fedorow and H. P. Grocott, “Cerebral monitoring to optimize outcomes after cardiac surgery,” Curr. Opin. Anaesthesiol. 23(1), 89–94 (2010).
[CrossRef]

2009 (3)

A. Gibson and H. Dehghani, “Diffuse optical imaging,” Philos. Transact. A Math. Phys. Eng. Sci. 367(1900), 3055–3072 (2009).
[CrossRef] [PubMed]

M. Calderon-Arnulphi, A. Alaraj, and K. V. Slavin, “Near infrared technology in neuroscience: past, present and future,” Neurol. Res. 31(6), 605–614 (2009).
[CrossRef] [PubMed]

J. Virtanen, T. Noponen, and P. Meriläinen, “Comparison of principal and independent component analysis in removing extracerebral interference from near-infrared spectroscopy signals,” J. Biomed. Opt. 14(5), 054032 (2009).
[CrossRef] [PubMed]

2008 (1)

S. Perrey, “Non-invasive NIR spectroscopy of human brain function during exercise,” Methods 45(4), 289–299 (2008).
[CrossRef] [PubMed]

2007 (1)

2006 (3)

A. Sassaroli, B. deB Frederick, Y. Tong, P. F. Renshaw, and S. Fantini, “Spatially weighted BOLD signal for comparison of functional magnetic resonance imaging and near-infrared imaging of the brain,” Neuroimage 33(2), 505–514 (2006).
[CrossRef] [PubMed]

T. J. Huppert, R. D. Hoge, A. M. Dale, M. A. Franceschini, and D. A. Boas, “Quantitative spatial comparison of diffuse optical imaging with blood oxygen level-dependent and arterial spin labeling-based functional magnetic resonance imaging,” J. Biomed. Opt. 11(6), 064018 (2006).
[CrossRef]

M. E. Martin, M. Wabuyele, M. Panjehpour, B. Overholt, R. DeNovo, S. Kennel, G. Cunningham, and T. Vo-Dinh, “An AOTF-based dual-modality hyperspectral imaging system (DMHSI) capable of simultaneous fluorescence and reflectance imaging,” Med. Eng. Phys. 28(2), 149–155 (2006).
[CrossRef]

2004 (2)

L. P. Safonova, A. Michalos, U. Wolf, M. Wolf, D. M. Hueber, J. H. Choi, R. Gupta, C. Polzonetti, W. W. Mantulin, and E. Gratton, “Age-correlated changes in cerebral hemodynamics assessed by near-infrared spectroscopy,” Arch. Gerontol. Geriatr. 39(3), 207–225 (2004).
[CrossRef] [PubMed]

L. P. Safonova, A. Michalos, U. Wolf, M. Wolf, D. M. Hueber, J. H. Choi, R. Gupta, C. Polzonetti, W. W. Mantulin, and E. Gratton, “Age-correlated changes in cerebral hemodynamics assessed by near-infrared spectroscopy,” Arch. Gerontol. Geriatr. 39(3), 207–225 (2004).
[CrossRef] [PubMed]

2003 (1)

B. J. MacIntosh, L. M. Klassen, and R. S. Menon, “Transient hemodynamics during a breath hold challenge in a two part functional imaging study with simultaneous near-infrared spectroscopy in adult humans,” Neuroimage 20(2), 1246–1252 (2003).
[CrossRef] [PubMed]

2002 (1)

L. M. Klassen, B. J. MacIntosh, and R. S. Menon, “Influence of hypoxia on wavelength dependence of differential pathlength and near-infrared quantification,” Phys. Med. Biol. 47(9), 1573–1589 (2002).
[CrossRef] [PubMed]

2001 (1)

1996 (1)

C. E. Cooper, C. E. Elwell, J. H. Meek, S. J. Matcher, J. S. Wyatt, M. Cope, and D. T. Delpy, “The noninvasive measurement of absolute cerebral deoxyhemoglobin concentration and mean optical path length in the neonatal brain by second derivative near infrared spectroscopy,” Pediatr. Res. 39(1), 32–38 (1996).
[CrossRef] [PubMed]

1994 (1)

S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39(1), 177–196 (1994).
[CrossRef] [PubMed]

Alaraj, A.

M. Calderon-Arnulphi, A. Alaraj, and K. V. Slavin, “Near infrared technology in neuroscience: past, present and future,” Neurol. Res. 31(6), 605–614 (2009).
[CrossRef] [PubMed]

Bauernfeind, G.

