Abstract

Ultrafast pulsed laser irradiation is demonstrated to be able to produce surface nano-structuring and simultaneous crystallization of amorphous silicon thin film in one step laser processing. After fs laser irradiation on 80 nm-thick a-Si deposited on Corning 1737 glass substrate, the color change from light yellow to dark brown was observed on the sample surface. AFM images show that the surface nano-spike pattern was produced on amorphous-Si:H film by fs laser irradiation. Furthermore, micro-Raman results indicate that the a-Si has been crystallized into nanocrystalline Si. Also, the absorptance of the fs laser treated Si thin film was found to increase in the spectrum range of below bandgap compared to original untreated a-Si. The developed process has a potential application in fabrication of high efficiency Si thin film solar cells.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge produced amorphous Si,” Appl. Phys. Lett. 31(4), 292–294 (1977).
    [CrossRef]
  2. A. A. D. T. Adikaari and S. R. P. Silva, “Thickness dependence of properties of excimer laser crystallized nano-polycrystalline silicon,” J. Appl. Phys. 97(11), 114305 (2005).
    [CrossRef]
  3. F. Falk and G. Andra, “Laser crystallization - a way to produce crystalline silicon films on glass or on polymer substrates,” J. Cryst. Growth 287(2), 397–401 (2006).
    [CrossRef]
  4. L. Carnel, I. Gordon, D. Van Gestel, K. Van Nieuwenhuysen, G. Agostinelli, G. Beaucarne, and J. Poortmans, “Thin-film polycrystalline silicon solar cells on ceramic substrates with a V-oc above 500 mV,” Thin Solid Films 511–512, 21–25 (2006).
    [CrossRef]
  5. D. Song, D. Inns, A. Straub, M. L. Terry, P. Campbell, and A. G. Aberle, “Solid phase crystallized polycrystalline thin-films on glass from evaporated silicon for photovoltaic applications,” Thin Solid Films 513(1–2), 356–363 (2006).
    [CrossRef]
  6. T. Y. Choi, D. J. Hwang, and C. P. Grigoropoulos, “Ultrafast laser-induced crystallization of amorphous silicon films,” Opt. Eng. 42(11), 3383–3388 (2003).
    [CrossRef]
  7. J. M. Shieh, Z. H. Chen, B. T. Dai, Y. C. Wang, A. Zaitsev, and C. L. Pan, “Near-infrared femtosecond laser-induced crystallization of amorphous silicon,” Appl. Phys. Lett. 85(7), 1232–1234 (2004).
    [CrossRef]
  8. B. K. Nayak and M. C. Gupta, “Femtosecond-laser-induced-crystallization and simultaneous formation of light traping microstructures in thin a-Si:H films,” Appl. Phys., A Mater. Sci. Process. 89(3), 663–666 (2007).
    [CrossRef]
  9. S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
    [CrossRef]
  10. A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J. P. Geindre, P. Audebert, J. C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410(6824), 65–68 (2001).
    [CrossRef] [PubMed]
  11. K. Sokolowski-Tinten, J. Bialkowski, and D. von der Linde, “Ultrafast laser-induced order-disorder transitions in semiconductors,” Phys. Rev. B Condens. Matter 51(20), 14186–14198 (1995).
    [CrossRef] [PubMed]
  12. X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
    [CrossRef]
  13. T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).
    [CrossRef]
  14. T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys., A Mater. Sci. Process. 70(4), 383–385 (2000).
    [CrossRef]
  15. H. Jansen, M. de Boer, R. Legtenberg, and M. Elwenspoek, “The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control,” J. Micromech. Microeng. 5(2), 115–120 (1995).
    [CrossRef]
  16. J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 3085–3093 (2006).
    [CrossRef]
  17. A. K. Arora, M. Rajalakshmi, and T. R. Ravindran, “Phonon Confinement in Nanostructured Materials,” Encyclopedia of Nanoscience and Nanotechnology 8, 499–512, (2004).
  18. C. Smit, R. A. C. M. M. Van Swaaij, H. Donker, A. M. H. N. Petit, W. M. M. Kesels, and M. C. M. van de Sanden, “Determining the material structure of microcrystalline silicon from Raman spectra,” J. Appl. Phys. 94(5), 3582–3588 (2003).
    [CrossRef]
  19. E. Fogarassy, H. Pattyn, M. Elliq, A. Slaoui, B. Prevot, R. Stuck, S. deUnamuno, and E. L. Mathe, “Pulsed-laser crystallization and doping for the fabrication of high-quality poly-Si TFTs,” Appl. Surf. Sci. 69(1–4), 231–241 (1993).
    [CrossRef]
  20. A. T. Voutsas, M. K. Hatalis, J. Boyce, and A. Chiang, “Raman spectroscopy of amorphous and microcrystalline silicon films deposited by low-pressure chemical vapor deposition,” J. Appl. Phys. 78(12), 6999–7006 (1995).
    [CrossRef]
  21. R. Tsu, J. Gonzalez-Hernandez, S. S. Chao, S. C. Lee, and K. Tanaka, “Critical volume fraction of crystallinity for conductivity percolation in phosphorus-doped Si-F-H alloys,” Appl. Phys. Lett. 40(6), 534–535 (1982).
    [CrossRef]
  22. E. Bustarret, M. A. Hachicha, and M. Brunel, “Experimental-determination of the nanocrystalline volume fraction in silicon thin films from Raman-spectroscopy,” Appl. Phys. Lett. 52(20), 1675–1677 (1988).
    [CrossRef]
  23. Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
    [CrossRef]
  24. C. V. Shank, R. Yen, and C. Hirlimann, “Time-Resolved Reflectivity Measurements of Femtosecond-Optical-Pulse-Induced Phase Transitions in Silicon,” Phys. Rev. Lett. 50(6), 454–457 (1983).
    [CrossRef]
  25. M. C. Downer, R. L. Fork, and C. V. Shank, “Femtosecond imaging of melting and evaporation at a photoexcited silicon surface,” J. Opt. Soc. Am. B 2(4), 595–599 (1985).
    [CrossRef]
  26. K. Sokolowski-Tinten, J. Solis, J. Bialkowski, J. Siegel, C. N. Afonso, and D. Von der Linde, “Dynamics of Ultrafast Phase Changes in Amorphous GeSb Films,” Phys. Rev. Lett. 81(17), 3679–3682 (1998).
    [CrossRef]
  27. J. Solis, C. N. Afonso, S. C. W. Hyde, N. P. Barry, and P. M. W. French, “Existence of electronic excitation enhanced crystallization in GeSb amorphous thin films upon ultrashort laser pulse irradiation,” Phys. Rev. Lett. 76(14), 2519–2522 (1996).
    [CrossRef] [PubMed]

