Abstract

We demonstrate in situ and real time characterization of two-photon polymerization (TPP) by means of broadband coherent anti-Stokes Raman scattering (CARS) microscopy. The same experimental setup based on one femtosecond oscillator is used to perform both TPP and broadband CARS microscopy. We performed in situ imaging with chemical specificity of three-dimensional microstructures fabricated by TPP, and successfully followed the writing process in real time. Broadband CARS microscopy allowed discerning between polymerized and unpolymerized material. Imaging with good vibrational contrast is achieved without causing any damage to the microstructures or undesired polymerization within the sample.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton fabrication,” Angew. Chem. Int. Ed. Engl. 46(33), 6238–6258 (2007).
    [CrossRef] [PubMed]
  2. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
    [CrossRef] [PubMed]
  3. R. A. Farrer, C. N. LaFratta, L. J. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128(6), 1796–1797 (2006).
    [CrossRef] [PubMed]
  4. S. Maruo and H. Inoue, “Optically driven viscous micropump using a rotating microdisk,” Appl. Phys. Lett. 91(8), 084101 (2007).
    [CrossRef]
  5. S. Maruo, K. Ikuta, and H. Korogi, “Force-controllable, optically driven micromachines fabricated by single-step two-photon micro stereolithography,” J. Microelectromech. Syst. 12(5), 533–539 (2003).
    [CrossRef]
  6. P. Tayalia, C. R. Mendonca, T. Baldacchini, D. J. Mooney, and E. Mazur, “3D Cell-Migration Studies using Two-Photon Engineered Polymer Scaffolds,” Adv. Mater. 20(23), 4494–4498 (2008).
    [CrossRef]
  7. S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-Dimensional Structuring of Resists and Resins by Direct Laser Writing and Holographic Recording,” Adv. Polym. Sci. 213, 157–206 (2008).
  8. M. Malinauskas, A. Zukauskas, G. Bickauskaite, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express 18(10), 10209–10221 (2010).
    [CrossRef] [PubMed]
  9. S. O. Onuh and K. K. B. Hon, ““An esperimental investigation into the effect of hatch pattern in stereolithography,” CIRP Annals - Manuf Tech. 47(1), 157–160 (1998).
    [CrossRef]
  10. S. O. Onuh and K. K. B. Hon, “Improving stereolithography part accuracy for industrial applications,” Int. J. Adv. Manuf. Technol. 17(1), 61–68 (2001).
    [CrossRef]
  11. Q. Sun, S. Juodkazis, N. Murazawa, V. Mizeikis, and H. Misawa, “Freestanding and movable photonic microstructures fabricated by photopolymerization with femtosecond laser pulses,” J. Micromech. Microeng. 20(3), 035004 (2010).
    [CrossRef]
  12. W. Haske, V. W. Chen, J. M. Hales, W. T. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express 15(6), 3426–3436 (2007).
    [CrossRef] [PubMed]
  13. L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
    [CrossRef] [PubMed]
  14. S. Nakanishi, S. Shoji, S. Kawata, and H. B. Sun, “Giant elasticity of photopolymer nanowires,” Appl. Phys. Lett. 91(6), 063112 (2007).
    [CrossRef]
  15. S. Nakanishi, H. Yoshikawa, S. Shoji, Z. Sekkat, and S. Kawata, “Size dependence of transition temperature in polymer nanowires,” J. Phys. Chem. B 112(12), 3586–3589 (2008).
    [CrossRef] [PubMed]
  16. R. Zadoyan, T. Baldacchini, M. Karavitis, and J. Carter, “CARS microspectrometer with a suppressed nonresonant background,” Ultrafast Phenomena XVI, Springer Series in Chemical Physics 92, 997–999 (2009).
    [CrossRef]
  17. T. Baldacchini, M. Zimmerley, E. O. Potma, and R. Zadoyan, “Chemical mapping of three-dimensional microstructures fabricated by two-photon polymerization using CARS microscopy,” Proc. SPIE 7201, 72010Q72011 (2009).
    [CrossRef]
  18. T. Baldacchini, M. Zimmerley, C. H. Kuo, E. O. Potma, and R. Zadoyan, “Characterization of microstructures fabricated by two-photon polymerization using coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 113(38), 12663–12668 (2009).
    [CrossRef] [PubMed]
  19. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti- Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
    [CrossRef]
  20. J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
    [CrossRef]
  21. C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 883–909 (2008).
    [CrossRef]
  22. M. Müller and A. Zumbusch, “Coherent anti-stokes Raman scattering microscopy,” ChemPhysChem 8(15), 2156–2170 (2007).
    [CrossRef] [PubMed]
  23. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
    [CrossRef] [PubMed]
  24. T. W. Kee and M. T. Cicerone, “Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 29(23), 2701–2703 (2004).
    [CrossRef] [PubMed]
  25. H. Kano and H. Hamaguchi, “Ultrabroadband (> 2500 cm(−1)) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 86(12), 121113 (2005).
    [CrossRef]
  26. H. Kano and H. Hamaguchi, “Near-infrared coherent anti-Stokes Raman scattering microscopy using supercontinuum generated from a photonic crystal fiber,” Appl. Phys. B 80(2), 243–246 (2005).
    [CrossRef]
  27. H. Kano and H. O. Hamaguchi, “In-vivo multi-nonlinear optical imaging of a living cell using a supercontinuum light source generated from a photonic crystal fiber,” Opt. Express 14(7), 2798–2804 (2006).
    [CrossRef] [PubMed]
  28. A. C. T. Ko, A. Ridsdale, M. S. D. Smith, L. B. Mostaço-Guidolin, M. D. Hewko, A. F. Pegoraro, E. K. Kohlenberg, B. Schattka, M. Shiomi, A. Stolow, and M. G. Sowa, “Multimodal nonlinear optical imaging of atherosclerotic plaque development in myocardial infarction-prone rabbits,” J. Biomed. Opt. 15(2), 020501 (2010).
    [CrossRef] [PubMed]
  29. B. von Vacano, L. Meyer, and M. Motzkus, “Rapid polymer blend imaging with quantitative broadband multiplex CARS microscopy,” J. Raman Spectrosc. 38(7), 916–926 (2007).
    [CrossRef]
  30. M. Muller and J. M. Schins, “Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy,” J. Phys. Chem. B 106(14), 3715–3723 (2002).
    [CrossRef]
  31. Z. D. Schultz, M. C. Gurau, and L. J. Richter, “Broadband coherent anti-Stokes Raman spectroscopy characterization of polymer thin films,” Appl. Spectrosc. 60(10), 1097–1102 (2006).
    [CrossRef] [PubMed]
  32. S. H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, “Chemical imaging by single pulse interferometric coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 110(11), 5196–5204 (2006).
    [CrossRef] [PubMed]
  33. S. Murugkar, C. Brideau, A. Ridsdale, M. Naji, P. K. Stys, and H. Anis, “Coherent anti-Stokes Raman scattering microscopy using photonic crystal fiber with two closely lying zero dispersion wavelengths,” Opt. Express 15(21), 14028–14037 (2007).
    [CrossRef] [PubMed]
  34. A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. W. Jia, J. P. Pezacki, and A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express 17(4), 2984–2996 (2009).
    [CrossRef] [PubMed]
  35. Y. J. Lee, S. H. Parekh, Y. H. Kim, and M. T. Cicerone, “Optimized continuum from a photonic crystal fiber for broadband time-resolved coherent anti-Stokes Raman scattering,” Opt. Express 18(5), 4371–4379 (2010).
    [CrossRef] [PubMed]
  36. K. M. Hilligsøe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. P. Hansen, and J. J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Opt. Express 12(6), 1045–1054 (2004).
    [CrossRef] [PubMed]
  37. M. Balu, T. Baldacchini, J. Carter, T. B. Krasieva, R. Zadoyan, and B. J. Tromberg, “Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media,” J. Biomed. Opt. 14(1), 010508 (2009).
    [CrossRef] [PubMed]
  38. Q. T. Nguyen, P. S. Tsai, and D. Kleinfeld, “MPScope: a versatile software suite for multiphoton microscopy,” J. Neurosci. Methods 156(1-2), 351–359 (2006).
    [CrossRef] [PubMed]
  39. M. H. Bland and N. A. Peppas, “Photopolymerized multifunctional (meth)acrylates as model polymers for dental applications,” Biomaterials 17(11), 1109–1114 (1996).
    [CrossRef] [PubMed]
  40. K. S. Anseth, C. N. Bowman, and N. A. Peppas, “Polymerization Kinetics and Volume Relaxation Behavior of Photopolymerized Multifunctional Monomers Producing Highly Cross-Linked Networks,” J. Polym. Sci. A 32(1), 139–147 (1994).
    [CrossRef]
  41. K. K. Seet, V. Mizeikis, K. Kannari, S. Juodkazis, H. Misawa, N. Tétreault, and S. John, “Templating and replication of spiral photonic crystals for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1064–1073 (2008).
    [CrossRef]
  42. R. Houbertz, L. Frohlich, M. Popall, U. Streppel, P. Dannberg, A. Brauer, J. Serbin, and B. N. Chichkov, “Inorganic-organic hybrid polymers for information technology: from planar technology to 3D nanostructures,” Adv. Eng. Mater. 5(8), 551–555 (2003).
    [CrossRef]
  43. W. H. Teh, U. Durig, G. Salis, R. Harbers, U. Drechsler, R. F. Mahrt, C. G. Smith, and H. J. Guntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett. 84(20), 4095–4097 (2004).
    [CrossRef]

