Abstract

To enhance the mechanical stability of a two-dimensional photonic crystal slab structure and maintain its excellent performance, we designed a glass-embedded silicon photonic crystal device consisting of a broad bandwidth waveguide and a nanocavity with a high quality (Q) factor, and then fabricated the structure using spin-on glass (SOG). Furthermore, we showed that the refractive index of the SOG could be tuned from 1.37 to 1.57 by varying the curing temperature of the SOG. Finally, we demonstrated a glass-embedded heterostructured cavity with an ultrahigh Q factor of 160,000 by adjusting the refractive index of the SOG.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
    [CrossRef]
  2. B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300(5625), 1537 (2003).
    [CrossRef] [PubMed]
  3. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 1, 449–458 (2010).
  4. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
    [CrossRef]
  5. C. Wong, J. Gao, J. McMillan, F. Sun, and R. Bose, “Quantum information processing through quantum dots in slow-light photonic crystal waveguides,” Photon. Nanostructures 7(1), 47–55 (2009).
    [CrossRef]
  6. M. Borselli, T. J. Johnson, and O. Painter, “Measuring the role of surface chemistry in silicon microphotonics,” Appl. Phys. Lett. 88(13), 131114 (2006).
    [CrossRef]
  7. Y. S. Choi, J. Y. Sung, S. H. Kim, J. H. Shin, and Y. H. Lee, “Active silicon-based two-dimensional slab photonic crystal structures based on erbium-doped hydrogenated amorphous silicon alloyed with carbon,” Appl. Phys. Lett. 83(16), 3239–3241 (2003).
    [CrossRef]
  8. C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d’Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “Modal analysis and engineering on InP-based two-dimensional photonic-crystal microlasers on a Si,” IEEE J. Quantum Electron. 39(3), 419–425 (2003).
    [CrossRef]
  9. Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding,” Appl. Phys. Lett. 88(1), 011112 (2006).
    [CrossRef]
  10. P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide,” N. J. Phys. 8(9), 204 (2006).
    [CrossRef]
  11. M.-H. Shih, A. Mock, M. Bagheri, N.-K. Suh, S. Farrell, S.-J. Choi, J. D. O’Brien, and P. D. Dapkus, “Photonic crystal lasers in InGaAsP on a SiO(2)/Si substrates and its thermal impedance,” Opt. Express 15(1), 227–232 (2007).
    [CrossRef] [PubMed]
  12. I. Märki, M. Salt, H. P. Herzig, R. Stanley, L. El Melhaoui, P. Lyan, and J. M. Fedeli, “Optically tunable microcavity in a planar photonic crystal silicon waveguide buried in oxide,” Opt. Lett. 31(4), 513–515 (2006).
    [CrossRef] [PubMed]
  13. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005).
    [CrossRef] [PubMed]
  14. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
    [CrossRef] [PubMed]
  15. H.-C. Liou and J. Pretzer, “Effect of curing temperature on the mechanical properties of hydrogen silsesquioxane thin films,” Thin Solid Films 335(1-2), 186–191 (1998).
    [CrossRef]
  16. T. P. White, L. O’Faolain, J. Li, L. C. Andreani, and T. F. Krauss, “Silica-embedded silicon photonic crystal waveguides,” Opt. Express 16(21), 17076–17081 (2008).
    [CrossRef] [PubMed]
  17. T. Chu, H. Yamada, S. Ishida, and Y. Arakwa, “Thermooptic switch based on photonic-crystal line-defect waveguides,” IEEE Photon. Technol. Lett. 17(10), 2083–2085 (2005).
    [CrossRef]
  18. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
    [CrossRef] [PubMed]
  19. Y. Tanaka, T. Asano, and S. Noda, “Design of photonic crystal nanocavity with Q-Factor of ∼ 109,” J. Lightwave Technol. 26(11), 1532–1539 (2008).
    [CrossRef]
  20. M. Okano, T. Yamada, J. Sugisaka, N. Yamamoto, M. Itoh, T. Sugaya, K. Komori, and M. Mori, “Analysis of two-dimensional photonic crystal L-type cavities with low-refractive-index material cladding,” J. Opt. 12(7), 075101 (2010).
    [CrossRef]
  21. Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, and S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17(20), 18093–18102 (2009).
    [CrossRef] [PubMed]

2010

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 1, 449–458 (2010).