G. Pfurtscheller, G. Bauernfeind, S. C. Wriessnegger, and C. Neuper, “Focal frontal (de)oxyhemoglobin responses during simple arithmetic,” Int. J. Psychophysiol. 76(3), 186–192 (2010).
[CrossRef] [PubMed]

Boas, D. A.

T. J. Huppert, R. D. Hoge, A. M. Dale, M. A. Franceschini, and D. A. Boas, “Quantitative spatial comparison of diffuse optical imaging with blood oxygen level-dependent and arterial spin labeling-based functional magnetic resonance imaging,” J. Biomed. Opt. 11(6), 064018 (2006).
[CrossRef]

Calderon-Arnulphi, M.

M. Calderon-Arnulphi, A. Alaraj, and K. V. Slavin, “Near infrared technology in neuroscience: past, present and future,” Neurol. Res. 31(6), 605–614 (2009).
[CrossRef] [PubMed]

Choi, J. H.

L. P. Safonova, A. Michalos, U. Wolf, M. Wolf, D. M. Hueber, J. H. Choi, R. Gupta, C. Polzonetti, W. W. Mantulin, and E. Gratton, “Age-correlated changes in cerebral hemodynamics assessed by near-infrared spectroscopy,” Arch. Gerontol. Geriatr. 39(3), 207–225 (2004).
[CrossRef] [PubMed]

L. P. Safonova, A. Michalos, U. Wolf, M. Wolf, D. M. Hueber, J. H. Choi, R. Gupta, C. Polzonetti, W. W. Mantulin, and E. Gratton, “Age-correlated changes in cerebral hemodynamics assessed by near-infrared spectroscopy,” Arch. Gerontol. Geriatr. 39(3), 207–225 (2004).
[CrossRef] [PubMed]

V. Toronov, A. Webb, J. H. Choi, M. Wolf, L. Safonova, U. Wolf, and E. Gratton, “Study of local cerebral hemodynamics by frequency-domain near-infrared spectroscopy and correlation with simultaneously acquired functional magnetic resonance imaging,” Opt. Express 9(8), 417–427 (2001), http://www.opticsinfobase.org/oe/viewmedia.cfm?URI=oe-9-8-417&seq=0 .
[CrossRef] [PubMed]

Cooper, C. E.

C. E. Cooper, C. E. Elwell, J. H. Meek, S. J. Matcher, J. S. Wyatt, M. Cope, and D. T. Delpy, “The noninvasive measurement of absolute cerebral deoxyhemoglobin concentration and mean optical path length in the neonatal brain by second derivative near infrared spectroscopy,” Pediatr. Res. 39(1), 32–38 (1996).
[CrossRef] [PubMed]

Cope, M.

C. E. Cooper, C. E. Elwell, J. H. Meek, S. J. Matcher, J. S. Wyatt, M. Cope, and D. T. Delpy, “The noninvasive measurement of absolute cerebral deoxyhemoglobin concentration and mean optical path length in the neonatal brain by second derivative near infrared spectroscopy,” Pediatr. Res. 39(1), 32–38 (1996).
[CrossRef] [PubMed]

S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39(1), 177–196 (1994).
[CrossRef] [PubMed]

Cunningham, G.

M. E. Martin, M. Wabuyele, M. Panjehpour, B. Overholt, R. DeNovo, S. Kennel, G. Cunningham, and T. Vo-Dinh, “An AOTF-based dual-modality hyperspectral imaging system (DMHSI) capable of simultaneous fluorescence and reflectance imaging,” Med. Eng. Phys. 28(2), 149–155 (2006).
[CrossRef]

Dale, A. M.

T. J. Huppert, R. D. Hoge, A. M. Dale, M. A. Franceschini, and D. A. Boas, “Quantitative spatial comparison of diffuse optical imaging with blood oxygen level-dependent and arterial spin labeling-based functional magnetic resonance imaging,” J. Biomed. Opt. 11(6), 064018 (2006).
[CrossRef]

deB Frederick, B.

A. Sassaroli, B. deB Frederick, Y. Tong, P. F. Renshaw, and S. Fantini, “Spatially weighted BOLD signal for comparison of functional magnetic resonance imaging and near-infrared imaging of the brain,” Neuroimage 33(2), 505–514 (2006).
[CrossRef] [PubMed]

Dehghani, H.

A. Gibson and H. Dehghani, “Diffuse optical imaging,” Philos. Transact. A Math. Phys. Eng. Sci. 367(1900), 3055–3072 (2009).
[CrossRef] [PubMed]

Delpy, D. T.