2010 (4)

Q. Sun, S. Juodkazis, N. Murazawa, V. Mizeikis, and H. Misawa, “Freestanding and movable photonic microstructures fabricated by photopolymerization with femtosecond laser pulses,” J. Micromech. Microeng. 20(3), 035004 (2010).
[CrossRef]

A. C. T. Ko, A. Ridsdale, M. S. D. Smith, L. B. Mostaço-Guidolin, M. D. Hewko, A. F. Pegoraro, E. K. Kohlenberg, B. Schattka, M. Shiomi, A. Stolow, and M. G. Sowa, “Multimodal nonlinear optical imaging of atherosclerotic plaque development in myocardial infarction-prone rabbits,” J. Biomed. Opt. 15(2), 020501 (2010).
[CrossRef] [PubMed]

Y. J. Lee, S. H. Parekh, Y. H. Kim, and M. T. Cicerone, “Optimized continuum from a photonic crystal fiber for broadband time-resolved coherent anti-Stokes Raman scattering,” Opt. Express 18(5), 4371–4379 (2010).
[CrossRef] [PubMed]

M. Malinauskas, A. Zukauskas, G. Bickauskaite, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express 18(10), 10209–10221 (2010).
[CrossRef] [PubMed]

2009 (6)

A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. W. Jia, J. P. Pezacki, and A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express 17(4), 2984–2996 (2009).
[CrossRef] [PubMed]

M. Balu, T. Baldacchini, J. Carter, T. B. Krasieva, R. Zadoyan, and B. J. Tromberg, “Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media,” J. Biomed. Opt. 14(1), 010508 (2009).
[CrossRef] [PubMed]

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[CrossRef] [PubMed]

R. Zadoyan, T. Baldacchini, M. Karavitis, and J. Carter, “CARS microspectrometer with a suppressed nonresonant background,” Ultrafast Phenomena XVI, Springer Series in Chemical Physics 92, 997–999 (2009).
[CrossRef]

T. Baldacchini, M. Zimmerley, E. O. Potma, and R. Zadoyan, “Chemical mapping of three-dimensional microstructures fabricated by two-photon polymerization using CARS microscopy,” Proc. SPIE 7201, 72010Q72011 (2009).
[CrossRef]

T. Baldacchini, M. Zimmerley, C. H. Kuo, E. O. Potma, and R. Zadoyan, “Characterization of microstructures fabricated by two-photon polymerization using coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 113(38), 12663–12668 (2009).
[CrossRef] [PubMed]

2008 (5)

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 883–909 (2008).
[CrossRef]

P. Tayalia, C. R. Mendonca, T. Baldacchini, D. J. Mooney, and E. Mazur, “3D Cell-Migration Studies using Two-Photon Engineered Polymer Scaffolds,” Adv. Mater. 20(23), 4494–4498 (2008).
[CrossRef]

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-Dimensional Structuring of Resists and Resins by Direct Laser Writing and Holographic Recording,” Adv. Polym. Sci. 213, 157–206 (2008).

