Abstract

Subwavelength InGaAs/AlInAs microdisk lasers are demonstrated under continuous-wave optical pumping at a heat-sink temperature of 45 K. A 1.49 µm diameter, 209 nm thick microdisk lases in single-mode at a wavelength of 1.53 µm, which is identified as the whispering-gallery mode with the first radial mode number, the fifth azimuthal mode number, and a modal volume of 2.12(λ/n)3 according to our mode simulation.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [CrossRef] [PubMed]
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  3. C. Manolatou and F. Rana, “Subwavelength nanopatch cavities for semiconductor plasmon lasers,” IEEE J. Quantum Electron. 44(5), 435–447 (2008)
  4. Y. Chassagneux, J. Palomo, R. Colombelli, S. Dhillon, C. Sirtori, H. Beere, J. Alton, and D. Ritchie, “Terahertz microcavity lasers with subwavelength mode volumes and thresholds in the milliampere range,” Appl. Phys. Lett. 90(9), 091113 (2007).
    [CrossRef]
  5. M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. Jan Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
  6. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
    [CrossRef] [PubMed]
  7. K. Yu, A. Lakhani, and M. C. Wu, “Subwavelength metal-optic semiconductor nanopatch lasers,” Opt. Express 18(9), 8790–8799 (2010).
    [CrossRef] [PubMed]
  8. M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4(6), 395–399 (2010).
    [CrossRef]
  9. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992).
    [CrossRef]
  10. A. F. J. Levi, S. L. McCall, S. J. Pearton, and R. A. Logan, “Room temperature operation of submicrometre radius disk laser,” Electron. Lett. 29(18), 1666–1667 (1993).
    [CrossRef]
  11. Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, “Visible submicron microdisk lasers,” Appl. Phys. Lett. 90(11), 111119 (2007).
    [CrossRef]
  12. Q. Song, H. Cao, S. T. Ho, and G. S. Solomon, “Near-IR subwavelength microdisk lasers,” Appl. Phys. Lett. 94(6), 061109 (2009).
    [CrossRef]
  13. R. Perahia, T. P. M Alegre, A. H. Safavi-Naeini, and O. Painter, “Surface-plasmon mode hybridization in subwavelength microdisk lasers,” Appl. Phys. Lett. 95(20), 201114 (2009).
    [CrossRef]
  14. N. C. Frateschi and A. F. J. Levi, “Resonant modes and laser spectrum of microdisk lasers,” Appl. Phys. Lett. 66(22), 2932–2934 (1995).
    [CrossRef]
  15. J. Shainline, S. Elston, Z. Liu, G. Fernandes, R. Zia, and J. Xu, “Subwavelength silicon microcavities,” Opt. Express 17(25), 23323–23331 (2009).
    [CrossRef]
  16. J. Chen, O. Malis, A. M. Sergent, D. L. Sivco, N. Weimann, and A. Y. Cho, “In0.68Ga0.32As/Al0.64In0.36As/InP 4.5 µm quantum cascade lasers grown by solid phosphorus molecular beam epitaxy,” J. Vac. Sci. Technol. B 25(3), 913–915 (2007).
    [CrossRef]
  17. J. Faist, C. Gmachl, M. Striccoli, C. Sirtori, F. Capasso, D. L. Sivco, and A. Y. Cho, “Quantum cascade disk lasers,” Appl. Phys. Lett. 69(17), 2456–2458 (1996).
    [CrossRef]
  18. C. Gmachl, J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, and A. Y. Cho, “Long-wavelength (9.5–11.5 µm) microdisk quantum-cascade lasers,” IEEE J. Quantum Electron. 33(9), 1567–1573 (1997).
    [CrossRef]
  19. M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microw. Theory Tech. 55(6), 1209–1218 (2007).
    [CrossRef]
  20. S. Nojima and H. Asahi, “Refractive index of InGaAs/InAlAs multiquantum-well layers grown by molecular-beam epitaxy,” J. Appl. Phys. 63(2), 479–483 (1988).
    [CrossRef]
  21. S. Adachi, “Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1-xAs, and In1-xGaxAsyP1-y,” J. Appl. Phys. 66(12), 6030–6040 (1989).
    [CrossRef]
  22. O. Madelung, Semiconductors: data handbook (Springer, 3rd edition, 2004), Chap. 2.