C. E. Cooper, C. E. Elwell, J. H. Meek, S. J. Matcher, J. S. Wyatt, M. Cope, and D. T. Delpy, “The noninvasive measurement of absolute cerebral deoxyhemoglobin concentration and mean optical path length in the neonatal brain by second derivative near infrared spectroscopy,” Pediatr. Res. 39(1), 32–38 (1996).
[CrossRef] [PubMed]

S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39(1), 177–196 (1994).
[CrossRef] [PubMed]

DeNovo, R.

M. E. Martin, M. Wabuyele, M. Panjehpour, B. Overholt, R. DeNovo, S. Kennel, G. Cunningham, and T. Vo-Dinh, “An AOTF-based dual-modality hyperspectral imaging system (DMHSI) capable of simultaneous fluorescence and reflectance imaging,” Med. Eng. Phys. 28(2), 149–155 (2006).
[CrossRef]

Elwell, C. E.

C. E. Cooper, C. E. Elwell, J. H. Meek, S. J. Matcher, J. S. Wyatt, M. Cope, and D. T. Delpy, “The noninvasive measurement of absolute cerebral deoxyhemoglobin concentration and mean optical path length in the neonatal brain by second derivative near infrared spectroscopy,” Pediatr. Res. 39(1), 32–38 (1996).
[CrossRef] [PubMed]

Fantini, S.

A. Sassaroli, B. deB Frederick, Y. Tong, P. F. Renshaw, and S. Fantini, “Spatially weighted BOLD signal for comparison of functional magnetic resonance imaging and near-infrared imaging of the brain,” Neuroimage 33(2), 505–514 (2006).
[CrossRef] [PubMed]

Fedorow, C.

C. Fedorow and H. P. Grocott, “Cerebral monitoring to optimize outcomes after cardiac surgery,” Curr. Opin. Anaesthesiol. 23(1), 89–94 (2010).
[CrossRef]

Franceschini, M. A.

T. J. Huppert, R. D. Hoge, A. M. Dale, M. A. Franceschini, and D. A. Boas, “Quantitative spatial comparison of diffuse optical imaging with blood oxygen level-dependent and arterial spin labeling-based functional magnetic resonance imaging,” J. Biomed. Opt. 11(6), 064018 (2006).
[CrossRef]

Gebhart, S. C.

Gibson, A.

A. Gibson and H. Dehghani, “Diffuse optical imaging,” Philos. Transact. A Math. Phys. Eng. Sci. 367(1900), 3055–3072 (2009).
[CrossRef] [PubMed]

Gratton, E.

L. P. Safonova, A. Michalos, U. Wolf, M. Wolf, D. M. Hueber, J. H. Choi, R. Gupta, C. Polzonetti, W. W. Mantulin, and E. Gratton, “Age-correlated changes in cerebral hemodynamics assessed by near-infrared spectroscopy,” Arch. Gerontol. Geriatr. 39(3), 207–225 (2004).
[CrossRef] [PubMed]

L. P. Safonova, A. Michalos, U. Wolf, M. Wolf, D. M. Hueber, J. H. Choi, R. Gupta, C. Polzonetti, W. W. Mantulin, and E. Gratton, “Age-correlated changes in cerebral hemodynamics assessed by near-infrared spectroscopy,” Arch. Gerontol. Geriatr. 39(3), 207–225 (2004).
[CrossRef] [PubMed]

V. Toronov, A. Webb, J. H. Choi, M. Wolf, L. Safonova, U. Wolf, and E. Gratton, “Study of local cerebral hemodynamics by frequency-domain near-infrared spectroscopy and correlation with simultaneously acquired functional magnetic resonance imaging,” Opt. Express 9(8), 417–427 (2001), http://www.opticsinfobase.org/oe/viewmedia.cfm?URI=oe-9-8-417&seq=0 .
[CrossRef] [PubMed]

Grocott, H. P.

C. Fedorow and H. P. Grocott, “Cerebral monitoring to optimize outcomes after cardiac surgery,” Curr. Opin. Anaesthesiol. 23(1), 89–94 (2010).
[CrossRef]

Gupta, R.

L. P. Safonova, A. Michalos, U. Wolf, M. Wolf, D. M. Hueber, J. H. Choi, R. Gupta, C. Polzonetti, W. W. Mantulin, and E. Gratton, “Age-correlated changes in cerebral hemodynamics assessed by near-infrared spectroscopy,” Arch. Gerontol. Geriatr. 39(3), 207–225 (2004).
[CrossRef] [PubMed]

L. P. Safonova, A. Michalos, U. Wolf, M. Wolf, D. M. Hueber, J. H. Choi, R. Gupta, C. Polzonetti, W. W. Mantulin, and E. Gratton, “Age-correlated changes in cerebral hemodynamics assessed by near-infrared spectroscopy,” Arch. Gerontol. Geriatr. 39(3), 207–225 (2004).
[CrossRef] [PubMed]

Hoge, R. D.

