Abstract

A simple dielectric hollow-tube has been experimentally demonstrated at terahertz range for bio-molecular layer sensing based on the anti-resonant reflecting wave-guidance mechanism. We experimentally study the dependence of thin-film detection sensitivity on the optical geometrical parameters of tubes, different thicknesses and tube wall refractive indices, and on different resonant frequencies. A polypropylene hollow-tube with optimized sensitivity of 0.003mm/μm is used to sense a subwavelength-thick (λ/225) carboxypolymethylene molecular overlayer on the tube’s inner surface, and the minimum detectable quantity of molecules could be down to 1.22picomole/mm2. A double-layered Fabry-Pérot model is proposed for calculating the overlayer thicknesses, which agrees well with the experimental results.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Yoshida, E. Kato, K. Suizu, Y. Nakagomi, Y. Ogawa, and K. Kawase, “Terahertz sensing of thin poly(ethylene terephthalate) film thickness using a metallic mesh,” Appl. Phys. Express 2(1), 012301 (2009).
    [CrossRef]
  2. F. Miyamaru, S. Hayashi, C. Otani, K. Kawase, Y. Ogawa, H. Yoshida, and E. Kato, “Terahertz surface-wave resonant sensor with a metal hole array,” Opt. Lett. 31(8), 1118–1120 (2006).
    [CrossRef] [PubMed]
  3. H. Kurt and D. S. Citrin, “Coupled-resonator optical waveguides for biochemical sensing of nanoliter volumes of analyte in the terahertz region,” Appl. Phys. Lett. 87(24), 241119 (2005).
    [CrossRef]
  4. C. Debus and P. Haring Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
    [CrossRef]
  5. S.-Y. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, and A. A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Appl. Phys. Lett. 94(6), 064102 (2009).
    [CrossRef]
  6. J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786–1795 (2008).
    [CrossRef] [PubMed]
  7. B. Kuswandi, J. Nuriman, J. Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: a review,” Anal. Chim. Acta 601(2), 141–155 (2007).
    [CrossRef] [PubMed]
  8. R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett. 95(17), 171113 (2009).
    [CrossRef]
  9. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Surface-plasmon-resonance-like fiber-based sensor at terahertz frequencies,” J. Opt. Soc. Am. B 25(10), 1771–1775 (2008).
    [CrossRef]
  10. C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y. J. Huang, H. C. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34(21), 3457–3459 (2009).
    [CrossRef] [PubMed]
  11. C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H. C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18(1), 309–322 (2010).
    [CrossRef] [PubMed]
  12. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002).
    [CrossRef]
  13. A. M. Zheltikov, “Ray-optic analysis of the (bio)sensing ability of ring-cladding hollow waveguides,” Appl. Opt. 47(3), 474–479 (2008).
    [CrossRef] [PubMed]
  14. A. Hassani and M. Skorobogatiy, “Photonic crystal fiber-based plasmonic sensors for the detection of biolayer thickness,” J. Opt. Soc. Am. B 26(8), 1550–1557 (2009).
    [CrossRef]
  15. M. Zourob, S. Elwary and A. Turner, “Fiber Optic Biosensors for Bacterial Detection,” in Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems, (Springer Science, New York, 2008).
  16. J. W. Lamb, “Miscellancous data on materials for millimetre and submillimetre optics,” Int. J. Infrared. Milli. 17, 1996–2034 (1996).
  17. J. O. Carnali and M. S. Naser, “The use of dilute solution viscometry to characterize the network properties of carbopol microgels,” Colloid Polym. Sci. 270(2), 183–193 (1992).
    [CrossRef]
  18. Y. Kawashima and M. Kuwano, “Carboxyvinyl polymer having Newtonian viscosity,” United States patent 5458873 (1992).
  19. G. Klatt, R. Gebs, C. Janke, T. Dekorsy, and A. Bartels, “Rapid-scanning terahertz precision spectrometer with more than 6 THz spectral coverage,” Opt. Express 17(25), 22847–22854 (2009).
    [CrossRef]
  20. N. Kinrot, “Analysis of Bulk Material Sensing Using a Periodically Segmented Waveguide Mach–Zehnder Interferometer for Biosensing,” J. Lightwave Technol. 22(10), 2296–2301 (2004).
    [CrossRef]

2010 (1)

2009 (6)

A. Hassani and M. Skorobogatiy, “Photonic crystal fiber-based plasmonic sensors for the detection of biolayer thickness,” J. Opt. Soc. Am. B 26(8), 1550–1557 (2009).
[CrossRef]