2007

B. K. Nayak and M. C. Gupta, “Femtosecond-laser-induced-crystallization and simultaneous formation of light traping microstructures in thin a-Si:H films,” Appl. Phys., A Mater. Sci. Process. 89(3), 663–666 (2007).
[CrossRef]

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

2006

F. Falk and G. Andra, “Laser crystallization - a way to produce crystalline silicon films on glass or on polymer substrates,” J. Cryst. Growth 287(2), 397–401 (2006).
[CrossRef]

L. Carnel, I. Gordon, D. Van Gestel, K. Van Nieuwenhuysen, G. Agostinelli, G. Beaucarne, and J. Poortmans, “Thin-film polycrystalline silicon solar cells on ceramic substrates with a V-oc above 500 mV,” Thin Solid Films 511–512, 21–25 (2006).
[CrossRef]

D. Song, D. Inns, A. Straub, M. L. Terry, P. Campbell, and A. G. Aberle, “Solid phase crystallized polycrystalline thin-films on glass from evaporated silicon for photovoltaic applications,” Thin Solid Films 513(1–2), 356–363 (2006).
[CrossRef]

J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 3085–3093 (2006).
[CrossRef]

2005

A. A. D. T. Adikaari and S. R. P. Silva, “Thickness dependence of properties of excimer laser crystallized nano-polycrystalline silicon,” J. Appl. Phys. 97(11), 114305 (2005).
[CrossRef]

2004

J. M. Shieh, Z. H. Chen, B. T. Dai, Y. C. Wang, A. Zaitsev, and C. L. Pan, “Near-infrared femtosecond laser-induced crystallization of amorphous silicon,” Appl. Phys. Lett. 85(7), 1232–1234 (2004).
[CrossRef]

2003

C. Smit, R. A. C. M. M. Van Swaaij, H. Donker, A. M. H. N. Petit, W. M. M. Kesels, and M. C. M. van de Sanden, “Determining the material structure of microcrystalline silicon from Raman spectra,” J. Appl. Phys. 94(5), 3582–3588 (2003).
[CrossRef]

T. Y. Choi, D. J. Hwang, and C. P. Grigoropoulos, “Ultrafast laser-induced crystallization of amorphous silicon films,” Opt. Eng. 42(11), 3383–3388 (2003).
[CrossRef]

2002

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
[CrossRef]

2001

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J. P. Geindre, P. Audebert, J. C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410(6824), 65–68 (2001).
[CrossRef] [PubMed]

2000

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys., A Mater. Sci. Process. 70(4), 383–385 (2000).
[CrossRef]

1998

K. Sokolowski-Tinten, J. Solis, J. Bialkowski, J. Siegel, C. N. Afonso, and D. Von der Linde, “Dynamics of Ultrafast Phase Changes in Amorphous GeSb Films,” Phys. Rev. Lett. 81(17), 3679–3682 (1998).
[CrossRef]

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).
[CrossRef]

1997

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
[CrossRef]

1996

J. Solis, C. N. Afonso, S. C. W. Hyde, N. P. Barry, and P. M. W. French, “Existence of electronic excitation enhanced crystallization in GeSb amorphous thin films upon ultrashort laser pulse irradiation,” Phys. Rev. Lett. 76(14), 2519–2522 (1996).
[CrossRef] [PubMed]

1995

A. T. Voutsas, M. K. Hatalis, J. Boyce, and A. Chiang, “Raman spectroscopy of amorphous and microcrystalline silicon films deposited by low-pressure chemical vapor deposition,” J. Appl. Phys. 78(12), 6999–7006 (1995).
[CrossRef]

H. Jansen, M. de Boer, R. Legtenberg, and M. Elwenspoek, “The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control,” J. Micromech. Microeng. 5(2), 115–120 (1995).
[CrossRef]

K. Sokolowski-Tinten, J. Bialkowski, and D. von der Linde, “Ultrafast laser-induced order-disorder transitions in semiconductors,” Phys. Rev. B Condens. Matter 51(20), 14186–14198 (1995).
[CrossRef] [PubMed]

1993

E. Fogarassy, H. Pattyn, M. Elliq, A. Slaoui, B. Prevot, R. Stuck, S. deUnamuno, and E. L. Mathe, “Pulsed-laser crystallization and doping for the fabrication of high-quality poly-Si TFTs,” Appl. Surf. Sci. 69(1–4), 231–241 (1993).
[CrossRef]

1988

E. Bustarret, M. A. Hachicha, and M. Brunel, “Experimental-determination of the nanocrystalline volume fraction in silicon thin films from Raman-spectroscopy,” Appl. Phys. Lett. 52(20), 1675–1677 (1988).
[CrossRef]

1985

1983

C. V. Shank, R. Yen, and C. Hirlimann, “Time-Resolved Reflectivity Measurements of Femtosecond-Optical-Pulse-Induced Phase Transitions in Silicon,” Phys. Rev. Lett. 50(6), 454–457 (1983).
[CrossRef]

1982

R. Tsu, J. Gonzalez-Hernandez, S. S. Chao, S. C. Lee, and K. Tanaka, “Critical volume fraction of crystallinity for conductivity percolation in phosphorus-doped Si-F-H alloys,” Appl. Phys. Lett. 40(6), 534–535 (1982).
[CrossRef]

1977

D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge produced amorphous Si,” Appl. Phys. Lett. 31(4), 292–294 (1977).
[CrossRef]

Aberle, A. G.