M. Okano, T. Yamada, J. Sugisaka, N. Yamamoto, M. Itoh, T. Sugaya, K. Komori, and M. Mori, “Analysis of two-dimensional photonic crystal L-type cavities with low-refractive-index material cladding,” J. Opt. 12(7), 075101 (2010).
[CrossRef]

2009

Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, and S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17(20), 18093–18102 (2009).
[CrossRef] [PubMed]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

C. Wong, J. Gao, J. McMillan, F. Sun, and R. Bose, “Quantum information processing through quantum dots in slow-light photonic crystal waveguides,” Photon. Nanostructures 7(1), 47–55 (2009).
[CrossRef]

2008

2007

2006

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding,” Appl. Phys. Lett. 88(1), 011112 (2006).
[CrossRef]

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide,” N. J. Phys. 8(9), 204 (2006).
[CrossRef]

M. Borselli, T. J. Johnson, and O. Painter, “Measuring the role of surface chemistry in silicon microphotonics,” Appl. Phys. Lett. 88(13), 131114 (2006).
[CrossRef]

I. Märki, M. Salt, H. P. Herzig, R. Stanley, L. El Melhaoui, P. Lyan, and J. M. Fedeli, “Optically tunable microcavity in a planar photonic crystal silicon waveguide buried in oxide,” Opt. Lett. 31(4), 513–515 (2006).
[CrossRef] [PubMed]

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

2005

T. Chu, H. Yamada, S. Ishida, and Y. Arakwa, “Thermooptic switch based on photonic-crystal line-defect waveguides,” IEEE Photon. Technol. Lett. 17(10), 2083–2085 (2005).
[CrossRef]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005).
[CrossRef] [PubMed]

2003

Y. S. Choi, J. Y. Sung, S. H. Kim, J. H. Shin, and Y. H. Lee, “Active silicon-based two-dimensional slab photonic crystal structures based on erbium-doped hydrogenated amorphous silicon alloyed with carbon,” Appl. Phys. Lett. 83(16), 3239–3241 (2003).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d’Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “Modal analysis and engineering on InP-based two-dimensional photonic-crystal microlasers on a Si,” IEEE J. Quantum Electron. 39(3), 419–425 (2003).
[CrossRef]

B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300(5625), 1537 (2003).
[CrossRef] [PubMed]

2001

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

1998

H.-C. Liou and J. Pretzer, “Effect of curing temperature on the mechanical properties of hydrogen silsesquioxane thin films,” Thin Solid Films 335(1-2), 186–191 (1998).
[CrossRef]

Akahane, Y.

Albert, J. P.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d’Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “Modal analysis and engineering on InP-based two-dimensional photonic-crystal microlasers on a Si,” IEEE J. Quantum Electron. 39(3), 419–425 (2003).
[CrossRef]

Andersen, K. N.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Andreani, L. C.

Arakwa, Y.

T. Chu, H. Yamada, S. Ishida, and Y. Arakwa, “Thermooptic switch based on photonic-crystal line-defect waveguides,” IEEE Photon. Technol. Lett. 17(10), 2083–2085 (2005).
[CrossRef]

Asano, T.

Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, and S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17(20), 18093–18102 (2009).
[CrossRef] [PubMed]

Y. Tanaka, T. Asano, and S. Noda, “Design of photonic crystal nanocavity with Q-Factor of ∼ 109,” J. Lightwave Technol. 26(11), 1532–1539 (2008).
[CrossRef]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[CrossRef]

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding,” Appl. Phys. Lett. 88(1), 011112 (2006).
[CrossRef]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005).
[CrossRef] [PubMed]

B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300(5625), 1537 (2003).
[CrossRef] [PubMed]

Aspar, B.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d’Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “Modal analysis and engineering on InP-based two-dimensional photonic-crystal microlasers on a Si,” IEEE J. Quantum Electron. 39(3), 419–425 (2003).
[CrossRef]

Bagheri, M.

Bjarklev, A.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Borel, P. I.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Borselli, M.

M. Borselli, T. J. Johnson, and O. Painter, “Measuring the role of surface chemistry in silicon microphotonics,” Appl. Phys. Lett. 88(13), 131114 (2006).
[CrossRef]

Bose, R.

C. Wong, J. Gao, J. McMillan, F. Sun, and R. Bose, “Quantum information processing through quantum dots in slow-light photonic crystal waveguides,” Photon. Nanostructures 7(1), 47–55 (2009).
[CrossRef]

Cassagne, D.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d’Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “Modal analysis and engineering on InP-based two-dimensional photonic-crystal microlasers on a Si,” IEEE J. Quantum Electron. 39(3), 419–425 (2003).
[CrossRef]

Charvolin, T.