G. Klatt, R. Gebs, C. Janke, T. Dekorsy, and A. Bartels, “Rapid-scanning terahertz precision spectrometer with more than 6 THz spectral coverage,” Opt. Express 17(25), 22847–22854 (2009).
[CrossRef]

S. Yoshida, E. Kato, K. Suizu, Y. Nakagomi, Y. Ogawa, and K. Kawase, “Terahertz sensing of thin poly(ethylene terephthalate) film thickness using a metallic mesh,” Appl. Phys. Express 2(1), 012301 (2009).
[CrossRef]

S.-Y. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, and A. A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Appl. Phys. Lett. 94(6), 064102 (2009).
[CrossRef]

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett. 95(17), 171113 (2009).
[CrossRef]

C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y. J. Huang, H. C. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34(21), 3457–3459 (2009).
[CrossRef] [PubMed]

2008 (3)

2007 (2)

B. Kuswandi, J. Nuriman, J. Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: a review,” Anal. Chim. Acta 601(2), 141–155 (2007).
[CrossRef] [PubMed]

C. Debus and P. Haring Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
[CrossRef]

2006 (1)

2005 (1)

H. Kurt and D. S. Citrin, “Coupled-resonator optical waveguides for biochemical sensing of nanoliter volumes of analyte in the terahertz region,” Appl. Phys. Lett. 87(24), 241119 (2005).
[CrossRef]

2004 (1)

2002 (1)

1996 (1)

J. W. Lamb, “Miscellancous data on materials for millimetre and submillimetre optics,” Int. J. Infrared. Milli. 17, 1996–2034 (1996).

1992 (1)

J. O. Carnali and M. S. Naser, “The use of dilute solution viscometry to characterize the network properties of carbopol microgels,” Colloid Polym. Sci. 270(2), 183–193 (1992).
[CrossRef]

Abeeluck, A. K.

Astley, V.

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett. 95(17), 171113 (2009).
[CrossRef]

Bartels, A.

Bettiol, A. A.

S.-Y. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, and A. A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Appl. Phys. Lett. 94(6), 064102 (2009).
[CrossRef]

Brener, I.

Carnali, J. O.

J. O. Carnali and M. S. Naser, “The use of dilute solution viscometry to characterize the network properties of carbopol microgels,” Colloid Polym. Sci. 270(2), 183–193 (1992).
[CrossRef]

Chang, H. C.

Chen, H.-W.

Chiam, S.-Y.

S.-Y. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, and A. A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Appl. Phys. Lett. 94(6), 064102 (2009).
[CrossRef]

Citrin, D. S.

H. Kurt and D. S. Citrin, “Coupled-resonator optical waveguides for biochemical sensing of nanoliter volumes of analyte in the terahertz region,” Appl. Phys. Lett. 87(24), 241119 (2005).
[CrossRef]

Debus, C.

C. Debus and P. Haring Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
[CrossRef]

Dekorsy, T.

Dupuis, A.

Eggleton, B. J.

Gebs, R.

Gu, J.

S.-Y. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, and A. A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Appl. Phys. Lett. 94(6), 064102 (2009).
[CrossRef]

Han, J.

S.-Y. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, and A. A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Appl. Phys. Lett. 94(6), 064102 (2009).
[CrossRef]

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786–1795 (2008).
[CrossRef] [PubMed]

Haring Bolivar, P.

C. Debus and P. Haring Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
[CrossRef]

Hassani, A.

Hayashi, S.

Headley, C.

Hsueh, Y.-C.

Huang, Y. J.

Huskens, J.

B. Kuswandi, J. Nuriman, J. Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: a review,” Anal. Chim. Acta 601(2), 141–155 (2007).
[CrossRef] [PubMed]

Janke, C.

Kato, E.

S. Yoshida, E. Kato, K. Suizu, Y. Nakagomi, Y. Ogawa, and K. Kawase, “Terahertz sensing of thin poly(ethylene terephthalate) film thickness using a metallic mesh,” Appl. Phys. Express 2(1), 012301 (2009).
[CrossRef]

F. Miyamaru, S. Hayashi, C. Otani, K. Kawase, Y. Ogawa, H. Yoshida, and E. Kato, “Terahertz surface-wave resonant sensor with a metal hole array,” Opt. Lett. 31(8), 1118–1120 (2006).
[CrossRef] [PubMed]

Kawase, K.