K. K. Seet, V. Mizeikis, K. Kannari, S. Juodkazis, H. Misawa, N. Tétreault, and S. John, “Templating and replication of spiral photonic crystals for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1064–1073 (2008).
[CrossRef]

S. Nakanishi, H. Yoshikawa, S. Shoji, Z. Sekkat, and S. Kawata, “Size dependence of transition temperature in polymer nanowires,” J. Phys. Chem. B 112(12), 3586–3589 (2008).
[CrossRef] [PubMed]

2007 (7)

B. von Vacano, L. Meyer, and M. Motzkus, “Rapid polymer blend imaging with quantitative broadband multiplex CARS microscopy,” J. Raman Spectrosc. 38(7), 916–926 (2007).
[CrossRef]

S. Nakanishi, S. Shoji, S. Kawata, and H. B. Sun, “Giant elasticity of photopolymer nanowires,” Appl. Phys. Lett. 91(6), 063112 (2007).
[CrossRef]

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton fabrication,” Angew. Chem. Int. Ed. Engl. 46(33), 6238–6258 (2007).
[CrossRef] [PubMed]

S. Maruo and H. Inoue, “Optically driven viscous micropump using a rotating microdisk,” Appl. Phys. Lett. 91(8), 084101 (2007).
[CrossRef]

M. Müller and A. Zumbusch, “Coherent anti-stokes Raman scattering microscopy,” ChemPhysChem 8(15), 2156–2170 (2007).
[CrossRef] [PubMed]

W. Haske, V. W. Chen, J. M. Hales, W. T. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express 15(6), 3426–3436 (2007).
[CrossRef] [PubMed]

S. Murugkar, C. Brideau, A. Ridsdale, M. Naji, P. K. Stys, and H. Anis, “Coherent anti-Stokes Raman scattering microscopy using photonic crystal fiber with two closely lying zero dispersion wavelengths,” Opt. Express 15(21), 14028–14037 (2007).
[CrossRef] [PubMed]

2006 (5)

H. Kano and H. O. Hamaguchi, “In-vivo multi-nonlinear optical imaging of a living cell using a supercontinuum light source generated from a photonic crystal fiber,” Opt. Express 14(7), 2798–2804 (2006).
[CrossRef] [PubMed]

Z. D. Schultz, M. C. Gurau, and L. J. Richter, “Broadband coherent anti-Stokes Raman spectroscopy characterization of polymer thin films,” Appl. Spectrosc. 60(10), 1097–1102 (2006).
[CrossRef] [PubMed]

R. A. Farrer, C. N. LaFratta, L. J. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128(6), 1796–1797 (2006).
[CrossRef] [PubMed]

S. H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, “Chemical imaging by single pulse interferometric coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 110(11), 5196–5204 (2006).
[CrossRef] [PubMed]

Q. T. Nguyen, P. S. Tsai, and D. Kleinfeld, “MPScope: a versatile software suite for multiphoton microscopy,” J. Neurosci. Methods 156(1-2), 351–359 (2006).
[CrossRef] [PubMed]

2005 (2)

H. Kano and H. Hamaguchi, “Ultrabroadband (> 2500 cm(−1)) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 86(12), 121113 (2005).
[CrossRef]

H. Kano and H. Hamaguchi, “Near-infrared coherent anti-Stokes Raman scattering microscopy using supercontinuum generated from a photonic crystal fiber,” Appl. Phys. B 80(2), 243–246 (2005).
[CrossRef]

2004 (5)

K. M. Hilligsøe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. P. Hansen, and J. J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Opt. Express 12(6), 1045–1054 (2004).
[CrossRef] [PubMed]

T. W. Kee and M. T. Cicerone, “Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 29(23), 2701–2703 (2004).
[CrossRef] [PubMed]

W. H. Teh, U. Durig, G. Salis, R. Harbers, U. Drechsler, R. F. Mahrt, C. G. Smith, and H. J. Guntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett. 84(20), 4095–4097 (2004).
[CrossRef]

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[CrossRef]

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[CrossRef] [PubMed]

2003 (2)

S. Maruo, K. Ikuta, and H. Korogi, “Force-controllable, optically driven micromachines fabricated by single-step two-photon micro stereolithography,” J. Microelectromech. Syst. 12(5), 533–539 (2003).
[CrossRef]

R. Houbertz, L. Frohlich, M. Popall, U. Streppel, P. Dannberg, A. Brauer, J. Serbin, and B. N. Chichkov, “Inorganic-organic hybrid polymers for information technology: from planar technology to 3D nanostructures,” Adv. Eng. Mater. 5(8), 551–555 (2003).
[CrossRef]

2002 (2)

M. Muller and J. M. Schins, “Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy,” J. Phys. Chem. B 106(14), 3715–3723 (2002).
[CrossRef]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[CrossRef] [PubMed]

2001 (1)

S. O. Onuh and K. K. B. Hon, “Improving stereolithography part accuracy for industrial applications,” Int. J. Adv. Manuf. Technol. 17(1), 61–68 (2001).
[CrossRef]

1999 (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti- Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

1998 (1)

S. O. Onuh and K. K. B. Hon, ““An esperimental investigation into the effect of hatch pattern in stereolithography,” CIRP Annals - Manuf Tech. 47(1), 157–160 (1998).
[CrossRef]

1996 (1)

M. H. Bland and N. A. Peppas, “Photopolymerized multifunctional (meth)acrylates as model polymers for dental applications,” Biomaterials 17(11), 1109–1114 (1996).
[CrossRef] [PubMed]

1994 (1)

K. S. Anseth, C. N. Bowman, and N. A. Peppas, “Polymerization Kinetics and Volume Relaxation Behavior of Photopolymerized Multifunctional Monomers Producing Highly Cross-Linked Networks,” J. Polym. Sci. A 32(1), 139–147 (1994).
[CrossRef]

Andersen, T. V.

Anis, H.

Anseth, K. S.

K. S. Anseth, C. N. Bowman, and N. A. Peppas, “Polymerization Kinetics and Volume Relaxation Behavior of Photopolymerized Multifunctional Monomers Producing Highly Cross-Linked Networks,” J. Polym. Sci. A 32(1), 139–147 (1994).
[CrossRef]

Baldacchini, T.

M. Balu, T. Baldacchini, J. Carter, T. B. Krasieva, R. Zadoyan, and B. J. Tromberg, “Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media,” J. Biomed. Opt. 14(1), 010508 (2009).
[CrossRef] [PubMed]

R. Zadoyan, T. Baldacchini, M. Karavitis, and J. Carter, “CARS microspectrometer with a suppressed nonresonant background,” Ultrafast Phenomena XVI, Springer Series in Chemical Physics 92, 997–999 (2009).
[CrossRef]

T. Baldacchini, M. Zimmerley, E. O. Potma, and R. Zadoyan, “Chemical mapping of three-dimensional microstructures fabricated by two-photon polymerization using CARS microscopy,” Proc. SPIE 7201, 72010Q72011 (2009).
[CrossRef]

T. Baldacchini, M. Zimmerley, C. H. Kuo, E. O. Potma, and R. Zadoyan, “Characterization of microstructures fabricated by two-photon polymerization using coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 113(38), 12663–12668 (2009).
[CrossRef] [PubMed]

P. Tayalia, C. R. Mendonca, T. Baldacchini, D. J. Mooney, and E. Mazur, “3D Cell-Migration Studies using Two-Photon Engineered Polymer Scaffolds,” Adv. Mater. 20(23), 4494–4498 (2008).
[CrossRef]

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton fabrication,” Angew. Chem. Int. Ed. Engl. 46(33), 6238–6258 (2007).
[CrossRef] [PubMed]

Balu, M.