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide,” N. J. Phys. 8(9), 204 (2006).
[CrossRef]

Choi, S.-J.

Choi, Y. S.

Y. S. Choi, J. Y. Sung, S. H. Kim, J. H. Shin, and Y. H. Lee, “Active silicon-based two-dimensional slab photonic crystal structures based on erbium-doped hydrogenated amorphous silicon alloyed with carbon,” Appl. Phys. Lett. 83(16), 3239–3241 (2003).
[CrossRef]

Chu, T.

T. Chu, H. Yamada, S. Ishida, and Y. Arakwa, “Thermooptic switch based on photonic-crystal line-defect waveguides,” IEEE Photon. Technol. Lett. 17(10), 2083–2085 (2005).
[CrossRef]

Corcoran, B.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

Dapkus, P. D.

Eggleton, B. J.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

El Melhaoui, L.

Fage-Pedersen, J.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Farrell, S.

Fedeli, J. M.

Frandsen, L. H.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Fujita, M.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[CrossRef]

Gao, J.

C. Wong, J. Gao, J. McMillan, F. Sun, and R. Bose, “Quantum information processing through quantum dots in slow-light photonic crystal waveguides,” Photon. Nanostructures 7(1), 47–55 (2009).
[CrossRef]

Grillet, C.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

Hadji, E.

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide,” N. J. Phys. 8(9), 204 (2006).
[CrossRef]

Hagino, H.

Hansen, O.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Hatsuta, R.

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding,” Appl. Phys. Lett. 88(1), 011112 (2006).
[CrossRef]

Herzig, H. P.

Hugonin, J. P.

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide,” N. J. Phys. 8(9), 204 (2006).
[CrossRef]

Ishida, S.

T. Chu, H. Yamada, S. Ishida, and Y. Arakwa, “Thermooptic switch based on photonic-crystal line-defect waveguides,” IEEE Photon. Technol. Lett. 17(10), 2083–2085 (2005).
[CrossRef]

Itoh, M.

M. Okano, T. Yamada, J. Sugisaka, N. Yamamoto, M. Itoh, T. Sugaya, K. Komori, and M. Mori, “Analysis of two-dimensional photonic crystal L-type cavities with low-refractive-index material cladding,” J. Opt. 12(7), 075101 (2010).
[CrossRef]

Jacobsen, R. S.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Jalaguier, E.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d’Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “Modal analysis and engineering on InP-based two-dimensional photonic-crystal microlasers on a Si,” IEEE J. Quantum Electron. 39(3), 419–425 (2003).
[CrossRef]

Johnson, T. J.

M. Borselli, T. J. Johnson, and O. Painter, “Measuring the role of surface chemistry in silicon microphotonics,” Appl. Phys. Lett. 88(13), 131114 (2006).
[CrossRef]

Kim, S. H.

Y. S. Choi, J. Y. Sung, S. H. Kim, J. H. Shin, and Y. H. Lee, “Active silicon-based two-dimensional slab photonic crystal structures based on erbium-doped hydrogenated amorphous silicon alloyed with carbon,” Appl. Phys. Lett. 83(16), 3239–3241 (2003).
[CrossRef]

Komori, K.

M. Okano, T. Yamada, J. Sugisaka, N. Yamamoto, M. Itoh, T. Sugaya, K. Komori, and M. Mori, “Analysis of two-dimensional photonic crystal L-type cavities with low-refractive-index material cladding,” J. Opt. 12(7), 075101 (2010).
[CrossRef]

Krauss, T. F.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

T. P. White, L. O’Faolain, J. Li, L. C. Andreani, and T. F. Krauss, “Silica-embedded silicon photonic crystal waveguides,” Opt. Express 16(21), 17076–17081 (2008).
[CrossRef] [PubMed]

Kristensen, M.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Lalanne, P.

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide,” N. J. Phys. 8(9), 204 (2006).
[CrossRef]

Lavrinenko, A. V.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Le Vassor d’Yerville, M.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d’Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “Modal analysis and engineering on InP-based two-dimensional photonic-crystal microlasers on a Si,” IEEE J. Quantum Electron. 39(3), 419–425 (2003).
[CrossRef]

Lee, Y. H.