T. J. Huppert, R. D. Hoge, A. M. Dale, M. A. Franceschini, and D. A. Boas, “Quantitative spatial comparison of diffuse optical imaging with blood oxygen level-dependent and arterial spin labeling-based functional magnetic resonance imaging,” J. Biomed. Opt. 11(6), 064018 (2006).
[CrossRef]

Hueber, D. M.

L. P. Safonova, A. Michalos, U. Wolf, M. Wolf, D. M. Hueber, J. H. Choi, R. Gupta, C. Polzonetti, W. W. Mantulin, and E. Gratton, “Age-correlated changes in cerebral hemodynamics assessed by near-infrared spectroscopy,” Arch. Gerontol. Geriatr. 39(3), 207–225 (2004).
[CrossRef] [PubMed]

L. P. Safonova, A. Michalos, U. Wolf, M. Wolf, D. M. Hueber, J. H. Choi, R. Gupta, C. Polzonetti, W. W. Mantulin, and E. Gratton, “Age-correlated changes in cerebral hemodynamics assessed by near-infrared spectroscopy,” Arch. Gerontol. Geriatr. 39(3), 207–225 (2004).
[CrossRef] [PubMed]

Huppert, T. J.

T. J. Huppert, R. D. Hoge, A. M. Dale, M. A. Franceschini, and D. A. Boas, “Quantitative spatial comparison of diffuse optical imaging with blood oxygen level-dependent and arterial spin labeling-based functional magnetic resonance imaging,” J. Biomed. Opt. 11(6), 064018 (2006).
[CrossRef]

Kennel, S.

M. E. Martin, M. Wabuyele, M. Panjehpour, B. Overholt, R. DeNovo, S. Kennel, G. Cunningham, and T. Vo-Dinh, “An AOTF-based dual-modality hyperspectral imaging system (DMHSI) capable of simultaneous fluorescence and reflectance imaging,” Med. Eng. Phys. 28(2), 149–155 (2006).
[CrossRef]

Klassen, L. M.

B. J. MacIntosh, L. M. Klassen, and R. S. Menon, “Transient hemodynamics during a breath hold challenge in a two part functional imaging study with simultaneous near-infrared spectroscopy in adult humans,” Neuroimage 20(2), 1246–1252 (2003).
[CrossRef] [PubMed]

L. M. Klassen, B. J. MacIntosh, and R. S. Menon, “Influence of hypoxia on wavelength dependence of differential pathlength and near-infrared quantification,” Phys. Med. Biol. 47(9), 1573–1589 (2002).
[CrossRef] [PubMed]

MacIntosh, B. J.

B. J. MacIntosh, L. M. Klassen, and R. S. Menon, “Transient hemodynamics during a breath hold challenge in a two part functional imaging study with simultaneous near-infrared spectroscopy in adult humans,” Neuroimage 20(2), 1246–1252 (2003).
[CrossRef] [PubMed]

L. M. Klassen, B. J. MacIntosh, and R. S. Menon, “Influence of hypoxia on wavelength dependence of differential pathlength and near-infrared quantification,” Phys. Med. Biol. 47(9), 1573–1589 (2002).
[CrossRef] [PubMed]

Mahadevan-Jansen, A.

Mantulin, W. W.

L. P. Safonova, A. Michalos, U. Wolf, M. Wolf, D. M. Hueber, J. H. Choi, R. Gupta, C. Polzonetti, W. W. Mantulin, and E. Gratton, “Age-correlated changes in cerebral hemodynamics assessed by near-infrared spectroscopy,” Arch. Gerontol. Geriatr. 39(3), 207–225 (2004).
[CrossRef] [PubMed]

L. P. Safonova, A. Michalos, U. Wolf, M. Wolf, D. M. Hueber, J. H. Choi, R. Gupta, C. Polzonetti, W. W. Mantulin, and E. Gratton, “Age-correlated changes in cerebral hemodynamics assessed by near-infrared spectroscopy,” Arch. Gerontol. Geriatr. 39(3), 207–225 (2004).
[CrossRef] [PubMed]

Martin, M. E.

M. E. Martin, M. Wabuyele, M. Panjehpour, B. Overholt, R. DeNovo, S. Kennel, G. Cunningham, and T. Vo-Dinh, “An AOTF-based dual-modality hyperspectral imaging system (DMHSI) capable of simultaneous fluorescence and reflectance imaging,” Med. Eng. Phys. 28(2), 149–155 (2006).
[CrossRef]

Matcher, S. J.