2010

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4(6), 395–399 (2010).
[CrossRef]

K. Yu, A. Lakhani, and M. C. Wu, “Subwavelength metal-optic semiconductor nanopatch lasers,” Opt. Express 18(9), 8790–8799 (2010).
[CrossRef] [PubMed]

2009

Q. Song, H. Cao, S. T. Ho, and G. S. Solomon, “Near-IR subwavelength microdisk lasers,” Appl. Phys. Lett. 94(6), 061109 (2009).
[CrossRef]

R. Perahia, T. P. M Alegre, A. H. Safavi-Naeini, and O. Painter, “Surface-plasmon mode hybridization in subwavelength microdisk lasers,” Appl. Phys. Lett. 95(20), 201114 (2009).
[CrossRef]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

J. Shainline, S. Elston, Z. Liu, G. Fernandes, R. Zia, and J. Xu, “Subwavelength silicon microcavities,” Opt. Express 17(25), 23323–23331 (2009).
[CrossRef]

2007

M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microw. Theory Tech. 55(6), 1209–1218 (2007).
[CrossRef]

J. Chen, O. Malis, A. M. Sergent, D. L. Sivco, N. Weimann, and A. Y. Cho, “In0.68Ga0.32As/Al0.64In0.36As/InP 4.5 µm quantum cascade lasers grown by solid phosphorus molecular beam epitaxy,” J. Vac. Sci. Technol. B 25(3), 913–915 (2007).
[CrossRef]

Y. Chassagneux, J. Palomo, R. Colombelli, S. Dhillon, C. Sirtori, H. Beere, J. Alton, and D. Ritchie, “Terahertz microcavity lasers with subwavelength mode volumes and thresholds in the milliampere range,” Appl. Phys. Lett. 90(9), 091113 (2007).
[CrossRef]

Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, “Visible submicron microdisk lasers,” Appl. Phys. Lett. 90(11), 111119 (2007).
[CrossRef]

2003

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

1997

C. Gmachl, J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, and A. Y. Cho, “Long-wavelength (9.5–11.5 µm) microdisk quantum-cascade lasers,” IEEE J. Quantum Electron. 33(9), 1567–1573 (1997).
[CrossRef]

1996

J. Faist, C. Gmachl, M. Striccoli, C. Sirtori, F. Capasso, D. L. Sivco, and A. Y. Cho, “Quantum cascade disk lasers,” Appl. Phys. Lett. 69(17), 2456–2458 (1996).
[CrossRef]

1995

N. C. Frateschi and A. F. J. Levi, “Resonant modes and laser spectrum of microdisk lasers,” Appl. Phys. Lett. 66(22), 2932–2934 (1995).
[CrossRef]

1993

A. F. J. Levi, S. L. McCall, S. J. Pearton, and R. A. Logan, “Room temperature operation of submicrometre radius disk laser,” Electron. Lett. 29(18), 1666–1667 (1993).
[CrossRef]

1992

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992).
[CrossRef]

1989

S. Adachi, “Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1-xAs, and In1-xGaxAsyP1-y,” J. Appl. Phys. 66(12), 6030–6040 (1989).
[CrossRef]

1988

S. Nojima and H. Asahi, “Refractive index of InGaAs/InAlAs multiquantum-well layers grown by molecular-beam epitaxy,” J. Appl. Phys. 63(2), 479–483 (1988).
[CrossRef]

Adachi, S.

S. Adachi, “Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1-xAs, and In1-xGaxAsyP1-y,” J. Appl. Phys. 66(12), 6030–6040 (1989).
[CrossRef]

Alegre, T. P. M

R. Perahia, T. P. M Alegre, A. H. Safavi-Naeini, and O. Painter, “Surface-plasmon mode hybridization in subwavelength microdisk lasers,” Appl. Phys. Lett. 95(20), 201114 (2009).
[CrossRef]

Alton, J.