D. Song, D. Inns, A. Straub, M. L. Terry, P. Campbell, and A. G. Aberle, “Solid phase crystallized polycrystalline thin-films on glass from evaporated silicon for photovoltaic applications,” Thin Solid Films 513(1–2), 356–363 (2006).
[CrossRef]

Adikaari, A. A. D. T.

A. A. D. T. Adikaari and S. R. P. Silva, “Thickness dependence of properties of excimer laser crystallized nano-polycrystalline silicon,” J. Appl. Phys. 97(11), 114305 (2005).
[CrossRef]

Afonso, C. N.

K. Sokolowski-Tinten, J. Solis, J. Bialkowski, J. Siegel, C. N. Afonso, and D. Von der Linde, “Dynamics of Ultrafast Phase Changes in Amorphous GeSb Films,” Phys. Rev. Lett. 81(17), 3679–3682 (1998).
[CrossRef]

J. Solis, C. N. Afonso, S. C. W. Hyde, N. P. Barry, and P. M. W. French, “Existence of electronic excitation enhanced crystallization in GeSb amorphous thin films upon ultrashort laser pulse irradiation,” Phys. Rev. Lett. 76(14), 2519–2522 (1996).
[CrossRef] [PubMed]

Agostinelli, G.

L. Carnel, I. Gordon, D. Van Gestel, K. Van Nieuwenhuysen, G. Agostinelli, G. Beaucarne, and J. Poortmans, “Thin-film polycrystalline silicon solar cells on ceramic substrates with a V-oc above 500 mV,” Thin Solid Films 511–512, 21–25 (2006).
[CrossRef]

Andra, G.

F. Falk and G. Andra, “Laser crystallization - a way to produce crystalline silicon films on glass or on polymer substrates,” J. Cryst. Growth 287(2), 397–401 (2006).
[CrossRef]

Audebert, P.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J. P. Geindre, P. Audebert, J. C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410(6824), 65–68 (2001).
[CrossRef] [PubMed]

Balcou, Ph.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J. P. Geindre, P. Audebert, J. C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410(6824), 65–68 (2001).
[CrossRef] [PubMed]

Barry, N. P.

J. Solis, C. N. Afonso, S. C. W. Hyde, N. P. Barry, and P. M. W. French, “Existence of electronic excitation enhanced crystallization in GeSb amorphous thin films upon ultrashort laser pulse irradiation,” Phys. Rev. Lett. 76(14), 2519–2522 (1996).
[CrossRef] [PubMed]

Beaucarne, G.

L. Carnel, I. Gordon, D. Van Gestel, K. Van Nieuwenhuysen, G. Agostinelli, G. Beaucarne, and J. Poortmans, “Thin-film polycrystalline silicon solar cells on ceramic substrates with a V-oc above 500 mV,” Thin Solid Films 511–512, 21–25 (2006).
[CrossRef]

Bialkowski, J.

K. Sokolowski-Tinten, J. Solis, J. Bialkowski, J. Siegel, C. N. Afonso, and D. Von der Linde, “Dynamics of Ultrafast Phase Changes in Amorphous GeSb Films,” Phys. Rev. Lett. 81(17), 3679–3682 (1998).
[CrossRef]

K. Sokolowski-Tinten, J. Bialkowski, and D. von der Linde, “Ultrafast laser-induced order-disorder transitions in semiconductors,” Phys. Rev. B Condens. Matter 51(20), 14186–14198 (1995).
[CrossRef] [PubMed]

Boyce, J.

A. T. Voutsas, M. K. Hatalis, J. Boyce, and A. Chiang, “Raman spectroscopy of amorphous and microcrystalline silicon films deposited by low-pressure chemical vapor deposition,” J. Appl. Phys. 78(12), 6999–7006 (1995).
[CrossRef]

Brunel, M.

E. Bustarret, M. A. Hachicha, and M. Brunel, “Experimental-determination of the nanocrystalline volume fraction in silicon thin films from Raman-spectroscopy,” Appl. Phys. Lett. 52(20), 1675–1677 (1988).
[CrossRef]

Bustarret, E.

E. Bustarret, M. A. Hachicha, and M. Brunel, “Experimental-determination of the nanocrystalline volume fraction in silicon thin films from Raman-spectroscopy,” Appl. Phys. Lett. 52(20), 1675–1677 (1988).
[CrossRef]

Campbell, P.

D. Song, D. Inns, A. Straub, M. L. Terry, P. Campbell, and A. G. Aberle, “Solid phase crystallized polycrystalline thin-films on glass from evaporated silicon for photovoltaic applications,” Thin Solid Films 513(1–2), 356–363 (2006).
[CrossRef]

Carnel, L.

L. Carnel, I. Gordon, D. Van Gestel, K. Van Nieuwenhuysen, G. Agostinelli, G. Beaucarne, and J. Poortmans, “Thin-film polycrystalline silicon solar cells on ceramic substrates with a V-oc above 500 mV,” Thin Solid Films 511–512, 21–25 (2006).
[CrossRef]

Chang, Y. H.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Chao, S. S.

R. Tsu, J. Gonzalez-Hernandez, S. S. Chao, S. C. Lee, and K. Tanaka, “Critical volume fraction of crystallinity for conductivity percolation in phosphorus-doped Si-F-H alloys,” Appl. Phys. Lett. 40(6), 534–535 (1982).
[CrossRef]

Chattopadhyay, S.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Chen, K. H.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Chen, L. C.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Chen, Z. H.