C. E. Cooper, C. E. Elwell, J. H. Meek, S. J. Matcher, J. S. Wyatt, M. Cope, and D. T. Delpy, “The noninvasive measurement of absolute cerebral deoxyhemoglobin concentration and mean optical path length in the neonatal brain by second derivative near infrared spectroscopy,” Pediatr. Res. 39(1), 32–38 (1996).
[CrossRef] [PubMed]

S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39(1), 177–196 (1994).
[CrossRef] [PubMed]

Meek, J. H.

C. E. Cooper, C. E. Elwell, J. H. Meek, S. J. Matcher, J. S. Wyatt, M. Cope, and D. T. Delpy, “The noninvasive measurement of absolute cerebral deoxyhemoglobin concentration and mean optical path length in the neonatal brain by second derivative near infrared spectroscopy,” Pediatr. Res. 39(1), 32–38 (1996).
[CrossRef] [PubMed]

Menon, R. S.

B. J. MacIntosh, L. M. Klassen, and R. S. Menon, “Transient hemodynamics during a breath hold challenge in a two part functional imaging study with simultaneous near-infrared spectroscopy in adult humans,” Neuroimage 20(2), 1246–1252 (2003).
[CrossRef] [PubMed]

L. M. Klassen, B. J. MacIntosh, and R. S. Menon, “Influence of hypoxia on wavelength dependence of differential pathlength and near-infrared quantification,” Phys. Med. Biol. 47(9), 1573–1589 (2002).
[CrossRef] [PubMed]

Meriläinen, P.

J. Virtanen, T. Noponen, and P. Meriläinen, “Comparison of principal and independent component analysis in removing extracerebral interference from near-infrared spectroscopy signals,” J. Biomed. Opt. 14(5), 054032 (2009).
[CrossRef] [PubMed]

Michalos, A.

L. P. Safonova, A. Michalos, U. Wolf, M. Wolf, D. M. Hueber, J. H. Choi, R. Gupta, C. Polzonetti, W. W. Mantulin, and E. Gratton, “Age-correlated changes in cerebral hemodynamics assessed by near-infrared spectroscopy,” Arch. Gerontol. Geriatr. 39(3), 207–225 (2004).
[CrossRef] [PubMed]

L. P. Safonova, A. Michalos, U. Wolf, M. Wolf, D. M. Hueber, J. H. Choi, R. Gupta, C. Polzonetti, W. W. Mantulin, and E. Gratton, “Age-correlated changes in cerebral hemodynamics assessed by near-infrared spectroscopy,” Arch. Gerontol. Geriatr. 39(3), 207–225 (2004).
[CrossRef] [PubMed]

Neuper, C.

G. Pfurtscheller, G. Bauernfeind, S. C. Wriessnegger, and C. Neuper, “Focal frontal (de)oxyhemoglobin responses during simple arithmetic,” Int. J. Psychophysiol. 76(3), 186–192 (2010).
[CrossRef] [PubMed]

Noponen, T.

J. Virtanen, T. Noponen, and P. Meriläinen, “Comparison of principal and independent component analysis in removing extracerebral interference from near-infrared spectroscopy signals,” J. Biomed. Opt. 14(5), 054032 (2009).
[CrossRef] [PubMed]

Overholt, B.

M. E. Martin, M. Wabuyele, M. Panjehpour, B. Overholt, R. DeNovo, S. Kennel, G. Cunningham, and T. Vo-Dinh, “An AOTF-based dual-modality hyperspectral imaging system (DMHSI) capable of simultaneous fluorescence and reflectance imaging,” Med. Eng. Phys. 28(2), 149–155 (2006).
[CrossRef]

Panjehpour, M.

M. E. Martin, M. Wabuyele, M. Panjehpour, B. Overholt, R. DeNovo, S. Kennel, G. Cunningham, and T. Vo-Dinh, “An AOTF-based dual-modality hyperspectral imaging system (DMHSI) capable of simultaneous fluorescence and reflectance imaging,” Med. Eng. Phys. 28(2), 149–155 (2006).
[CrossRef]

Perrey, S.

S. Perrey, “Non-invasive NIR spectroscopy of human brain function during exercise,” Methods 45(4), 289–299 (2008).
[CrossRef] [PubMed]

Pfurtscheller, G.

G. Pfurtscheller, G. Bauernfeind, S. C. Wriessnegger, and C. Neuper, “Focal frontal (de)oxyhemoglobin responses during simple arithmetic,” Int. J. Psychophysiol. 76(3), 186–192 (2010).
[CrossRef] [PubMed]

Polzonetti, C.