Y. Chassagneux, J. Palomo, R. Colombelli, S. Dhillon, C. Sirtori, H. Beere, J. Alton, and D. Ritchie, “Terahertz microcavity lasers with subwavelength mode volumes and thresholds in the milliampere range,” Appl. Phys. Lett. 90(9), 091113 (2007).
[CrossRef]

Asahi, H.

S. Nojima and H. Asahi, “Refractive index of InGaAs/InAlAs multiquantum-well layers grown by molecular-beam epitaxy,” J. Appl. Phys. 63(2), 479–483 (1988).
[CrossRef]

Bakker, R.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Beere, H.

Y. Chassagneux, J. Palomo, R. Colombelli, S. Dhillon, C. Sirtori, H. Beere, J. Alton, and D. Ritchie, “Terahertz microcavity lasers with subwavelength mode volumes and thresholds in the milliampere range,” Appl. Phys. Lett. 90(9), 091113 (2007).
[CrossRef]

Belgrave, A. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Bondarenko, O.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4(6), 395–399 (2010).
[CrossRef]

Cao, H.

Q. Song, H. Cao, S. T. Ho, and G. S. Solomon, “Near-IR subwavelength microdisk lasers,” Appl. Phys. Lett. 94(6), 061109 (2009).
[CrossRef]

Capasso, F.

C. Gmachl, J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, and A. Y. Cho, “Long-wavelength (9.5–11.5 µm) microdisk quantum-cascade lasers,” IEEE J. Quantum Electron. 33(9), 1567–1573 (1997).
[CrossRef]

J. Faist, C. Gmachl, M. Striccoli, C. Sirtori, F. Capasso, D. L. Sivco, and A. Y. Cho, “Quantum cascade disk lasers,” Appl. Phys. Lett. 69(17), 2456–2458 (1996).
[CrossRef]

Chassagneux, Y.

Y. Chassagneux, J. Palomo, R. Colombelli, S. Dhillon, C. Sirtori, H. Beere, J. Alton, and D. Ritchie, “Terahertz microcavity lasers with subwavelength mode volumes and thresholds in the milliampere range,” Appl. Phys. Lett. 90(9), 091113 (2007).
[CrossRef]

Chen, J.

J. Chen, O. Malis, A. M. Sergent, D. L. Sivco, N. Weimann, and A. Y. Cho, “In0.68Ga0.32As/Al0.64In0.36As/InP 4.5 µm quantum cascade lasers grown by solid phosphorus molecular beam epitaxy,” J. Vac. Sci. Technol. B 25(3), 913–915 (2007).
[CrossRef]

Cho, A. Y.

J. Chen, O. Malis, A. M. Sergent, D. L. Sivco, N. Weimann, and A. Y. Cho, “In0.68Ga0.32As/Al0.64In0.36As/InP 4.5 µm quantum cascade lasers grown by solid phosphorus molecular beam epitaxy,” J. Vac. Sci. Technol. B 25(3), 913–915 (2007).
[CrossRef]

C. Gmachl, J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, and A. Y. Cho, “Long-wavelength (9.5–11.5 µm) microdisk quantum-cascade lasers,” IEEE J. Quantum Electron. 33(9), 1567–1573 (1997).
[CrossRef]

J. Faist, C. Gmachl, M. Striccoli, C. Sirtori, F. Capasso, D. L. Sivco, and A. Y. Cho, “Quantum cascade disk lasers,” Appl. Phys. Lett. 69(17), 2456–2458 (1996).
[CrossRef]

Colombelli, R.

Y. Chassagneux, J. Palomo, R. Colombelli, S. Dhillon, C. Sirtori, H. Beere, J. Alton, and D. Ritchie, “Terahertz microcavity lasers with subwavelength mode volumes and thresholds in the milliampere range,” Appl. Phys. Lett. 90(9), 091113 (2007).
[CrossRef]

De Vries, T.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. Jan Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).

De Waardt, H.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. Jan Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Dhillon, S.

Y. Chassagneux, J. Palomo, R. Colombelli, S. Dhillon, C. Sirtori, H. Beere, J. Alton, and D. Ritchie, “Terahertz microcavity lasers with subwavelength mode volumes and thresholds in the milliampere range,” Appl. Phys. Lett. 90(9), 091113 (2007).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Eijkemans, T. J.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. Jan Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).