S. Yoshida, E. Kato, K. Suizu, Y. Nakagomi, Y. Ogawa, and K. Kawase, “Terahertz sensing of thin poly(ethylene terephthalate) film thickness using a metallic mesh,” Appl. Phys. Express 2(1), 012301 (2009).
[CrossRef]

F. Miyamaru, S. Hayashi, C. Otani, K. Kawase, Y. Ogawa, H. Yoshida, and E. Kato, “Terahertz surface-wave resonant sensor with a metal hole array,” Opt. Lett. 31(8), 1118–1120 (2006).
[CrossRef] [PubMed]

Kinrot, N.

Klatt, G.

Kurt, H.

H. Kurt and D. S. Citrin, “Coupled-resonator optical waveguides for biochemical sensing of nanoliter volumes of analyte in the terahertz region,” Appl. Phys. Lett. 87(24), 241119 (2005).
[CrossRef]

Kuswandi, B.

B. Kuswandi, J. Nuriman, J. Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: a review,” Anal. Chim. Acta 601(2), 141–155 (2007).
[CrossRef] [PubMed]

Lai, C.-H.

Lamb, J. W.

J. W. Lamb, “Miscellancous data on materials for millimetre and submillimetre optics,” Int. J. Infrared. Milli. 17, 1996–2034 (1996).

Litchinitser, N. M.

Liu, J.

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett. 95(17), 171113 (2009).
[CrossRef]

Liu, T.-A.

Lu, J.-Y.

Mendis, R.

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett. 95(17), 171113 (2009).
[CrossRef]

Mittleman, D. M.

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett. 95(17), 171113 (2009).
[CrossRef]

Miyamaru, F.

Nakagomi, Y.

S. Yoshida, E. Kato, K. Suizu, Y. Nakagomi, Y. Ogawa, and K. Kawase, “Terahertz sensing of thin poly(ethylene terephthalate) film thickness using a metallic mesh,” Appl. Phys. Express 2(1), 012301 (2009).
[CrossRef]

Naser, M. S.

J. O. Carnali and M. S. Naser, “The use of dilute solution viscometry to characterize the network properties of carbopol microgels,” Colloid Polym. Sci. 270(2), 183–193 (1992).
[CrossRef]

Nuriman, J.

B. Kuswandi, J. Nuriman, J. Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: a review,” Anal. Chim. Acta 601(2), 141–155 (2007).
[CrossRef] [PubMed]

O’Hara, J. F.

Ogawa, Y.

S. Yoshida, E. Kato, K. Suizu, Y. Nakagomi, Y. Ogawa, and K. Kawase, “Terahertz sensing of thin poly(ethylene terephthalate) film thickness using a metallic mesh,” Appl. Phys. Express 2(1), 012301 (2009).
[CrossRef]

F. Miyamaru, S. Hayashi, C. Otani, K. Kawase, Y. Ogawa, H. Yoshida, and E. Kato, “Terahertz surface-wave resonant sensor with a metal hole array,” Opt. Lett. 31(8), 1118–1120 (2006).
[CrossRef] [PubMed]

Otani, C.

Peng, J.-L.

Singh, R.

S.-Y. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, and A. A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Appl. Phys. Lett. 94(6), 064102 (2009).
[CrossRef]

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786–1795 (2008).
[CrossRef] [PubMed]

Skorobogatiy, M.

Smirnova, E.

Suizu, K.

S. Yoshida, E. Kato, K. Suizu, Y. Nakagomi, Y. Ogawa, and K. Kawase, “Terahertz sensing of thin poly(ethylene terephthalate) film thickness using a metallic mesh,” Appl. Phys. Express 2(1), 012301 (2009).
[CrossRef]

Sun, C.-K.

Taylor, A. J.

Verboom, W.

B. Kuswandi, J. Nuriman, J. Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: a review,” Anal. Chim. Acta 601(2), 141–155 (2007).
[CrossRef] [PubMed]

Yoshida, H.

Yoshida, S.

S. Yoshida, E. Kato, K. Suizu, Y. Nakagomi, Y. Ogawa, and K. Kawase, “Terahertz sensing of thin poly(ethylene terephthalate) film thickness using a metallic mesh,” Appl. Phys. Express 2(1), 012301 (2009).
[CrossRef]

You, B.

Zhang, W.