L. P. Safonova, A. Michalos, U. Wolf, M. Wolf, D. M. Hueber, J. H. Choi, R. Gupta, C. Polzonetti, W. W. Mantulin, and E. Gratton, “Age-correlated changes in cerebral hemodynamics assessed by near-infrared spectroscopy,” Arch. Gerontol. Geriatr. 39(3), 207–225 (2004).
[CrossRef] [PubMed]

L. P. Safonova, A. Michalos, U. Wolf, M. Wolf, D. M. Hueber, J. H. Choi, R. Gupta, C. Polzonetti, W. W. Mantulin, and E. Gratton, “Age-correlated changes in cerebral hemodynamics assessed by near-infrared spectroscopy,” Arch. Gerontol. Geriatr. 39(3), 207–225 (2004).
[CrossRef] [PubMed]

Renshaw, P. F.

A. Sassaroli, B. deB Frederick, Y. Tong, P. F. Renshaw, and S. Fantini, “Spatially weighted BOLD signal for comparison of functional magnetic resonance imaging and near-infrared imaging of the brain,” Neuroimage 33(2), 505–514 (2006).
[CrossRef] [PubMed]

Safonova, L.

Safonova, L. P.

L. P. Safonova, A. Michalos, U. Wolf, M. Wolf, D. M. Hueber, J. H. Choi, R. Gupta, C. Polzonetti, W. W. Mantulin, and E. Gratton, “Age-correlated changes in cerebral hemodynamics assessed by near-infrared spectroscopy,” Arch. Gerontol. Geriatr. 39(3), 207–225 (2004).
[CrossRef] [PubMed]

L. P. Safonova, A. Michalos, U. Wolf, M. Wolf, D. M. Hueber, J. H. Choi, R. Gupta, C. Polzonetti, W. W. Mantulin, and E. Gratton, “Age-correlated changes in cerebral hemodynamics assessed by near-infrared spectroscopy,” Arch. Gerontol. Geriatr. 39(3), 207–225 (2004).
[CrossRef] [PubMed]

Sassaroli, A.

A. Sassaroli, B. deB Frederick, Y. Tong, P. F. Renshaw, and S. Fantini, “Spatially weighted BOLD signal for comparison of functional magnetic resonance imaging and near-infrared imaging of the brain,” Neuroimage 33(2), 505–514 (2006).
[CrossRef] [PubMed]

Slavin, K. V.

M. Calderon-Arnulphi, A. Alaraj, and K. V. Slavin, “Near infrared technology in neuroscience: past, present and future,” Neurol. Res. 31(6), 605–614 (2009).
[CrossRef] [PubMed]

Thompson, R. C.

Tong, Y.

A. Sassaroli, B. deB Frederick, Y. Tong, P. F. Renshaw, and S. Fantini, “Spatially weighted BOLD signal for comparison of functional magnetic resonance imaging and near-infrared imaging of the brain,” Neuroimage 33(2), 505–514 (2006).
[CrossRef] [PubMed]

Toronov, V.

Virtanen, J.

J. Virtanen, T. Noponen, and P. Meriläinen, “Comparison of principal and independent component analysis in removing extracerebral interference from near-infrared spectroscopy signals,” J. Biomed. Opt. 14(5), 054032 (2009).
[CrossRef] [PubMed]

Vo-Dinh, T.

M. E. Martin, M. Wabuyele, M. Panjehpour, B. Overholt, R. DeNovo, S. Kennel, G. Cunningham, and T. Vo-Dinh, “An AOTF-based dual-modality hyperspectral imaging system (DMHSI) capable of simultaneous fluorescence and reflectance imaging,” Med. Eng. Phys. 28(2), 149–155 (2006).
[CrossRef]

Wabuyele, M.

M. E. Martin, M. Wabuyele, M. Panjehpour, B. Overholt, R. DeNovo, S. Kennel, G. Cunningham, and T. Vo-Dinh, “An AOTF-based dual-modality hyperspectral imaging system (DMHSI) capable of simultaneous fluorescence and reflectance imaging,” Med. Eng. Phys. 28(2), 149–155 (2006).
[CrossRef]

Webb, A.

Wolf, M.