Elston, S.

Fainman, Y.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4(6), 395–399 (2010).
[CrossRef]

Faist, J.

C. Gmachl, J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, and A. Y. Cho, “Long-wavelength (9.5–11.5 µm) microdisk quantum-cascade lasers,” IEEE J. Quantum Electron. 33(9), 1567–1573 (1997).
[CrossRef]

J. Faist, C. Gmachl, M. Striccoli, C. Sirtori, F. Capasso, D. L. Sivco, and A. Y. Cho, “Quantum cascade disk lasers,” Appl. Phys. Lett. 69(17), 2456–2458 (1996).
[CrossRef]

Feng, L.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4(6), 395–399 (2010).
[CrossRef]

Fernandes, G.

Frateschi, N. C.

N. C. Frateschi and A. F. J. Levi, “Resonant modes and laser spectrum of microdisk lasers,” Appl. Phys. Lett. 66(22), 2932–2934 (1995).
[CrossRef]

Gmachl, C.

C. Gmachl, J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, and A. Y. Cho, “Long-wavelength (9.5–11.5 µm) microdisk quantum-cascade lasers,” IEEE J. Quantum Electron. 33(9), 1567–1573 (1997).
[CrossRef]

J. Faist, C. Gmachl, M. Striccoli, C. Sirtori, F. Capasso, D. L. Sivco, and A. Y. Cho, “Quantum cascade disk lasers,” Appl. Phys. Lett. 69(17), 2456–2458 (1996).
[CrossRef]

Herz, E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Hill, M. T.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. Jan Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).

Ho, S. T.

Q. Song, H. Cao, S. T. Ho, and G. S. Solomon, “Near-IR subwavelength microdisk lasers,” Appl. Phys. Lett. 94(6), 061109 (2009).
[CrossRef]

Hong, T.

Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, “Visible submicron microdisk lasers,” Appl. Phys. Lett. 90(11), 111119 (2007).
[CrossRef]

Jan Geluk, E.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. Jan Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).

Kwon, S.-H.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. Jan Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).

Lakhani, A.

Lee, Y.-H.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. Jan Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).

Levi, A. F. J.

N. C. Frateschi and A. F. J. Levi, “Resonant modes and laser spectrum of microdisk lasers,” Appl. Phys. Lett. 66(22), 2932–2934 (1995).
[CrossRef]

A. F. J. Levi, S. L. McCall, S. J. Pearton, and R. A. Logan, “Room temperature operation of submicrometre radius disk laser,” Electron. Lett. 29(18), 1666–1667 (1993).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992).
[CrossRef]

Liu, V.

Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, “Visible submicron microdisk lasers,” Appl. Phys. Lett. 90(11), 111119 (2007).
[CrossRef]

Liu, Z.

Logan, R. A.

A. F. J. Levi, S. L. McCall, S. J. Pearton, and R. A. Logan, “Room temperature operation of submicrometre radius disk laser,” Electron. Lett. 29(18), 1666–1667 (1993).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992).
[CrossRef]

Lomakin, V.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4(6), 395–399 (2010).
[CrossRef]

Malis, O.

J. Chen, O. Malis, A. M. Sergent, D. L. Sivco, N. Weimann, and A. Y. Cho, “In0.68Ga0.32As/Al0.64In0.36As/InP 4.5 µm quantum cascade lasers grown by solid phosphorus molecular beam epitaxy,” J. Vac. Sci. Technol. B 25(3), 913–915 (2007).
[CrossRef]

Manolatou, C.

C. Manolatou and F. Rana, “Subwavelength nanopatch cavities for semiconductor plasmon lasers,” IEEE J. Quantum Electron. 44(5), 435–447 (2008)

McCall, S. L.

A. F. J. Levi, S. L. McCall, S. J. Pearton, and R. A. Logan, “Room temperature operation of submicrometre radius disk laser,” Electron. Lett. 29(18), 1666–1667 (1993).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992).
[CrossRef]

Mizrahi, A.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4(6), 395–399 (2010).
[CrossRef]

Narimanov, E. E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Nezhad, M. P.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4(6), 395–399 (2010).
[CrossRef]

Noginov, M. A.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Nojima, S.