M. Balu, T. Baldacchini, J. Carter, T. B. Krasieva, R. Zadoyan, and B. J. Tromberg, “Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media,” J. Biomed. Opt. 14(1), 010508 (2009).
[CrossRef] [PubMed]

Barlow, S.

Bickauskaite, G.

Bland, M. H.

M. H. Bland and N. A. Peppas, “Photopolymerized multifunctional (meth)acrylates as model polymers for dental applications,” Biomaterials 17(11), 1109–1114 (1996).
[CrossRef] [PubMed]

Bowman, C. N.

K. S. Anseth, C. N. Bowman, and N. A. Peppas, “Polymerization Kinetics and Volume Relaxation Behavior of Photopolymerized Multifunctional Monomers Producing Highly Cross-Linked Networks,” J. Polym. Sci. A 32(1), 139–147 (1994).
[CrossRef]

Brauer, A.

R. Houbertz, L. Frohlich, M. Popall, U. Streppel, P. Dannberg, A. Brauer, J. Serbin, and B. N. Chichkov, “Inorganic-organic hybrid polymers for information technology: from planar technology to 3D nanostructures,” Adv. Eng. Mater. 5(8), 551–555 (2003).
[CrossRef]

Brideau, C.

Busch, K.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[CrossRef] [PubMed]

Carter, J.

R. Zadoyan, T. Baldacchini, M. Karavitis, and J. Carter, “CARS microspectrometer with a suppressed nonresonant background,” Ultrafast Phenomena XVI, Springer Series in Chemical Physics 92, 997–999 (2009).
[CrossRef]

M. Balu, T. Baldacchini, J. Carter, T. B. Krasieva, R. Zadoyan, and B. J. Tromberg, “Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media,” J. Biomed. Opt. 14(1), 010508 (2009).
[CrossRef] [PubMed]

Caster, A. G.

S. H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, “Chemical imaging by single pulse interferometric coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 110(11), 5196–5204 (2006).
[CrossRef] [PubMed]

Chen, V. W.

Cheng, J. X.

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[CrossRef]

Chichkov, B. N.

R. Houbertz, L. Frohlich, M. Popall, U. Streppel, P. Dannberg, A. Brauer, J. Serbin, and B. N. Chichkov, “Inorganic-organic hybrid polymers for information technology: from planar technology to 3D nanostructures,” Adv. Eng. Mater. 5(8), 551–555 (2003).
[CrossRef]

Cicerone, M. T.

Dannberg, P.

R. Houbertz, L. Frohlich, M. Popall, U. Streppel, P. Dannberg, A. Brauer, J. Serbin, and B. N. Chichkov, “Inorganic-organic hybrid polymers for information technology: from planar technology to 3D nanostructures,” Adv. Eng. Mater. 5(8), 551–555 (2003).
[CrossRef]

Deubel, M.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[CrossRef] [PubMed]

Dong, W. T.

Drechsler, U.

W. H. Teh, U. Durig, G. Salis, R. Harbers, U. Drechsler, R. F. Mahrt, C. G. Smith, and H. J. Guntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett. 84(20), 4095–4097 (2004).
[CrossRef]

Dudovich, N.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[CrossRef] [PubMed]

Durig, U.

W. H. Teh, U. Durig, G. Salis, R. Harbers, U. Drechsler, R. F. Mahrt, C. G. Smith, and H. J. Guntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett. 84(20), 4095–4097 (2004).
[CrossRef]

Evans, C. L.

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 883–909 (2008).
[CrossRef]

Farrer, R. A.

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton fabrication,” Angew. Chem. Int. Ed. Engl. 46(33), 6238–6258 (2007).
[CrossRef] [PubMed]

R. A. Farrer, C. N. LaFratta, L. J. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128(6), 1796–1797 (2006).
[CrossRef] [PubMed]

Fourkas, J. T.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[CrossRef] [PubMed]

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton fabrication,” Angew. Chem. Int. Ed. Engl. 46(33), 6238–6258 (2007).
[CrossRef] [PubMed]

R. A. Farrer, C. N. LaFratta, L. J. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128(6), 1796–1797 (2006).
[CrossRef] [PubMed]

Frohlich, L.

R. Houbertz, L. Frohlich, M. Popall, U. Streppel, P. Dannberg, A. Brauer, J. Serbin, and B. N. Chichkov, “Inorganic-organic hybrid polymers for information technology: from planar technology to 3D nanostructures,” Adv. Eng. Mater. 5(8), 551–555 (2003).
[CrossRef]

Gadonas, R.

Gattass, R. R.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[CrossRef] [PubMed]

Gershgoren, E.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[CrossRef] [PubMed]

Guntherodt, H. J.

W. H. Teh, U. Durig, G. Salis, R. Harbers, U. Drechsler, R. F. Mahrt, C. G. Smith, and H. J. Guntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett. 84(20), 4095–4097 (2004).
[CrossRef]

Gurau, M. C.

Hales, J. M.

Hamaguchi, H.

H. Kano and H. Hamaguchi, “Near-infrared coherent anti-Stokes Raman scattering microscopy using supercontinuum generated from a photonic crystal fiber,” Appl. Phys. B 80(2), 243–246 (2005).
[CrossRef]

H. Kano and H. Hamaguchi, “Ultrabroadband (> 2500 cm(−1)) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 86(12), 121113 (2005).
[CrossRef]

Hamaguchi, H. O.

Hansen, K. P.

Harbers, R.

W. H. Teh, U. Durig, G. Salis, R. Harbers, U. Drechsler, R. F. Mahrt, C. G. Smith, and H. J. Guntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett. 84(20), 4095–4097 (2004).
[CrossRef]

Haske, W.

Hewko, M. D.

A. C. T. Ko, A. Ridsdale, M. S. D. Smith, L. B. Mostaço-Guidolin, M. D. Hewko, A. F. Pegoraro, E. K. Kohlenberg, B. Schattka, M. Shiomi, A. Stolow, and M. G. Sowa, “Multimodal nonlinear optical imaging of atherosclerotic plaque development in myocardial infarction-prone rabbits,” J. Biomed. Opt. 15(2), 020501 (2010).
[CrossRef] [PubMed]

Hilligsøe, K. M.