L. P. Safonova, A. Michalos, U. Wolf, M. Wolf, D. M. Hueber, J. H. Choi, R. Gupta, C. Polzonetti, W. W. Mantulin, and E. Gratton, “Age-correlated changes in cerebral hemodynamics assessed by near-infrared spectroscopy,” Arch. Gerontol. Geriatr. 39(3), 207–225 (2004).
[CrossRef] [PubMed]

L. P. Safonova, A. Michalos, U. Wolf, M. Wolf, D. M. Hueber, J. H. Choi, R. Gupta, C. Polzonetti, W. W. Mantulin, and E. Gratton, “Age-correlated changes in cerebral hemodynamics assessed by near-infrared spectroscopy,” Arch. Gerontol. Geriatr. 39(3), 207–225 (2004).
[CrossRef] [PubMed]

V. Toronov, A. Webb, J. H. Choi, M. Wolf, L. Safonova, U. Wolf, and E. Gratton, “Study of local cerebral hemodynamics by frequency-domain near-infrared spectroscopy and correlation with simultaneously acquired functional magnetic resonance imaging,” Opt. Express 9(8), 417–427 (2001), http://www.opticsinfobase.org/oe/viewmedia.cfm?URI=oe-9-8-417&seq=0 .
[CrossRef] [PubMed]

Wolf, U.

L. P. Safonova, A. Michalos, U. Wolf, M. Wolf, D. M. Hueber, J. H. Choi, R. Gupta, C. Polzonetti, W. W. Mantulin, and E. Gratton, “Age-correlated changes in cerebral hemodynamics assessed by near-infrared spectroscopy,” Arch. Gerontol. Geriatr. 39(3), 207–225 (2004).
[CrossRef] [PubMed]

L. P. Safonova, A. Michalos, U. Wolf, M. Wolf, D. M. Hueber, J. H. Choi, R. Gupta, C. Polzonetti, W. W. Mantulin, and E. Gratton, “Age-correlated changes in cerebral hemodynamics assessed by near-infrared spectroscopy,” Arch. Gerontol. Geriatr. 39(3), 207–225 (2004).
[CrossRef] [PubMed]

V. Toronov, A. Webb, J. H. Choi, M. Wolf, L. Safonova, U. Wolf, and E. Gratton, “Study of local cerebral hemodynamics by frequency-domain near-infrared spectroscopy and correlation with simultaneously acquired functional magnetic resonance imaging,” Opt. Express 9(8), 417–427 (2001), http://www.opticsinfobase.org/oe/viewmedia.cfm?URI=oe-9-8-417&seq=0 .
[CrossRef] [PubMed]

Wriessnegger, S. C.

G. Pfurtscheller, G. Bauernfeind, S. C. Wriessnegger, and C. Neuper, “Focal frontal (de)oxyhemoglobin responses during simple arithmetic,” Int. J. Psychophysiol. 76(3), 186–192 (2010).
[CrossRef] [PubMed]

Wyatt, J. S.

C. E. Cooper, C. E. Elwell, J. H. Meek, S. J. Matcher, J. S. Wyatt, M. Cope, and D. T. Delpy, “The noninvasive measurement of absolute cerebral deoxyhemoglobin concentration and mean optical path length in the neonatal brain by second derivative near infrared spectroscopy,” Pediatr. Res. 39(1), 32–38 (1996).
[CrossRef] [PubMed]

Appl. Opt. (1)

Arch. Gerontol. Geriatr. (2)

L. P. Safonova, A. Michalos, U. Wolf, M. Wolf, D. M. Hueber, J. H. Choi, R. Gupta, C. Polzonetti, W. W. Mantulin, and E. Gratton, “Age-correlated changes in cerebral hemodynamics assessed by near-infrared spectroscopy,” Arch. Gerontol. Geriatr. 39(3), 207–225 (2004).
[CrossRef] [PubMed]

L. P. Safonova, A. Michalos, U. Wolf, M. Wolf, D. M. Hueber, J. H. Choi, R. Gupta, C. Polzonetti, W. W. Mantulin, and E. Gratton, “Age-correlated changes in cerebral hemodynamics assessed by near-infrared spectroscopy,” Arch. Gerontol. Geriatr. 39(3), 207–225 (2004).
[CrossRef] [PubMed]

Curr. Opin. Anaesthesiol. (1)

C. Fedorow and H. P. Grocott, “Cerebral monitoring to optimize outcomes after cardiac surgery,” Curr. Opin. Anaesthesiol. 23(1), 89–94 (2010).
[CrossRef]

Int. J. Psychophysiol. (1)

G. Pfurtscheller, G. Bauernfeind, S. C. Wriessnegger, and C. Neuper, “Focal frontal (de)oxyhemoglobin responses during simple arithmetic,” Int. J. Psychophysiol. 76(3), 186–192 (2010).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