S. Nojima and H. Asahi, “Refractive index of InGaAs/InAlAs multiquantum-well layers grown by molecular-beam epitaxy,” J. Appl. Phys. 63(2), 479–483 (1988).
[CrossRef]

Nötzel, R.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. Jan Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).

Oei, Y.-S.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. Jan Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).

Oxborrow, M.

M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microw. Theory Tech. 55(6), 1209–1218 (2007).
[CrossRef]

Painter, O.

R. Perahia, T. P. M Alegre, A. H. Safavi-Naeini, and O. Painter, “Surface-plasmon mode hybridization in subwavelength microdisk lasers,” Appl. Phys. Lett. 95(20), 201114 (2009).
[CrossRef]

Palomo, J.

Y. Chassagneux, J. Palomo, R. Colombelli, S. Dhillon, C. Sirtori, H. Beere, J. Alton, and D. Ritchie, “Terahertz microcavity lasers with subwavelength mode volumes and thresholds in the milliampere range,” Appl. Phys. Lett. 90(9), 091113 (2007).
[CrossRef]

Pearton, S. J.

A. F. J. Levi, S. L. McCall, S. J. Pearton, and R. A. Logan, “Room temperature operation of submicrometre radius disk laser,” Electron. Lett. 29(18), 1666–1667 (1993).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992).
[CrossRef]

Perahia, R.

R. Perahia, T. P. M Alegre, A. H. Safavi-Naeini, and O. Painter, “Surface-plasmon mode hybridization in subwavelength microdisk lasers,” Appl. Phys. Lett. 95(20), 201114 (2009).
[CrossRef]

Rana, F.

C. Manolatou and F. Rana, “Subwavelength nanopatch cavities for semiconductor plasmon lasers,” IEEE J. Quantum Electron. 44(5), 435–447 (2008)

Ritchie, D.

Y. Chassagneux, J. Palomo, R. Colombelli, S. Dhillon, C. Sirtori, H. Beere, J. Alton, and D. Ritchie, “Terahertz microcavity lasers with subwavelength mode volumes and thresholds in the milliampere range,” Appl. Phys. Lett. 90(9), 091113 (2007).
[CrossRef]

Safavi-Naeini, A. H.

R. Perahia, T. P. M Alegre, A. H. Safavi-Naeini, and O. Painter, “Surface-plasmon mode hybridization in subwavelength microdisk lasers,” Appl. Phys. Lett. 95(20), 201114 (2009).
[CrossRef]

Scherer, A.

Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, “Visible submicron microdisk lasers,” Appl. Phys. Lett. 90(11), 111119 (2007).
[CrossRef]

Sergent, A. M.

J. Chen, O. Malis, A. M. Sergent, D. L. Sivco, N. Weimann, and A. Y. Cho, “In0.68Ga0.32As/Al0.64In0.36As/InP 4.5 µm quantum cascade lasers grown by solid phosphorus molecular beam epitaxy,” J. Vac. Sci. Technol. B 25(3), 913–915 (2007).
[CrossRef]

Shainline, J.

Shalaev, V. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Simic, A.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4(6), 395–399 (2010).
[CrossRef]

Sirtori, C.

Y. Chassagneux, J. Palomo, R. Colombelli, S. Dhillon, C. Sirtori, H. Beere, J. Alton, and D. Ritchie, “Terahertz microcavity lasers with subwavelength mode volumes and thresholds in the milliampere range,” Appl. Phys. Lett. 90(9), 091113 (2007).
[CrossRef]

C. Gmachl, J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, and A. Y. Cho, “Long-wavelength (9.5–11.5 µm) microdisk quantum-cascade lasers,” IEEE J. Quantum Electron. 33(9), 1567–1573 (1997).
[CrossRef]

J. Faist, C. Gmachl, M. Striccoli, C. Sirtori, F. Capasso, D. L. Sivco, and A. Y. Cho, “Quantum cascade disk lasers,” Appl. Phys. Lett. 69(17), 2456–2458 (1996).
[CrossRef]

Sivco, D. L.