J. M. Shieh, Z. H. Chen, B. T. Dai, Y. C. Wang, A. Zaitsev, and C. L. Pan, “Near-infrared femtosecond laser-induced crystallization of amorphous silicon,” Appl. Phys. Lett. 85(7), 1232–1234 (2004).
[CrossRef]

Chiang, A.

A. T. Voutsas, M. K. Hatalis, J. Boyce, and A. Chiang, “Raman spectroscopy of amorphous and microcrystalline silicon films deposited by low-pressure chemical vapor deposition,” J. Appl. Phys. 78(12), 6999–7006 (1995).
[CrossRef]

Choi, T. Y.

T. Y. Choi, D. J. Hwang, and C. P. Grigoropoulos, “Ultrafast laser-induced crystallization of amorphous silicon films,” Opt. Eng. 42(11), 3383–3388 (2003).
[CrossRef]

Dai, B. T.

J. M. Shieh, Z. H. Chen, B. T. Dai, Y. C. Wang, A. Zaitsev, and C. L. Pan, “Near-infrared femtosecond laser-induced crystallization of amorphous silicon,” Appl. Phys. Lett. 85(7), 1232–1234 (2004).
[CrossRef]

de Boer, M.

H. Jansen, M. de Boer, R. Legtenberg, and M. Elwenspoek, “The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control,” J. Micromech. Microeng. 5(2), 115–120 (1995).
[CrossRef]

Deliwala, S.

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).
[CrossRef]

deUnamuno, S.

E. Fogarassy, H. Pattyn, M. Elliq, A. Slaoui, B. Prevot, R. Stuck, S. deUnamuno, and E. L. Mathe, “Pulsed-laser crystallization and doping for the fabrication of high-quality poly-Si TFTs,” Appl. Surf. Sci. 69(1–4), 231–241 (1993).
[CrossRef]

Dhungel, S. K.

J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 3085–3093 (2006).
[CrossRef]

Donker, H.

C. Smit, R. A. C. M. M. Van Swaaij, H. Donker, A. M. H. N. Petit, W. M. M. Kesels, and M. C. M. van de Sanden, “Determining the material structure of microcrystalline silicon from Raman spectra,” J. Appl. Phys. 94(5), 3582–3588 (2003).
[CrossRef]

Downer, M. C.

Du, D.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
[CrossRef]

Elliq, M.

E. Fogarassy, H. Pattyn, M. Elliq, A. Slaoui, B. Prevot, R. Stuck, S. deUnamuno, and E. L. Mathe, “Pulsed-laser crystallization and doping for the fabrication of high-quality poly-Si TFTs,” Appl. Surf. Sci. 69(1–4), 231–241 (1993).
[CrossRef]

Elwenspoek, M.

H. Jansen, M. de Boer, R. Legtenberg, and M. Elwenspoek, “The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control,” J. Micromech. Microeng. 5(2), 115–120 (1995).
[CrossRef]

Falk, F.

F. Falk and G. Andra, “Laser crystallization - a way to produce crystalline silicon films on glass or on polymer substrates,” J. Cryst. Growth 287(2), 397–401 (2006).
[CrossRef]

Finlay, R. J.

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys., A Mater. Sci. Process. 70(4), 383–385 (2000).
[CrossRef]

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).
[CrossRef]

Fogarassy, E.

E. Fogarassy, H. Pattyn, M. Elliq, A. Slaoui, B. Prevot, R. Stuck, S. deUnamuno, and E. L. Mathe, “Pulsed-laser crystallization and doping for the fabrication of high-quality poly-Si TFTs,” Appl. Surf. Sci. 69(1–4), 231–241 (1993).
[CrossRef]

Fork, R. L.

Förster, E.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J. P. Geindre, P. Audebert, J. C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410(6824), 65–68 (2001).
[CrossRef] [PubMed]

Fourmaux, S.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J. P. Geindre, P. Audebert, J. C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410(6824), 65–68 (2001).
[CrossRef] [PubMed]

French, P. M. W.

J. Solis, C. N. Afonso, S. C. W. Hyde, N. P. Barry, and P. M. W. French, “Existence of electronic excitation enhanced crystallization in GeSb amorphous thin films upon ultrashort laser pulse irradiation,” Phys. Rev. Lett. 76(14), 2519–2522 (1996).
[CrossRef] [PubMed]

Gangopadhyay, U.

J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 3085–3093 (2006).
[CrossRef]

Gauthier, J. C.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J. P. Geindre, P. Audebert, J. C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410(6824), 65–68 (2001).
[CrossRef] [PubMed]

Geindre, J. P.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J. P. Geindre, P. Audebert, J. C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410(6824), 65–68 (2001).
[CrossRef] [PubMed]

Gonzalez-Hernandez, J.

R. Tsu, J. Gonzalez-Hernandez, S. S. Chao, S. C. Lee, and K. Tanaka, “Critical volume fraction of crystallinity for conductivity percolation in phosphorus-doped Si-F-H alloys,” Appl. Phys. Lett. 40(6), 534–535 (1982).
[CrossRef]

Gordon, I.

L. Carnel, I. Gordon, D. Van Gestel, K. Van Nieuwenhuysen, G. Agostinelli, G. Beaucarne, and J. Poortmans, “Thin-film polycrystalline silicon solar cells on ceramic substrates with a V-oc above 500 mV,” Thin Solid Films 511–512, 21–25 (2006).
[CrossRef]

Grigoropoulos, C. P.

T. Y. Choi, D. J. Hwang, and C. P. Grigoropoulos, “Ultrafast laser-induced crystallization of amorphous silicon films,” Opt. Eng. 42(11), 3383–3388 (2003).
[CrossRef]

Grillon, G.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J. P. Geindre, P. Audebert, J. C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410(6824), 65–68 (2001).
[CrossRef] [PubMed]

Gupta, M. C.