Holtom, G. R.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti- Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

Hon, K. K. B.

S. O. Onuh and K. K. B. Hon, “Improving stereolithography part accuracy for industrial applications,” Int. J. Adv. Manuf. Technol. 17(1), 61–68 (2001).
[CrossRef]

S. O. Onuh and K. K. B. Hon, ““An esperimental investigation into the effect of hatch pattern in stereolithography,” CIRP Annals - Manuf Tech. 47(1), 157–160 (1998).
[CrossRef]

Houbertz, R.

R. Houbertz, L. Frohlich, M. Popall, U. Streppel, P. Dannberg, A. Brauer, J. Serbin, and B. N. Chichkov, “Inorganic-organic hybrid polymers for information technology: from planar technology to 3D nanostructures,” Adv. Eng. Mater. 5(8), 551–555 (2003).
[CrossRef]

Hwang, H.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[CrossRef] [PubMed]

Ikuta, K.

S. Maruo, K. Ikuta, and H. Korogi, “Force-controllable, optically driven micromachines fabricated by single-step two-photon micro stereolithography,” J. Microelectromech. Syst. 12(5), 533–539 (2003).
[CrossRef]

Inoue, H.

S. Maruo and H. Inoue, “Optically driven viscous micropump using a rotating microdisk,” Appl. Phys. Lett. 91(8), 084101 (2007).
[CrossRef]

Jia, Y. W.

John, S.

K. K. Seet, V. Mizeikis, K. Kannari, S. Juodkazis, H. Misawa, N. Tétreault, and S. John, “Templating and replication of spiral photonic crystals for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1064–1073 (2008).
[CrossRef]

Juodkazis, S.

Q. Sun, S. Juodkazis, N. Murazawa, V. Mizeikis, and H. Misawa, “Freestanding and movable photonic microstructures fabricated by photopolymerization with femtosecond laser pulses,” J. Micromech. Microeng. 20(3), 035004 (2010).
[CrossRef]

M. Malinauskas, A. Zukauskas, G. Bickauskaite, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express 18(10), 10209–10221 (2010).
[CrossRef] [PubMed]

K. K. Seet, V. Mizeikis, K. Kannari, S. Juodkazis, H. Misawa, N. Tétreault, and S. John, “Templating and replication of spiral photonic crystals for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1064–1073 (2008).
[CrossRef]

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-Dimensional Structuring of Resists and Resins by Direct Laser Writing and Holographic Recording,” Adv. Polym. Sci. 213, 157–206 (2008).

Kannari, K.

K. K. Seet, V. Mizeikis, K. Kannari, S. Juodkazis, H. Misawa, N. Tétreault, and S. John, “Templating and replication of spiral photonic crystals for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1064–1073 (2008).
[CrossRef]

Kano, H.

H. Kano and H. O. Hamaguchi, “In-vivo multi-nonlinear optical imaging of a living cell using a supercontinuum light source generated from a photonic crystal fiber,” Opt. Express 14(7), 2798–2804 (2006).
[CrossRef] [PubMed]

H. Kano and H. Hamaguchi, “Ultrabroadband (> 2500 cm(−1)) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 86(12), 121113 (2005).
[CrossRef]

H. Kano and H. Hamaguchi, “Near-infrared coherent anti-Stokes Raman scattering microscopy using supercontinuum generated from a photonic crystal fiber,” Appl. Phys. B 80(2), 243–246 (2005).
[CrossRef]

Karavitis, M.

R. Zadoyan, T. Baldacchini, M. Karavitis, and J. Carter, “CARS microspectrometer with a suppressed nonresonant background,” Ultrafast Phenomena XVI, Springer Series in Chemical Physics 92, 997–999 (2009).
[CrossRef]

Kawata, S.

S. Nakanishi, H. Yoshikawa, S. Shoji, Z. Sekkat, and S. Kawata, “Size dependence of transition temperature in polymer nanowires,” J. Phys. Chem. B 112(12), 3586–3589 (2008).
[CrossRef] [PubMed]

S. Nakanishi, S. Shoji, S. Kawata, and H. B. Sun, “Giant elasticity of photopolymer nanowires,” Appl. Phys. Lett. 91(6), 063112 (2007).
[CrossRef]

Kee, T. W.

Keiding, S.

Kim, Y. H.

Kleinfeld, D.

Q. T. Nguyen, P. S. Tsai, and D. Kleinfeld, “MPScope: a versatile software suite for multiphoton microscopy,” J. Neurosci. Methods 156(1-2), 351–359 (2006).
[CrossRef] [PubMed]

Ko, A. C. T.

A. C. T. Ko, A. Ridsdale, M. S. D. Smith, L. B. Mostaço-Guidolin, M. D. Hewko, A. F. Pegoraro, E. K. Kohlenberg, B. Schattka, M. Shiomi, A. Stolow, and M. G. Sowa, “Multimodal nonlinear optical imaging of atherosclerotic plaque development in myocardial infarction-prone rabbits,” J. Biomed. Opt. 15(2), 020501 (2010).
[CrossRef] [PubMed]

Kohlenberg, E. K.

A. C. T. Ko, A. Ridsdale, M. S. D. Smith, L. B. Mostaço-Guidolin, M. D. Hewko, A. F. Pegoraro, E. K. Kohlenberg, B. Schattka, M. Shiomi, A. Stolow, and M. G. Sowa, “Multimodal nonlinear optical imaging of atherosclerotic plaque development in myocardial infarction-prone rabbits,” J. Biomed. Opt. 15(2), 020501 (2010).
[CrossRef] [PubMed]

Korogi, H.

S. Maruo, K. Ikuta, and H. Korogi, “Force-controllable, optically driven micromachines fabricated by single-step two-photon micro stereolithography,” J. Microelectromech. Syst. 12(5), 533–539 (2003).
[CrossRef]

Krasieva, T. B.

M. Balu, T. Baldacchini, J. Carter, T. B. Krasieva, R. Zadoyan, and B. J. Tromberg, “Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media,” J. Biomed. Opt. 14(1), 010508 (2009).
[CrossRef] [PubMed]

Kristiansen, R.

Kuo, C. H.

T. Baldacchini, M. Zimmerley, C. H. Kuo, E. O. Potma, and R. Zadoyan, “Characterization of microstructures fabricated by two-photon polymerization using coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 113(38), 12663–12668 (2009).
[CrossRef] [PubMed]

LaFratta, C. N.

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton fabrication,” Angew. Chem. Int. Ed. Engl. 46(33), 6238–6258 (2007).
[CrossRef] [PubMed]

R. A. Farrer, C. N. LaFratta, L. J. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128(6), 1796–1797 (2006).
[CrossRef] [PubMed]

Larsen, J. J.