J. Chen, O. Malis, A. M. Sergent, D. L. Sivco, N. Weimann, and A. Y. Cho, “In0.68Ga0.32As/Al0.64In0.36As/InP 4.5 µm quantum cascade lasers grown by solid phosphorus molecular beam epitaxy,” J. Vac. Sci. Technol. B 25(3), 913–915 (2007).
[CrossRef]

C. Gmachl, J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, and A. Y. Cho, “Long-wavelength (9.5–11.5 µm) microdisk quantum-cascade lasers,” IEEE J. Quantum Electron. 33(9), 1567–1573 (1997).
[CrossRef]

J. Faist, C. Gmachl, M. Striccoli, C. Sirtori, F. Capasso, D. L. Sivco, and A. Y. Cho, “Quantum cascade disk lasers,” Appl. Phys. Lett. 69(17), 2456–2458 (1996).
[CrossRef]

Slusher, R. E.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992).
[CrossRef]

Slutsky, B.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4(6), 395–399 (2010).
[CrossRef]

Smalbrugge, B.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. Jan Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).

Smit, M. K.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. Jan Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).

Solomon, G. S.

Q. Song, H. Cao, S. T. Ho, and G. S. Solomon, “Near-IR subwavelength microdisk lasers,” Appl. Phys. Lett. 94(6), 061109 (2009).
[CrossRef]

Song, Q.

Q. Song, H. Cao, S. T. Ho, and G. S. Solomon, “Near-IR subwavelength microdisk lasers,” Appl. Phys. Lett. 94(6), 061109 (2009).
[CrossRef]

Stout, S.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Striccoli, M.

J. Faist, C. Gmachl, M. Striccoli, C. Sirtori, F. Capasso, D. L. Sivco, and A. Y. Cho, “Quantum cascade disk lasers,” Appl. Phys. Lett. 69(17), 2456–2458 (1996).
[CrossRef]

Suteewong, T.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Turkiewicz, J. P.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. Jan Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).

Vahala, K.

Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, “Visible submicron microdisk lasers,” Appl. Phys. Lett. 90(11), 111119 (2007).
[CrossRef]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[CrossRef] [PubMed]

Van Otten, F. W. M.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. Jan Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).

Van Veldhoven, P. J.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. Jan Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).

Weimann, N.

J. Chen, O. Malis, A. M. Sergent, D. L. Sivco, N. Weimann, and A. Y. Cho, “In0.68Ga0.32As/Al0.64In0.36As/InP 4.5 µm quantum cascade lasers grown by solid phosphorus molecular beam epitaxy,” J. Vac. Sci. Technol. B 25(3), 913–915 (2007).
[CrossRef]

Wiesner, U.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Wu, M. C.

Xu, J.

Yang, L.

Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, “Visible submicron microdisk lasers,” Appl. Phys. Lett. 90(11), 111119 (2007).
[CrossRef]

Yu, K.

Zhang, Z.

Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, “Visible submicron microdisk lasers,” Appl. Phys. Lett. 90(11), 111119 (2007).
[CrossRef]

Zhu, G.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Zhu, Y.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. Jan Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).

Zia, R.

Appl. Phys. Lett.

Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, “Visible submicron microdisk lasers,” Appl. Phys. Lett. 90(11), 111119 (2007).
[CrossRef]

Q. Song, H. Cao, S. T. Ho, and G. S. Solomon, “Near-IR subwavelength microdisk lasers,” Appl. Phys. Lett. 94(6), 061109 (2009).
[CrossRef]

R. Perahia, T. P. M Alegre, A. H. Safavi-Naeini, and O. Painter, “Surface-plasmon mode hybridization in subwavelength microdisk lasers,” Appl. Phys. Lett. 95(20), 201114 (2009).
[CrossRef]

N. C. Frateschi and A. F. J. Levi, “Resonant modes and laser spectrum of microdisk lasers,” Appl. Phys. Lett. 66(22), 2932–2934 (1995).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992).
[CrossRef]

Y. Chassagneux, J. Palomo, R. Colombelli, S. Dhillon, C. Sirtori, H. Beere, J. Alton, and D. Ritchie, “Terahertz microcavity lasers with subwavelength mode volumes and thresholds in the milliampere range,” Appl. Phys. Lett. 90(9), 091113 (2007).
[CrossRef]

J. Faist, C. Gmachl, M. Striccoli, C. Sirtori, F. Capasso, D. L. Sivco, and A. Y. Cho, “Quantum cascade disk lasers,” Appl. Phys. Lett. 69(17), 2456–2458 (1996).
[CrossRef]

Electron. Lett.