B. K. Nayak and M. C. Gupta, “Femtosecond-laser-induced-crystallization and simultaneous formation of light traping microstructures in thin a-Si:H films,” Appl. Phys., A Mater. Sci. Process. 89(3), 663–666 (2007).
[CrossRef]

Hachicha, M. A.

E. Bustarret, M. A. Hachicha, and M. Brunel, “Experimental-determination of the nanocrystalline volume fraction in silicon thin films from Raman-spectroscopy,” Appl. Phys. Lett. 52(20), 1675–1677 (1988).
[CrossRef]

Hatalis, M. K.

A. T. Voutsas, M. K. Hatalis, J. Boyce, and A. Chiang, “Raman spectroscopy of amorphous and microcrystalline silicon films deposited by low-pressure chemical vapor deposition,” J. Appl. Phys. 78(12), 6999–7006 (1995).
[CrossRef]

Her, T. H.

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys., A Mater. Sci. Process. 70(4), 383–385 (2000).
[CrossRef]

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).
[CrossRef]

Hirlimann, C.

C. V. Shank, R. Yen, and C. Hirlimann, “Time-Resolved Reflectivity Measurements of Femtosecond-Optical-Pulse-Induced Phase Transitions in Silicon,” Phys. Rev. Lett. 50(6), 454–457 (1983).
[CrossRef]

Hsu, C. H.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Hsu, Y. K.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Huang, Y. F.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Hulin, D.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J. P. Geindre, P. Audebert, J. C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410(6824), 65–68 (2001).
[CrossRef] [PubMed]

Hwang, D. J.

T. Y. Choi, D. J. Hwang, and C. P. Grigoropoulos, “Ultrafast laser-induced crystallization of amorphous silicon films,” Opt. Eng. 42(11), 3383–3388 (2003).
[CrossRef]

Hyde, S. C. W.

J. Solis, C. N. Afonso, S. C. W. Hyde, N. P. Barry, and P. M. W. French, “Existence of electronic excitation enhanced crystallization in GeSb amorphous thin films upon ultrashort laser pulse irradiation,” Phys. Rev. Lett. 76(14), 2519–2522 (1996).
[CrossRef] [PubMed]

Inns, D.

D. Song, D. Inns, A. Straub, M. L. Terry, P. Campbell, and A. G. Aberle, “Solid phase crystallized polycrystalline thin-films on glass from evaporated silicon for photovoltaic applications,” Thin Solid Films 513(1–2), 356–363 (2006).
[CrossRef]

Jansen, H.

H. Jansen, M. de Boer, R. Legtenberg, and M. Elwenspoek, “The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control,” J. Micromech. Microeng. 5(2), 115–120 (1995).
[CrossRef]

Jen, Y. J.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Kesels, W. M. M.

C. Smit, R. A. C. M. M. Van Swaaij, H. Donker, A. M. H. N. Petit, W. M. M. Kesels, and M. C. M. van de Sanden, “Determining the material structure of microcrystalline silicon from Raman spectra,” J. Appl. Phys. 94(5), 3582–3588 (2003).
[CrossRef]

Kim, K.

J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 3085–3093 (2006).
[CrossRef]

Lee, C. S.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Lee, S. C.

R. Tsu, J. Gonzalez-Hernandez, S. S. Chao, S. C. Lee, and K. Tanaka, “Critical volume fraction of crystallinity for conductivity percolation in phosphorus-doped Si-F-H alloys,” Appl. Phys. Lett. 40(6), 534–535 (1982).
[CrossRef]

Legtenberg, R.

H. Jansen, M. de Boer, R. Legtenberg, and M. Elwenspoek, “The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control,” J. Micromech. Microeng. 5(2), 115–120 (1995).
[CrossRef]

Liu, T. A.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Liu, X.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
[CrossRef]

Lo, H. C.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Mangalaraj, D.

J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 3085–3093 (2006).
[CrossRef]

Mathe, E. L.

E. Fogarassy, H. Pattyn, M. Elliq, A. Slaoui, B. Prevot, R. Stuck, S. deUnamuno, and E. L. Mathe, “Pulsed-laser crystallization and doping for the fabrication of high-quality poly-Si TFTs,” Appl. Surf. Sci. 69(1–4), 231–241 (1993).
[CrossRef]

Mazur, E.

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
[CrossRef]

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys., A Mater. Sci. Process. 70(4), 383–385 (2000).
[CrossRef]

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).
[CrossRef]

Mourou, G.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
[CrossRef]

Nayak, B. K.

B. K. Nayak and M. C. Gupta, “Femtosecond-laser-induced-crystallization and simultaneous formation of light traping microstructures in thin a-Si:H films,” Appl. Phys., A Mater. Sci. Process. 89(3), 663–666 (2007).
[CrossRef]

Pan, C. L.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

J. M. Shieh, Z. H. Chen, B. T. Dai, Y. C. Wang, A. Zaitsev, and C. L. Pan, “Near-infrared femtosecond laser-induced crystallization of amorphous silicon,” Appl. Phys. Lett. 85(7), 1232–1234 (2004).
[CrossRef]

Parm, I. O.

J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 3085–3093 (2006).
[CrossRef]

Pattyn, H.

E. Fogarassy, H. Pattyn, M. Elliq, A. Slaoui, B. Prevot, R. Stuck, S. deUnamuno, and E. L. Mathe, “Pulsed-laser crystallization and doping for the fabrication of high-quality poly-Si TFTs,” Appl. Surf. Sci. 69(1–4), 231–241 (1993).
[CrossRef]

Peng, C. Y.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Petit, A. M. H. N.