Y. S. Choi, J. Y. Sung, S. H. Kim, J. H. Shin, and Y. H. Lee, “Active silicon-based two-dimensional slab photonic crystal structures based on erbium-doped hydrogenated amorphous silicon alloyed with carbon,” Appl. Phys. Lett. 83(16), 3239–3241 (2003).
[CrossRef]

Letartre, X.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d’Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “Modal analysis and engineering on InP-based two-dimensional photonic-crystal microlasers on a Si,” IEEE J. Quantum Electron. 39(3), 419–425 (2003).
[CrossRef]

Li, J.

Liou, H.-C.

H.-C. Liou and J. Pretzer, “Effect of curing temperature on the mechanical properties of hydrogen silsesquioxane thin films,” Thin Solid Films 335(1-2), 186–191 (1998).
[CrossRef]

Lyan, P.

Märki, I.

Matsuo, S.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 1, 449–458 (2010).

McMillan, J.

C. Wong, J. Gao, J. McMillan, F. Sun, and R. Bose, “Quantum information processing through quantum dots in slow-light photonic crystal waveguides,” Photon. Nanostructures 7(1), 47–55 (2009).
[CrossRef]

Mock, A.

Monat, C.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d’Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “Modal analysis and engineering on InP-based two-dimensional photonic-crystal microlasers on a Si,” IEEE J. Quantum Electron. 39(3), 419–425 (2003).
[CrossRef]

Mori, M.

M. Okano, T. Yamada, J. Sugisaka, N. Yamamoto, M. Itoh, T. Sugaya, K. Komori, and M. Mori, “Analysis of two-dimensional photonic crystal L-type cavities with low-refractive-index material cladding,” J. Opt. 12(7), 075101 (2010).
[CrossRef]

Moss, D. J.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

Moulin, G.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Noda, S.

Y. Takahashi, Y. Tanaka, H. Hagino, T. Sugiya, Y. Sato, T. Asano, and S. Noda, “Design and demonstration of high-Q photonic heterostructure nanocavities suitable for integration,” Opt. Express 17(20), 18093–18102 (2009).
[CrossRef] [PubMed]

Y. Tanaka, T. Asano, and S. Noda, “Design of photonic crystal nanocavity with Q-Factor of ∼ 109,” J. Lightwave Technol. 26(11), 1532–1539 (2008).
[CrossRef]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[CrossRef]

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding,” Appl. Phys. Lett. 88(1), 011112 (2006).
[CrossRef]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13(4), 1202–1214 (2005).
[CrossRef] [PubMed]

B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300(5625), 1537 (2003).
[CrossRef] [PubMed]

Notomi, M.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 1, 449–458 (2010).

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

Nozaki, K.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 1, 449–458 (2010).

O’Brien, J. D.

O’Faolain, L.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

T. P. White, L. O’Faolain, J. Li, L. C. Andreani, and T. F. Krauss, “Silica-embedded silicon photonic crystal waveguides,” Opt. Express 16(21), 17076–17081 (2008).
[CrossRef] [PubMed]

Okano, M.

M. Okano, T. Yamada, J. Sugisaka, N. Yamamoto, M. Itoh, T. Sugaya, K. Komori, and M. Mori, “Analysis of two-dimensional photonic crystal L-type cavities with low-refractive-index material cladding,” J. Opt. 12(7), 075101 (2010).
[CrossRef]

Ou, H.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Painter, O.

M. Borselli, T. J. Johnson, and O. Painter, “Measuring the role of surface chemistry in silicon microphotonics,” Appl. Phys. Lett. 88(13), 131114 (2006).
[CrossRef]

Peucheret, C.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Peyrade, D.

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide,” N. J. Phys. 8(9), 204 (2006).
[CrossRef]

Picard, E.

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide,” N. J. Phys. 8(9), 204 (2006).
[CrossRef]

Pocas, S.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d’Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “Modal analysis and engineering on InP-based two-dimensional photonic-crystal microlasers on a Si,” IEEE J. Quantum Electron. 39(3), 419–425 (2003).
[CrossRef]

Pretzer, J.

H.-C. Liou and J. Pretzer, “Effect of curing temperature on the mechanical properties of hydrogen silsesquioxane thin films,” Thin Solid Films 335(1-2), 186–191 (1998).
[CrossRef]

Regreny, P.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d’Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “Modal analysis and engineering on InP-based two-dimensional photonic-crystal microlasers on a Si,” IEEE J. Quantum Electron. 39(3), 419–425 (2003).
[CrossRef]

Rodier, J. C.