Lee, Y. J.

Leone, S. R.

S. H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, “Chemical imaging by single pulse interferometric coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 110(11), 5196–5204 (2006).
[CrossRef] [PubMed]

Li, L.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[CrossRef] [PubMed]

Li, L. J.

R. A. Farrer, C. N. LaFratta, L. J. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128(6), 1796–1797 (2006).
[CrossRef] [PubMed]

Lim, S. H.

S. H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, “Chemical imaging by single pulse interferometric coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 110(11), 5196–5204 (2006).
[CrossRef] [PubMed]

Mahrt, R. F.

W. H. Teh, U. Durig, G. Salis, R. Harbers, U. Drechsler, R. F. Mahrt, C. G. Smith, and H. J. Guntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett. 84(20), 4095–4097 (2004).
[CrossRef]

Malinauskas, M.

Marder, S. R.

Maruo, S.

S. Maruo and H. Inoue, “Optically driven viscous micropump using a rotating microdisk,” Appl. Phys. Lett. 91(8), 084101 (2007).
[CrossRef]

S. Maruo, K. Ikuta, and H. Korogi, “Force-controllable, optically driven micromachines fabricated by single-step two-photon micro stereolithography,” J. Microelectromech. Syst. 12(5), 533–539 (2003).
[CrossRef]

Mazur, E.

P. Tayalia, C. R. Mendonca, T. Baldacchini, D. J. Mooney, and E. Mazur, “3D Cell-Migration Studies using Two-Photon Engineered Polymer Scaffolds,” Adv. Mater. 20(23), 4494–4498 (2008).
[CrossRef]

Mendonca, C. R.

P. Tayalia, C. R. Mendonca, T. Baldacchini, D. J. Mooney, and E. Mazur, “3D Cell-Migration Studies using Two-Photon Engineered Polymer Scaffolds,” Adv. Mater. 20(23), 4494–4498 (2008).
[CrossRef]

Meyer, L.

B. von Vacano, L. Meyer, and M. Motzkus, “Rapid polymer blend imaging with quantitative broadband multiplex CARS microscopy,” J. Raman Spectrosc. 38(7), 916–926 (2007).
[CrossRef]

Misawa, H.

Q. Sun, S. Juodkazis, N. Murazawa, V. Mizeikis, and H. Misawa, “Freestanding and movable photonic microstructures fabricated by photopolymerization with femtosecond laser pulses,” J. Micromech. Microeng. 20(3), 035004 (2010).
[CrossRef]

K. K. Seet, V. Mizeikis, K. Kannari, S. Juodkazis, H. Misawa, N. Tétreault, and S. John, “Templating and replication of spiral photonic crystals for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1064–1073 (2008).
[CrossRef]

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-Dimensional Structuring of Resists and Resins by Direct Laser Writing and Holographic Recording,” Adv. Polym. Sci. 213, 157–206 (2008).

Mizeikis, V.

Q. Sun, S. Juodkazis, N. Murazawa, V. Mizeikis, and H. Misawa, “Freestanding and movable photonic microstructures fabricated by photopolymerization with femtosecond laser pulses,” J. Micromech. Microeng. 20(3), 035004 (2010).
[CrossRef]

K. K. Seet, V. Mizeikis, K. Kannari, S. Juodkazis, H. Misawa, N. Tétreault, and S. John, “Templating and replication of spiral photonic crystals for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1064–1073 (2008).
[CrossRef]

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-Dimensional Structuring of Resists and Resins by Direct Laser Writing and Holographic Recording,” Adv. Polym. Sci. 213, 157–206 (2008).

Moffatt, D. J.

Mølmer, K.

Mooney, D. J.

P. Tayalia, C. R. Mendonca, T. Baldacchini, D. J. Mooney, and E. Mazur, “3D Cell-Migration Studies using Two-Photon Engineered Polymer Scaffolds,” Adv. Mater. 20(23), 4494–4498 (2008).
[CrossRef]

Mostaço-Guidolin, L. B.

A. C. T. Ko, A. Ridsdale, M. S. D. Smith, L. B. Mostaço-Guidolin, M. D. Hewko, A. F. Pegoraro, E. K. Kohlenberg, B. Schattka, M. Shiomi, A. Stolow, and M. G. Sowa, “Multimodal nonlinear optical imaging of atherosclerotic plaque development in myocardial infarction-prone rabbits,” J. Biomed. Opt. 15(2), 020501 (2010).
[CrossRef] [PubMed]

Motzkus, M.

B. von Vacano, L. Meyer, and M. Motzkus, “Rapid polymer blend imaging with quantitative broadband multiplex CARS microscopy,” J. Raman Spectrosc. 38(7), 916–926 (2007).
[CrossRef]

Muller, M.

M. Muller and J. M. Schins, “Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy,” J. Phys. Chem. B 106(14), 3715–3723 (2002).
[CrossRef]

Müller, M.

M. Müller and A. Zumbusch, “Coherent anti-stokes Raman scattering microscopy,” ChemPhysChem 8(15), 2156–2170 (2007).
[CrossRef] [PubMed]

Murazawa, N.

Q. Sun, S. Juodkazis, N. Murazawa, V. Mizeikis, and H. Misawa, “Freestanding and movable photonic microstructures fabricated by photopolymerization with femtosecond laser pulses,” J. Micromech. Microeng. 20(3), 035004 (2010).
[CrossRef]

Murugkar, S.

Naji, M.

Nakanishi, S.

S. Nakanishi, H. Yoshikawa, S. Shoji, Z. Sekkat, and S. Kawata, “Size dependence of transition temperature in polymer nanowires,” J. Phys. Chem. B 112(12), 3586–3589 (2008).
[CrossRef] [PubMed]

S. Nakanishi, S. Shoji, S. Kawata, and H. B. Sun, “Giant elasticity of photopolymer nanowires,” Appl. Phys. Lett. 91(6), 063112 (2007).
[CrossRef]

Naughton, M. J.

R. A. Farrer, C. N. LaFratta, L. J. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128(6), 1796–1797 (2006).
[CrossRef] [PubMed]

Nguyen, Q. T.

Q. T. Nguyen, P. S. Tsai, and D. Kleinfeld, “MPScope: a versatile software suite for multiphoton microscopy,” J. Neurosci. Methods 156(1-2), 351–359 (2006).
[CrossRef] [PubMed]

Nicolet, O.

S. H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, “Chemical imaging by single pulse interferometric coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 110(11), 5196–5204 (2006).
[CrossRef] [PubMed]

Nielsen, C. K.

Onuh, S. O.