C. Smit, R. A. C. M. M. Van Swaaij, H. Donker, A. M. H. N. Petit, W. M. M. Kesels, and M. C. M. van de Sanden, “Determining the material structure of microcrystalline silicon from Raman spectra,” J. Appl. Phys. 94(5), 3582–3588 (2003).
[CrossRef]

Poortmans, J.

L. Carnel, I. Gordon, D. Van Gestel, K. Van Nieuwenhuysen, G. Agostinelli, G. Beaucarne, and J. Poortmans, “Thin-film polycrystalline silicon solar cells on ceramic substrates with a V-oc above 500 mV,” Thin Solid Films 511–512, 21–25 (2006).
[CrossRef]

Prevot, B.

E. Fogarassy, H. Pattyn, M. Elliq, A. Slaoui, B. Prevot, R. Stuck, S. deUnamuno, and E. L. Mathe, “Pulsed-laser crystallization and doping for the fabrication of high-quality poly-Si TFTs,” Appl. Surf. Sci. 69(1–4), 231–241 (1993).
[CrossRef]

Rischel, C.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J. P. Geindre, P. Audebert, J. C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410(6824), 65–68 (2001).
[CrossRef] [PubMed]

Rousse, A.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J. P. Geindre, P. Audebert, J. C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410(6824), 65–68 (2001).
[CrossRef] [PubMed]

Sebban, S.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J. P. Geindre, P. Audebert, J. C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410(6824), 65–68 (2001).
[CrossRef] [PubMed]

Shank, C. V.

M. C. Downer, R. L. Fork, and C. V. Shank, “Femtosecond imaging of melting and evaporation at a photoexcited silicon surface,” J. Opt. Soc. Am. B 2(4), 595–599 (1985).
[CrossRef]

C. V. Shank, R. Yen, and C. Hirlimann, “Time-Resolved Reflectivity Measurements of Femtosecond-Optical-Pulse-Induced Phase Transitions in Silicon,” Phys. Rev. Lett. 50(6), 454–457 (1983).
[CrossRef]

Shieh, J. M.

J. M. Shieh, Z. H. Chen, B. T. Dai, Y. C. Wang, A. Zaitsev, and C. L. Pan, “Near-infrared femtosecond laser-induced crystallization of amorphous silicon,” Appl. Phys. Lett. 85(7), 1232–1234 (2004).
[CrossRef]

Siegel, J.

K. Sokolowski-Tinten, J. Solis, J. Bialkowski, J. Siegel, C. N. Afonso, and D. Von der Linde, “Dynamics of Ultrafast Phase Changes in Amorphous GeSb Films,” Phys. Rev. Lett. 81(17), 3679–3682 (1998).
[CrossRef]

Silva, S. R. P.

A. A. D. T. Adikaari and S. R. P. Silva, “Thickness dependence of properties of excimer laser crystallized nano-polycrystalline silicon,” J. Appl. Phys. 97(11), 114305 (2005).
[CrossRef]

Slaoui, A.

E. Fogarassy, H. Pattyn, M. Elliq, A. Slaoui, B. Prevot, R. Stuck, S. deUnamuno, and E. L. Mathe, “Pulsed-laser crystallization and doping for the fabrication of high-quality poly-Si TFTs,” Appl. Surf. Sci. 69(1–4), 231–241 (1993).
[CrossRef]

Smit, C.

C. Smit, R. A. C. M. M. Van Swaaij, H. Donker, A. M. H. N. Petit, W. M. M. Kesels, and M. C. M. van de Sanden, “Determining the material structure of microcrystalline silicon from Raman spectra,” J. Appl. Phys. 94(5), 3582–3588 (2003).
[CrossRef]

Sokolowski-Tinten, K.

K. Sokolowski-Tinten, J. Solis, J. Bialkowski, J. Siegel, C. N. Afonso, and D. Von der Linde, “Dynamics of Ultrafast Phase Changes in Amorphous GeSb Films,” Phys. Rev. Lett. 81(17), 3679–3682 (1998).
[CrossRef]

K. Sokolowski-Tinten, J. Bialkowski, and D. von der Linde, “Ultrafast laser-induced order-disorder transitions in semiconductors,” Phys. Rev. B Condens. Matter 51(20), 14186–14198 (1995).
[CrossRef] [PubMed]

Solis, J.

K. Sokolowski-Tinten, J. Solis, J. Bialkowski, J. Siegel, C. N. Afonso, and D. Von der Linde, “Dynamics of Ultrafast Phase Changes in Amorphous GeSb Films,” Phys. Rev. Lett. 81(17), 3679–3682 (1998).
[CrossRef]

J. Solis, C. N. Afonso, S. C. W. Hyde, N. P. Barry, and P. M. W. French, “Existence of electronic excitation enhanced crystallization in GeSb amorphous thin films upon ultrashort laser pulse irradiation,” Phys. Rev. Lett. 76(14), 2519–2522 (1996).
[CrossRef] [PubMed]

Song, D.

D. Song, D. Inns, A. Straub, M. L. Terry, P. Campbell, and A. G. Aberle, “Solid phase crystallized polycrystalline thin-films on glass from evaporated silicon for photovoltaic applications,” Thin Solid Films 513(1–2), 356–363 (2006).
[CrossRef]

Staebler, D. L.

D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge produced amorphous Si,” Appl. Phys. Lett. 31(4), 292–294 (1977).
[CrossRef]

Straub, A.

D. Song, D. Inns, A. Straub, M. L. Terry, P. Campbell, and A. G. Aberle, “Solid phase crystallized polycrystalline thin-films on glass from evaporated silicon for photovoltaic applications,” Thin Solid Films 513(1–2), 356–363 (2006).
[CrossRef]

Stuck, R.

E. Fogarassy, H. Pattyn, M. Elliq, A. Slaoui, B. Prevot, R. Stuck, S. deUnamuno, and E. L. Mathe, “Pulsed-laser crystallization and doping for the fabrication of high-quality poly-Si TFTs,” Appl. Surf. Sci. 69(1–4), 231–241 (1993).
[CrossRef]

Sundaram, S. K.