T. J. Huppert, R. D. Hoge, A. M. Dale, M. A. Franceschini, and D. A. Boas, “Quantitative spatial comparison of diffuse optical imaging with blood oxygen level-dependent and arterial spin labeling-based functional magnetic resonance imaging,” J. Biomed. Opt. 11(6), 064018 (2006).
[CrossRef]

J. Virtanen, T. Noponen, and P. Meriläinen, “Comparison of principal and independent component analysis in removing extracerebral interference from near-infrared spectroscopy signals,” J. Biomed. Opt. 14(5), 054032 (2009).
[CrossRef] [PubMed]

Med. Eng. Phys. (1)

M. E. Martin, M. Wabuyele, M. Panjehpour, B. Overholt, R. DeNovo, S. Kennel, G. Cunningham, and T. Vo-Dinh, “An AOTF-based dual-modality hyperspectral imaging system (DMHSI) capable of simultaneous fluorescence and reflectance imaging,” Med. Eng. Phys. 28(2), 149–155 (2006).
[CrossRef]

Methods (1)

S. Perrey, “Non-invasive NIR spectroscopy of human brain function during exercise,” Methods 45(4), 289–299 (2008).
[CrossRef] [PubMed]

Neuroimage (2)

B. J. MacIntosh, L. M. Klassen, and R. S. Menon, “Transient hemodynamics during a breath hold challenge in a two part functional imaging study with simultaneous near-infrared spectroscopy in adult humans,” Neuroimage 20(2), 1246–1252 (2003).
[CrossRef] [PubMed]

A. Sassaroli, B. deB Frederick, Y. Tong, P. F. Renshaw, and S. Fantini, “Spatially weighted BOLD signal for comparison of functional magnetic resonance imaging and near-infrared imaging of the brain,” Neuroimage 33(2), 505–514 (2006).
[CrossRef] [PubMed]

Neurol. Res. (1)

M. Calderon-Arnulphi, A. Alaraj, and K. V. Slavin, “Near infrared technology in neuroscience: past, present and future,” Neurol. Res. 31(6), 605–614 (2009).
[CrossRef] [PubMed]

Opt. Express (1)

Pediatr. Res. (1)

C. E. Cooper, C. E. Elwell, J. H. Meek, S. J. Matcher, J. S. Wyatt, M. Cope, and D. T. Delpy, “The noninvasive measurement of absolute cerebral deoxyhemoglobin concentration and mean optical path length in the neonatal brain by second derivative near infrared spectroscopy,” Pediatr. Res. 39(1), 32–38 (1996).
[CrossRef] [PubMed]

Philos. Transact. A Math. Phys. Eng. Sci. (1)

A. Gibson and H. Dehghani, “Diffuse optical imaging,” Philos. Transact. A Math. Phys. Eng. Sci. 367(1900), 3055–3072 (2009).
[CrossRef] [PubMed]

Phys. Med. Biol. (2)

S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39(1), 177–196 (1994).
[CrossRef] [PubMed]

L. M. Klassen, B. J. MacIntosh, and R. S. Menon, “Influence of hypoxia on wavelength dependence of differential pathlength and near-infrared quantification,” Phys. Med. Biol. 47(9), 1573–1589 (2002).
[CrossRef] [PubMed]

Other (1)

A. F. N. I. Main Page, http://afni.nimh.nih.gov/afni

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Temporal power spectra of noise for all four types of Δ H b . Numbers 1 through 4 in the legend correspond to the type of the signal. The bar shows the spectral band of the signal due to repeated breath holdings. (b) Normalized power spectral densities of noise (acquired on the phantom) and cross-subject average signal (acquired on a subject during exercise) at 0.017 Hz.

Fig. 2
Fig. 2

(a) Time courses of – Δ H b ( t ) for one of six subjects. Numbers 1 through 4 in the legend correspond to four different methods to obtain Δ H b ( t ) . The vertical lines show the beginning of each breath hold. (b) Volume-average BOLD signal (c) Time courses of Δ H b O 2 ( t ) for the same measurement.

Fig. 3
Fig. 3

BOLD-NIRS Correlation map. Red color corresponds to high positive correlation, and blue color corresponds to high negative correlation. The arrows show the positions of the light source and detector.

Tables (1)

Tables Icon

Table 1 Volume-averaged correlation coefficients for all subjects: three types of Δ H b O 2 ( t ) and four types of – Δ H b ( t ) . The corresponding confidence intervals were all close to ± 0.01

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ A ( λ , t ) = 1 D P ( λ ) ln ( I 0 ( λ ) I t ( λ ) ) = ε H b O 2 ( λ ) Δ H b O 2 ( t ) + ε H b ( λ ) Δ H b ( t )
X ¯ = v x n W n

Metrics