S. O. Onuh and K. K. B. Hon, “Improving stereolithography part accuracy for industrial applications,” Int. J. Adv. Manuf. Technol. 17(1), 61–68 (2001).
[CrossRef]

S. O. Onuh and K. K. B. Hon, ““An esperimental investigation into the effect of hatch pattern in stereolithography,” CIRP Annals - Manuf Tech. 47(1), 157–160 (1998).
[CrossRef]

Oron, D.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[CrossRef] [PubMed]

Parekh, S. H.

Paulsen, H. N.

Pegoraro, A. F.

A. C. T. Ko, A. Ridsdale, M. S. D. Smith, L. B. Mostaço-Guidolin, M. D. Hewko, A. F. Pegoraro, E. K. Kohlenberg, B. Schattka, M. Shiomi, A. Stolow, and M. G. Sowa, “Multimodal nonlinear optical imaging of atherosclerotic plaque development in myocardial infarction-prone rabbits,” J. Biomed. Opt. 15(2), 020501 (2010).
[CrossRef] [PubMed]

A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. W. Jia, J. P. Pezacki, and A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express 17(4), 2984–2996 (2009).
[CrossRef] [PubMed]

Peppas, N. A.

M. H. Bland and N. A. Peppas, “Photopolymerized multifunctional (meth)acrylates as model polymers for dental applications,” Biomaterials 17(11), 1109–1114 (1996).
[CrossRef] [PubMed]

K. S. Anseth, C. N. Bowman, and N. A. Peppas, “Polymerization Kinetics and Volume Relaxation Behavior of Photopolymerized Multifunctional Monomers Producing Highly Cross-Linked Networks,” J. Polym. Sci. A 32(1), 139–147 (1994).
[CrossRef]

Pereira, S.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[CrossRef] [PubMed]

Perry, J. W.

Pezacki, J. P.

Popall, M.

R. Houbertz, L. Frohlich, M. Popall, U. Streppel, P. Dannberg, A. Brauer, J. Serbin, and B. N. Chichkov, “Inorganic-organic hybrid polymers for information technology: from planar technology to 3D nanostructures,” Adv. Eng. Mater. 5(8), 551–555 (2003).
[CrossRef]

Potma, E. O.

T. Baldacchini, M. Zimmerley, C. H. Kuo, E. O. Potma, and R. Zadoyan, “Characterization of microstructures fabricated by two-photon polymerization using coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 113(38), 12663–12668 (2009).
[CrossRef] [PubMed]

T. Baldacchini, M. Zimmerley, E. O. Potma, and R. Zadoyan, “Chemical mapping of three-dimensional microstructures fabricated by two-photon polymerization using CARS microscopy,” Proc. SPIE 7201, 72010Q72011 (2009).
[CrossRef]

Praino, J.

R. A. Farrer, C. N. LaFratta, L. J. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128(6), 1796–1797 (2006).
[CrossRef] [PubMed]

Richter, L. J.

Ridsdale, A.

Saleh, B. E. A.

R. A. Farrer, C. N. LaFratta, L. J. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128(6), 1796–1797 (2006).
[CrossRef] [PubMed]

Salis, G.

W. H. Teh, U. Durig, G. Salis, R. Harbers, U. Drechsler, R. F. Mahrt, C. G. Smith, and H. J. Guntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett. 84(20), 4095–4097 (2004).
[CrossRef]

Schattka, B.

A. C. T. Ko, A. Ridsdale, M. S. D. Smith, L. B. Mostaço-Guidolin, M. D. Hewko, A. F. Pegoraro, E. K. Kohlenberg, B. Schattka, M. Shiomi, A. Stolow, and M. G. Sowa, “Multimodal nonlinear optical imaging of atherosclerotic plaque development in myocardial infarction-prone rabbits,” J. Biomed. Opt. 15(2), 020501 (2010).
[CrossRef] [PubMed]

Schins, J. M.

M. Muller and J. M. Schins, “Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy,” J. Phys. Chem. B 106(14), 3715–3723 (2002).
[CrossRef]

Schultz, Z. D.

Seet, K. K.

K. K. Seet, V. Mizeikis, K. Kannari, S. Juodkazis, H. Misawa, N. Tétreault, and S. John, “Templating and replication of spiral photonic crystals for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1064–1073 (2008).
[CrossRef]

Sekkat, Z.

S. Nakanishi, H. Yoshikawa, S. Shoji, Z. Sekkat, and S. Kawata, “Size dependence of transition temperature in polymer nanowires,” J. Phys. Chem. B 112(12), 3586–3589 (2008).
[CrossRef] [PubMed]

Serbin, J.

R. Houbertz, L. Frohlich, M. Popall, U. Streppel, P. Dannberg, A. Brauer, J. Serbin, and B. N. Chichkov, “Inorganic-organic hybrid polymers for information technology: from planar technology to 3D nanostructures,” Adv. Eng. Mater. 5(8), 551–555 (2003).
[CrossRef]

Shiomi, M.

A. C. T. Ko, A. Ridsdale, M. S. D. Smith, L. B. Mostaço-Guidolin, M. D. Hewko, A. F. Pegoraro, E. K. Kohlenberg, B. Schattka, M. Shiomi, A. Stolow, and M. G. Sowa, “Multimodal nonlinear optical imaging of atherosclerotic plaque development in myocardial infarction-prone rabbits,” J. Biomed. Opt. 15(2), 020501 (2010).
[CrossRef] [PubMed]

Shoji, S.

S. Nakanishi, H. Yoshikawa, S. Shoji, Z. Sekkat, and S. Kawata, “Size dependence of transition temperature in polymer nanowires,” J. Phys. Chem. B 112(12), 3586–3589 (2008).
[CrossRef] [PubMed]

S. Nakanishi, S. Shoji, S. Kawata, and H. B. Sun, “Giant elasticity of photopolymer nanowires,” Appl. Phys. Lett. 91(6), 063112 (2007).
[CrossRef]

Silberberg, Y.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[CrossRef] [PubMed]

Smith, C. G.

W. H. Teh, U. Durig, G. Salis, R. Harbers, U. Drechsler, R. F. Mahrt, C. G. Smith, and H. J. Guntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett. 84(20), 4095–4097 (2004).
[CrossRef]

Smith, M. S. D.

A. C. T. Ko, A. Ridsdale, M. S. D. Smith, L. B. Mostaço-Guidolin, M. D. Hewko, A. F. Pegoraro, E. K. Kohlenberg, B. Schattka, M. Shiomi, A. Stolow, and M. G. Sowa, “Multimodal nonlinear optical imaging of atherosclerotic plaque development in myocardial infarction-prone rabbits,” J. Biomed. Opt. 15(2), 020501 (2010).
[CrossRef] [PubMed]

Soukoulis, C. M.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[CrossRef] [PubMed]

Sowa, M. G.