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
[CrossRef]

Tanaka, K.

R. Tsu, J. Gonzalez-Hernandez, S. S. Chao, S. C. Lee, and K. Tanaka, “Critical volume fraction of crystallinity for conductivity percolation in phosphorus-doped Si-F-H alloys,” Appl. Phys. Lett. 40(6), 534–535 (1982).
[CrossRef]

Terry, M. L.

D. Song, D. Inns, A. Straub, M. L. Terry, P. Campbell, and A. G. Aberle, “Solid phase crystallized polycrystalline thin-films on glass from evaporated silicon for photovoltaic applications,” Thin Solid Films 513(1–2), 356–363 (2006).
[CrossRef]

Tsu, R.

R. Tsu, J. Gonzalez-Hernandez, S. S. Chao, S. C. Lee, and K. Tanaka, “Critical volume fraction of crystallinity for conductivity percolation in phosphorus-doped Si-F-H alloys,” Appl. Phys. Lett. 40(6), 534–535 (1982).
[CrossRef]

Uschmann, I.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J. P. Geindre, P. Audebert, J. C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410(6824), 65–68 (2001).
[CrossRef] [PubMed]

van de Sanden, M. C. M.

C. Smit, R. A. C. M. M. Van Swaaij, H. Donker, A. M. H. N. Petit, W. M. M. Kesels, and M. C. M. van de Sanden, “Determining the material structure of microcrystalline silicon from Raman spectra,” J. Appl. Phys. 94(5), 3582–3588 (2003).
[CrossRef]

Van Gestel, D.

L. Carnel, I. Gordon, D. Van Gestel, K. Van Nieuwenhuysen, G. Agostinelli, G. Beaucarne, and J. Poortmans, “Thin-film polycrystalline silicon solar cells on ceramic substrates with a V-oc above 500 mV,” Thin Solid Films 511–512, 21–25 (2006).
[CrossRef]

Van Nieuwenhuysen, K.

L. Carnel, I. Gordon, D. Van Gestel, K. Van Nieuwenhuysen, G. Agostinelli, G. Beaucarne, and J. Poortmans, “Thin-film polycrystalline silicon solar cells on ceramic substrates with a V-oc above 500 mV,” Thin Solid Films 511–512, 21–25 (2006).
[CrossRef]

Van Swaaij, R. A. C. M. M.

C. Smit, R. A. C. M. M. Van Swaaij, H. Donker, A. M. H. N. Petit, W. M. M. Kesels, and M. C. M. van de Sanden, “Determining the material structure of microcrystalline silicon from Raman spectra,” J. Appl. Phys. 94(5), 3582–3588 (2003).
[CrossRef]

Von der Linde, D.

K. Sokolowski-Tinten, J. Solis, J. Bialkowski, J. Siegel, C. N. Afonso, and D. Von der Linde, “Dynamics of Ultrafast Phase Changes in Amorphous GeSb Films,” Phys. Rev. Lett. 81(17), 3679–3682 (1998).
[CrossRef]

K. Sokolowski-Tinten, J. Bialkowski, and D. von der Linde, “Ultrafast laser-induced order-disorder transitions in semiconductors,” Phys. Rev. B Condens. Matter 51(20), 14186–14198 (1995).
[CrossRef] [PubMed]

Voutsas, A. T.

A. T. Voutsas, M. K. Hatalis, J. Boyce, and A. Chiang, “Raman spectroscopy of amorphous and microcrystalline silicon films deposited by low-pressure chemical vapor deposition,” J. Appl. Phys. 78(12), 6999–7006 (1995).
[CrossRef]

Wang, Y. C.

J. M. Shieh, Z. H. Chen, B. T. Dai, Y. C. Wang, A. Zaitsev, and C. L. Pan, “Near-infrared femtosecond laser-induced crystallization of amorphous silicon,” Appl. Phys. Lett. 85(7), 1232–1234 (2004).
[CrossRef]

Wronski, C. R.

D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge produced amorphous Si,” Appl. Phys. Lett. 31(4), 292–294 (1977).
[CrossRef]

Wu, C.

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys., A Mater. Sci. Process. 70(4), 383–385 (2000).
[CrossRef]

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).
[CrossRef]

Yen, R.

C. V. Shank, R. Yen, and C. Hirlimann, “Time-Resolved Reflectivity Measurements of Femtosecond-Optical-Pulse-Induced Phase Transitions in Silicon,” Phys. Rev. Lett. 50(6), 454–457 (1983).
[CrossRef]

Yi, J.

J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 3085–3093 (2006).
[CrossRef]

Yoo, J. S.

J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 3085–3093 (2006).
[CrossRef]

Zaitsev, A.

J. M. Shieh, Z. H. Chen, B. T. Dai, Y. C. Wang, A. Zaitsev, and C. L. Pan, “Near-infrared femtosecond laser-induced crystallization of amorphous silicon,” Appl. Phys. Lett. 85(7), 1232–1234 (2004).
[CrossRef]

Appl. Phys. Lett.

D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge produced amorphous Si,” Appl. Phys. Lett. 31(4), 292–294 (1977).
[CrossRef]

J. M. Shieh, Z. H. Chen, B. T. Dai, Y. C. Wang, A. Zaitsev, and C. L. Pan, “Near-infrared femtosecond laser-induced crystallization of amorphous silicon,” Appl. Phys. Lett. 85(7), 1232–1234 (2004).
[CrossRef]

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73(12), 1673–1675 (1998).
[CrossRef]

R. Tsu, J. Gonzalez-Hernandez, S. S. Chao, S. C. Lee, and K. Tanaka, “Critical volume fraction of crystallinity for conductivity percolation in phosphorus-doped Si-F-H alloys,” Appl. Phys. Lett. 40(6), 534–535 (1982).
[CrossRef]

E. Bustarret, M. A. Hachicha, and M. Brunel, “Experimental-determination of the nanocrystalline volume fraction in silicon thin films from Raman-spectroscopy,” Appl. Phys. Lett. 52(20), 1675–1677 (1988).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys., A Mater. Sci. Process. 70(4), 383–385 (2000).
[CrossRef]

B. K. Nayak and M. C. Gupta, “Femtosecond-laser-induced-crystallization and simultaneous formation of light traping microstructures in thin a-Si:H films,” Appl. Phys., A Mater. Sci. Process. 89(3), 663–666 (2007).
[CrossRef]

Appl. Surf. Sci.