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide,” N. J. Phys. 8(9), 204 (2006).
[CrossRef]

Rojo-Romeo, P.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d’Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “Modal analysis and engineering on InP-based two-dimensional photonic-crystal microlasers on a Si,” IEEE J. Quantum Electron. 39(3), 419–425 (2003).
[CrossRef]

Salt, M.

Sato, T.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 1, 449–458 (2010).

Sato, Y.

Seassal, C.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d’Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “Modal analysis and engineering on InP-based two-dimensional photonic-crystal microlasers on a Si,” IEEE J. Quantum Electron. 39(3), 419–425 (2003).
[CrossRef]

Shih, M.-H.

Shin, J. H.

Y. S. Choi, J. Y. Sung, S. H. Kim, J. H. Shin, and Y. H. Lee, “Active silicon-based two-dimensional slab photonic crystal structures based on erbium-doped hydrogenated amorphous silicon alloyed with carbon,” Appl. Phys. Lett. 83(16), 3239–3241 (2003).
[CrossRef]

Shinya, A.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 1, 449–458 (2010).

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

Song, B. S.

B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300(5625), 1537 (2003).
[CrossRef] [PubMed]

Song, B.-S.

Stanley, R.

Sugaya, T.

M. Okano, T. Yamada, J. Sugisaka, N. Yamamoto, M. Itoh, T. Sugaya, K. Komori, and M. Mori, “Analysis of two-dimensional photonic crystal L-type cavities with low-refractive-index material cladding,” J. Opt. 12(7), 075101 (2010).
[CrossRef]

Sugisaka, J.

M. Okano, T. Yamada, J. Sugisaka, N. Yamamoto, M. Itoh, T. Sugaya, K. Komori, and M. Mori, “Analysis of two-dimensional photonic crystal L-type cavities with low-refractive-index material cladding,” J. Opt. 12(7), 075101 (2010).
[CrossRef]

Sugiya, T.

Suh, N.-K.

Sun, F.

C. Wong, J. Gao, J. McMillan, F. Sun, and R. Bose, “Quantum information processing through quantum dots in slow-light photonic crystal waveguides,” Photon. Nanostructures 7(1), 47–55 (2009).
[CrossRef]

Sung, J. Y.

Y. S. Choi, J. Y. Sung, S. H. Kim, J. H. Shin, and Y. H. Lee, “Active silicon-based two-dimensional slab photonic crystal structures based on erbium-doped hydrogenated amorphous silicon alloyed with carbon,” Appl. Phys. Lett. 83(16), 3239–3241 (2003).
[CrossRef]

Takahashi, C.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

Takahashi, J.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

Takahashi, Y.

Tanabe, T.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 1, 449–458 (2010).

Tanaka, Y.

Taniyama, H.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 1, 449–458 (2010).

Velha, P.

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide,” N. J. Phys. 8(9), 204 (2006).
[CrossRef]

Viktorovitch, P.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d’Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “Modal analysis and engineering on InP-based two-dimensional photonic-crystal microlasers on a Si,” IEEE J. Quantum Electron. 39(3), 419–425 (2003).
[CrossRef]

White, T. P.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

T. P. White, L. O’Faolain, J. Li, L. C. Andreani, and T. F. Krauss, “Silica-embedded silicon photonic crystal waveguides,” Opt. Express 16(21), 17076–17081 (2008).
[CrossRef] [PubMed]

Wong, C.

C. Wong, J. Gao, J. McMillan, F. Sun, and R. Bose, “Quantum information processing through quantum dots in slow-light photonic crystal waveguides,” Photon. Nanostructures 7(1), 47–55 (2009).
[CrossRef]

Yamada, H.

T. Chu, H. Yamada, S. Ishida, and Y. Arakwa, “Thermooptic switch based on photonic-crystal line-defect waveguides,” IEEE Photon. Technol. Lett. 17(10), 2083–2085 (2005).
[CrossRef]

Yamada, K.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

Yamada, T.

M. Okano, T. Yamada, J. Sugisaka, N. Yamamoto, M. Itoh, T. Sugaya, K. Komori, and M. Mori, “Analysis of two-dimensional photonic crystal L-type cavities with low-refractive-index material cladding,” J. Opt. 12(7), 075101 (2010).
[CrossRef]

Yamamoto, N.

M. Okano, T. Yamada, J. Sugisaka, N. Yamamoto, M. Itoh, T. Sugaya, K. Komori, and M. Mori, “Analysis of two-dimensional photonic crystal L-type cavities with low-refractive-index material cladding,” J. Opt. 12(7), 075101 (2010).
[CrossRef]

Yokohama, I.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

Zsigri, B.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett.

Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding,” Appl. Phys. Lett. 88(1), 011112 (2006).
[CrossRef]

M. Borselli, T. J. Johnson, and O. Painter, “Measuring the role of surface chemistry in silicon microphotonics,” Appl. Phys. Lett. 88(13), 131114 (2006).
[CrossRef]

Y. S. Choi, J. Y. Sung, S. H. Kim, J. H. Shin, and Y. H. Lee, “Active silicon-based two-dimensional slab photonic crystal structures based on erbium-doped hydrogenated amorphous silicon alloyed with carbon,” Appl. Phys. Lett. 83(16), 3239–3241 (2003).
[CrossRef]

IEEE J. Quantum Electron.

C. Monat, C. Seassal, X. Letartre, P. Regreny, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d’Yerville, D. Cassagne, J. P. Albert, E. Jalaguier, S. Pocas, and B. Aspar, “Modal analysis and engineering on InP-based two-dimensional photonic-crystal microlasers on a Si,” IEEE J. Quantum Electron. 39(3), 419–425 (2003).
[CrossRef]

IEEE Photon. Technol. Lett.

T. Chu, H. Yamada, S. Ishida, and Y. Arakwa, “Thermooptic switch based on photonic-crystal line-defect waveguides,” IEEE Photon. Technol. Lett. 17(10), 2083–2085 (2005).
[CrossRef]

J. Lightwave Technol.

J. Opt.

M. Okano, T. Yamada, J. Sugisaka, N. Yamamoto, M. Itoh, T. Sugaya, K. Komori, and M. Mori, “Analysis of two-dimensional photonic crystal L-type cavities with low-refractive-index material cladding,” J. Opt. 12(7), 075101 (2010).
[CrossRef]

N. J. Phys.

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide,” N. J. Phys. 8(9), 204 (2006).
[CrossRef]

Nat. Photonics

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[CrossRef]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 1, 449–458 (2010).

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

Nature

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Photon. Nanostructures

C. Wong, J. Gao, J. McMillan, F. Sun, and R. Bose, “Quantum information processing through quantum dots in slow-light photonic crystal waveguides,” Photon. Nanostructures 7(1), 47–55 (2009).
[CrossRef]

Phys. Rev. Lett.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

Science

B. S. Song, S. Noda, and T. Asano, “Photonic devices based on in-plane hetero photonic crystals,” Science 300(5625), 1537 (2003).
[CrossRef] [PubMed]

Thin Solid Films

H.-C. Liou and J. Pretzer, “Effect of curing temperature on the mechanical properties of hydrogen silsesquioxane thin films,” Thin Solid Films 335(1-2), 186–191 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) A schematic of a glass-embedded two-dimensional photonic crystal device consisting of a waveguide and a nanocavity. (b) The calculated photonic band diagram of the photonic crystal structure (t = 0.6a, d = 0.58a)

Fig. 2
Fig. 2

(a) A schematic of a nanocavity with three missing holes and (b) the electric field distribution upon resonance. (c) A schematic of a waveguide with width (W), and (d) the dispersions of waveguides with W = W1 and 0.62W.

Fig. 3
Fig. 3

(a) Top view and (b) cross-sectional SEM images of the silicon photonic crystal devices on an insulator before coating spin-on glass (SOG). (c) Optical microscope image of the photonic crystal device after coating SOG, and (d) cross-sectional SEM image of the glass-embedded photonic crystal structure.

Fig. 4
Fig. 4

(a) A schematic of coupling photons to the waveguide with the emission of photons from the cavity. (b) and (c) Transmission spectra of the waveguide and the L3 cavity, respectively. The insert in (c) represents the near-field image of the cavity upon resonance.

Fig. 5
Fig. 5

(a) A cross-sectional schematic of the photonic crystal structure with a top layer of SOG and a bottom layer of SiO2. (b) The resonance spectra of the shifted (s) cavities of neighboring holes (a = 400 nm, s = 0.15) as a function of the curing temperature of SOG. (c) The resonant wavelengths of structures with a = 385, 400, and 415 nm as a function of curing temperature. (d) The estimated refractive index of the SOG (nSOG) as a function of curing temperature.

Fig. 6
Fig. 6

(a) A schematic of a glass-embedded heterostructured cavity. (b) The measured resonant spectrum of the fabricated cavity (Q factor~160,000).

Metrics