S.-Y. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, and A. A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Appl. Phys. Lett. 94(6), 064102 (2009).
[CrossRef]

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786–1795 (2008).
[CrossRef] [PubMed]

Zheltikov, A. M.

Anal. Chim. Acta (1)

B. Kuswandi, J. Nuriman, J. Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: a review,” Anal. Chim. Acta 601(2), 141–155 (2007).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Express (1)

S. Yoshida, E. Kato, K. Suizu, Y. Nakagomi, Y. Ogawa, and K. Kawase, “Terahertz sensing of thin poly(ethylene terephthalate) film thickness using a metallic mesh,” Appl. Phys. Express 2(1), 012301 (2009).
[CrossRef]

Appl. Phys. Lett. (4)

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett. 95(17), 171113 (2009).
[CrossRef]

H. Kurt and D. S. Citrin, “Coupled-resonator optical waveguides for biochemical sensing of nanoliter volumes of analyte in the terahertz region,” Appl. Phys. Lett. 87(24), 241119 (2005).
[CrossRef]

C. Debus and P. Haring Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91(18), 184102 (2007).
[CrossRef]

S.-Y. Chiam, R. Singh, J. Gu, J. Han, W. Zhang, and A. A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Appl. Phys. Lett. 94(6), 064102 (2009).
[CrossRef]

Colloid Polym. Sci. (1)

J. O. Carnali and M. S. Naser, “The use of dilute solution viscometry to characterize the network properties of carbopol microgels,” Colloid Polym. Sci. 270(2), 183–193 (1992).
[CrossRef]

Int. J. Infrared. Milli. (1)

J. W. Lamb, “Miscellancous data on materials for millimetre and submillimetre optics,” Int. J. Infrared. Milli. 17, 1996–2034 (1996).

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Opt. Express (3)

Opt. Lett. (3)

Other (2)

M. Zourob, S. Elwary and A. Turner, “Fiber Optic Biosensors for Bacterial Detection,” in Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems, (Springer Science, New York, 2008).

Y. Kawashima and M. Kuwano, “Carboxyvinyl polymer having Newtonian viscosity,” United States patent 5458873 (1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Cross-section of a THz-ARRHW with a double-layered cladding. n0, n1, n2 respectively denote refractive indices of air space, waveguide cladding, and sample layer, where n0 equals 1.0. R0, d1 and d2 are the hollow inner-core radius and different layer thicknesses. (b) The one-dimensional sketch illustrates the optical path of a THz wave propagated in the double-layered cladding, where θ0, θ1, θ2, are the refractive angles. Fabry-Pérot resonance occurs when θ0 approaches zero.

Fig. 2
Fig. 2

(a) A time-domain waveform for free-space THz pulses in the THz-TDS for the sensing works, where the waveform information for water vapor absorption is enlarged 10 times for observation. (b) A time-domain waveform of output THz pulses from a 30cm-long PMMA tube with a 4mm-inner core radius and a 1mm-thick tube-wall. (c) Different time-domain waveforms for standard PE films covering a PMMA tube with a 4mm-inner core radius and a 1mm-thick tube-wall.

Fig. 3
Fig. 3

(a) The THz transmitted spectrum of a PMMA tube with a 4mm-inner-core radius covered by standard PE films on the overall outer surface. The resonant wavelengths of the bare PMMA tube for λ2, λ3 and λ4 are 1.280mm, 0.850mm and 0.640mm, respectively. The dotted lines denote the calculated resonant wavelengths for the standard PE films covered on the PMMA tube with a tube-wall thickness of 1.04mm, which is well consistent with the measured transmission dips. (b) The relation between the effective sample thickness and the wavelength shifts of different resonant modes. The standard PE films are used as the sample layers and the resonant modes are discussed at λ2, λ3 and λ4 for a PMMA tube with an inner core radius of 4mm and tube-wall thickness of 1.05mm.

Fig. 4
Fig. 4

(a) The relation of sensitivity and resonant modes for 1.05mm- and 1.99mm-thick PMMA tubes. (b) The relation of sensitivity and effective cladding thickness.

Fig. 5
Fig. 5

The relation between the concentrations and calculated thicknesses of carbopol-micro-molecular layers; (inset) different spectrum positions of the first resonant mode for a PP tube with a 0.29mm-thick tube-wall. The thickness deviation (vertical-axis error bars) comes from the 4GHz frequency inaccuracy of the THz-TDS system.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ m = 2 ( d 1 n 1 2 n 0 2 + d 2 n 2 2 n 0 2 ) m

Metrics