E. Fogarassy, H. Pattyn, M. Elliq, A. Slaoui, B. Prevot, R. Stuck, S. deUnamuno, and E. L. Mathe, “Pulsed-laser crystallization and doping for the fabrication of high-quality poly-Si TFTs,” Appl. Surf. Sci. 69(1–4), 231–241 (1993).
[CrossRef]

IEEE J. Quantum Electron.

X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33(10), 1706–1716 (1997).
[CrossRef]

J. Appl. Phys.

A. T. Voutsas, M. K. Hatalis, J. Boyce, and A. Chiang, “Raman spectroscopy of amorphous and microcrystalline silicon films deposited by low-pressure chemical vapor deposition,” J. Appl. Phys. 78(12), 6999–7006 (1995).
[CrossRef]

A. A. D. T. Adikaari and S. R. P. Silva, “Thickness dependence of properties of excimer laser crystallized nano-polycrystalline silicon,” J. Appl. Phys. 97(11), 114305 (2005).
[CrossRef]

C. Smit, R. A. C. M. M. Van Swaaij, H. Donker, A. M. H. N. Petit, W. M. M. Kesels, and M. C. M. van de Sanden, “Determining the material structure of microcrystalline silicon from Raman spectra,” J. Appl. Phys. 94(5), 3582–3588 (2003).
[CrossRef]

J. Cryst. Growth

F. Falk and G. Andra, “Laser crystallization - a way to produce crystalline silicon films on glass or on polymer substrates,” J. Cryst. Growth 287(2), 397–401 (2006).
[CrossRef]

J. Micromech. Microeng.

H. Jansen, M. de Boer, R. Legtenberg, and M. Elwenspoek, “The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control,” J. Micromech. Microeng. 5(2), 115–120 (1995).
[CrossRef]

J. Opt. Soc. Am. B

Nat. Mater.

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1(4), 217–224 (2002).
[CrossRef]

Nat. Nanotechnol.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Nature

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J. P. Geindre, P. Audebert, J. C. Gauthier, and D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410(6824), 65–68 (2001).
[CrossRef] [PubMed]

Opt. Eng.

T. Y. Choi, D. J. Hwang, and C. P. Grigoropoulos, “Ultrafast laser-induced crystallization of amorphous silicon films,” Opt. Eng. 42(11), 3383–3388 (2003).
[CrossRef]

Phys. Rev. B Condens. Matter

K. Sokolowski-Tinten, J. Bialkowski, and D. von der Linde, “Ultrafast laser-induced order-disorder transitions in semiconductors,” Phys. Rev. B Condens. Matter 51(20), 14186–14198 (1995).
[CrossRef] [PubMed]

Phys. Rev. Lett.

C. V. Shank, R. Yen, and C. Hirlimann, “Time-Resolved Reflectivity Measurements of Femtosecond-Optical-Pulse-Induced Phase Transitions in Silicon,” Phys. Rev. Lett. 50(6), 454–457 (1983).
[CrossRef]

K. Sokolowski-Tinten, J. Solis, J. Bialkowski, J. Siegel, C. N. Afonso, and D. Von der Linde, “Dynamics of Ultrafast Phase Changes in Amorphous GeSb Films,” Phys. Rev. Lett. 81(17), 3679–3682 (1998).
[CrossRef]

J. Solis, C. N. Afonso, S. C. W. Hyde, N. P. Barry, and P. M. W. French, “Existence of electronic excitation enhanced crystallization in GeSb amorphous thin films upon ultrashort laser pulse irradiation,” Phys. Rev. Lett. 76(14), 2519–2522 (1996).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells

J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90(18-19), 3085–3093 (2006).
[CrossRef]

Thin Solid Films

L. Carnel, I. Gordon, D. Van Gestel, K. Van Nieuwenhuysen, G. Agostinelli, G. Beaucarne, and J. Poortmans, “Thin-film polycrystalline silicon solar cells on ceramic substrates with a V-oc above 500 mV,” Thin Solid Films 511–512, 21–25 (2006).
[CrossRef]

D. Song, D. Inns, A. Straub, M. L. Terry, P. Campbell, and A. G. Aberle, “Solid phase crystallized polycrystalline thin-films on glass from evaporated silicon for photovoltaic applications,” Thin Solid Films 513(1–2), 356–363 (2006).
[CrossRef]

Other

A. K. Arora, M. Rajalakshmi, and T. R. Ravindran, “Phonon Confinement in Nanostructured Materials,” Encyclopedia of Nanoscience and Nanotechnology 8, 499–512, (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optical microscope image of fs laser treated a-Si:H thin film.

Fig. 2
Fig. 2

SEM images of (a) original a-Si:H thin film surface and (b) fs laser treated a-Si:H thin film surface.

Fig. 3
Fig. 3

AFM images of (a) original a-Si:H thin film surface and (b) fs laser treated a-Si:H thin film surface.

Fig. 4
Fig. 4

Raman spectra of original and laser treated a-Si:H thin film, the dashed lines are Gaussian profile fittings.

Fig. 5
Fig. 5

Absorptance of original and laser treated a-Si:H thin film.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Χ c = I c I c + ( γ ) I a

Metrics