A. F. J. Levi, S. L. McCall, S. J. Pearton, and R. A. Logan, “Room temperature operation of submicrometre radius disk laser,” Electron. Lett. 29(18), 1666–1667 (1993).
[CrossRef]

IEEE J. Quantum Electron.

C. Gmachl, J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, and A. Y. Cho, “Long-wavelength (9.5–11.5 µm) microdisk quantum-cascade lasers,” IEEE J. Quantum Electron. 33(9), 1567–1573 (1997).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microw. Theory Tech. 55(6), 1209–1218 (2007).
[CrossRef]

J. Appl. Phys.

S. Nojima and H. Asahi, “Refractive index of InGaAs/InAlAs multiquantum-well layers grown by molecular-beam epitaxy,” J. Appl. Phys. 63(2), 479–483 (1988).
[CrossRef]

S. Adachi, “Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1-xAs, and In1-xGaxAsyP1-y,” J. Appl. Phys. 66(12), 6030–6040 (1989).
[CrossRef]

J. Vac. Sci. Technol. B

J. Chen, O. Malis, A. M. Sergent, D. L. Sivco, N. Weimann, and A. Y. Cho, “In0.68Ga0.32As/Al0.64In0.36As/InP 4.5 µm quantum cascade lasers grown by solid phosphorus molecular beam epitaxy,” J. Vac. Sci. Technol. B 25(3), 913–915 (2007).
[CrossRef]

Nat. Photonics

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4(6), 395–399 (2010).
[CrossRef]

Nature

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Express

Other

O. Madelung, Semiconductors: data handbook (Springer, 3rd edition, 2004), Chap. 2.

C. Manolatou and F. Rana, “Subwavelength nanopatch cavities for semiconductor plasmon lasers,” IEEE J. Quantum Electron. 44(5), 435–447 (2008)

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P. J. Van Veldhoven, F. W. M. Van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. Jan Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic epitaxial layer structure of our laser material. (b) Side-view and (c) top-view scanning electron microscope (SEM) images of an InGaAs/AlInAs disk on top of an InP pedestal.

Fig. 2
Fig. 2

(a) Calculated optical mode confinement factor and cavity Q as a function of the pedestal radius for the 1.49 µm diameter disk. The inset shows the profile of magnetic field component normal to the disk plane for a 0.5 µm radius pedestal. (b) Calculated maximum temperature in the disk with different pedestal sizes. The inset shows a cross-section temperature distribution of the disk with a 0.5 µm radius pedestal.

Fig. 3
Fig. 3

Emission spectra of a 1.49 µm diameter, 209 nm thick InGaAs/AlInAs disk at different pump intensities between 11.2 and 477.2 W/mm2. The spectra are vertically shifted for clear view.

Fig. 4
Fig. 4

(a) Full width at half maximum (FWHM) of the emission peak versus reciprocal pump intensity. (b) Spectrally integrated intensity versus pump intensity. The two solid lines are fitted linear curves.

Fig. 5
Fig. 5

(a) Photoluminescence of the laser material without cavity (black) and lasing spectra of two microdisks with diameter of 1.49 (red) and 1.54 (blue) µm. The triangles, referred to the right y-axis, are the calculated Q factors for TE1,6 and TE1,5 modes in the 1.49 (red) and 1.54 (blue) µm diameter disks. (b) Calculated spatial distribution of electrical field radial component in the cross-section of the disk and pedestal, and (c) magnetic field normal component in the disk plane for the TE1,5 mode in the 1.49 µm diameter disk.

Metrics