A. C. T. Ko, A. Ridsdale, M. S. D. Smith, L. B. Mostaço-Guidolin, M. D. Hewko, A. F. Pegoraro, E. K. Kohlenberg, B. Schattka, M. Shiomi, A. Stolow, and M. G. Sowa, “Multimodal nonlinear optical imaging of atherosclerotic plaque development in myocardial infarction-prone rabbits,” J. Biomed. Opt. 15(2), 020501 (2010).
[CrossRef] [PubMed]

Stolow, A.

A. C. T. Ko, A. Ridsdale, M. S. D. Smith, L. B. Mostaço-Guidolin, M. D. Hewko, A. F. Pegoraro, E. K. Kohlenberg, B. Schattka, M. Shiomi, A. Stolow, and M. G. Sowa, “Multimodal nonlinear optical imaging of atherosclerotic plaque development in myocardial infarction-prone rabbits,” J. Biomed. Opt. 15(2), 020501 (2010).
[CrossRef] [PubMed]

A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. W. Jia, J. P. Pezacki, and A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express 17(4), 2984–2996 (2009).
[CrossRef] [PubMed]

Streppel, U.

R. Houbertz, L. Frohlich, M. Popall, U. Streppel, P. Dannberg, A. Brauer, J. Serbin, and B. N. Chichkov, “Inorganic-organic hybrid polymers for information technology: from planar technology to 3D nanostructures,” Adv. Eng. Mater. 5(8), 551–555 (2003).
[CrossRef]

Stys, P. K.

Sun, H. B.

S. Nakanishi, S. Shoji, S. Kawata, and H. B. Sun, “Giant elasticity of photopolymer nanowires,” Appl. Phys. Lett. 91(6), 063112 (2007).
[CrossRef]

Sun, Q.

Q. Sun, S. Juodkazis, N. Murazawa, V. Mizeikis, and H. Misawa, “Freestanding and movable photonic microstructures fabricated by photopolymerization with femtosecond laser pulses,” J. Micromech. Microeng. 20(3), 035004 (2010).
[CrossRef]

Tayalia, P.

P. Tayalia, C. R. Mendonca, T. Baldacchini, D. J. Mooney, and E. Mazur, “3D Cell-Migration Studies using Two-Photon Engineered Polymer Scaffolds,” Adv. Mater. 20(23), 4494–4498 (2008).
[CrossRef]

Teh, W. H.

W. H. Teh, U. Durig, G. Salis, R. Harbers, U. Drechsler, R. F. Mahrt, C. G. Smith, and H. J. Guntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett. 84(20), 4095–4097 (2004).
[CrossRef]

Teich, M. C.

R. A. Farrer, C. N. LaFratta, L. J. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128(6), 1796–1797 (2006).
[CrossRef] [PubMed]

Tétreault, N.

K. K. Seet, V. Mizeikis, K. Kannari, S. Juodkazis, H. Misawa, N. Tétreault, and S. John, “Templating and replication of spiral photonic crystals for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1064–1073 (2008).
[CrossRef]

Tromberg, B. J.

M. Balu, T. Baldacchini, J. Carter, T. B. Krasieva, R. Zadoyan, and B. J. Tromberg, “Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media,” J. Biomed. Opt. 14(1), 010508 (2009).
[CrossRef] [PubMed]

Tsai, P. S.

Q. T. Nguyen, P. S. Tsai, and D. Kleinfeld, “MPScope: a versatile software suite for multiphoton microscopy,” J. Neurosci. Methods 156(1-2), 351–359 (2006).
[CrossRef] [PubMed]

von Freymann, G.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[CrossRef] [PubMed]

von Vacano, B.

B. von Vacano, L. Meyer, and M. Motzkus, “Rapid polymer blend imaging with quantitative broadband multiplex CARS microscopy,” J. Raman Spectrosc. 38(7), 916–926 (2007).
[CrossRef]

Wegener, M.

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[CrossRef] [PubMed]

Xie, X. S.

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 883–909 (2008).
[CrossRef]

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[CrossRef]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti- Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

Yoshikawa, H.

S. Nakanishi, H. Yoshikawa, S. Shoji, Z. Sekkat, and S. Kawata, “Size dependence of transition temperature in polymer nanowires,” J. Phys. Chem. B 112(12), 3586–3589 (2008).
[CrossRef] [PubMed]

Zadoyan, R.

R. Zadoyan, T. Baldacchini, M. Karavitis, and J. Carter, “CARS microspectrometer with a suppressed nonresonant background,” Ultrafast Phenomena XVI, Springer Series in Chemical Physics 92, 997–999 (2009).
[CrossRef]

T. Baldacchini, M. Zimmerley, E. O. Potma, and R. Zadoyan, “Chemical mapping of three-dimensional microstructures fabricated by two-photon polymerization using CARS microscopy,” Proc. SPIE 7201, 72010Q72011 (2009).
[CrossRef]

T. Baldacchini, M. Zimmerley, C. H. Kuo, E. O. Potma, and R. Zadoyan, “Characterization of microstructures fabricated by two-photon polymerization using coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 113(38), 12663–12668 (2009).
[CrossRef] [PubMed]

M. Balu, T. Baldacchini, J. Carter, T. B. Krasieva, R. Zadoyan, and B. J. Tromberg, “Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media,” J. Biomed. Opt. 14(1), 010508 (2009).
[CrossRef] [PubMed]

Zimmerley, M.

T. Baldacchini, M. Zimmerley, C. H. Kuo, E. O. Potma, and R. Zadoyan, “Characterization of microstructures fabricated by two-photon polymerization using coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 113(38), 12663–12668 (2009).
[CrossRef] [PubMed]

T. Baldacchini, M. Zimmerley, E. O. Potma, and R. Zadoyan, “Chemical mapping of three-dimensional microstructures fabricated by two-photon polymerization using CARS microscopy,” Proc. SPIE 7201, 72010Q72011 (2009).
[CrossRef]

Zukauskas, A.

Zumbusch, A.

M. Müller and A. Zumbusch, “Coherent anti-stokes Raman scattering microscopy,” ChemPhysChem 8(15), 2156–2170 (2007).
[CrossRef] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti- Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

Adv. Eng. Mater. (1)

R. Houbertz, L. Frohlich, M. Popall, U. Streppel, P. Dannberg, A. Brauer, J. Serbin, and B. N. Chichkov, “Inorganic-organic hybrid polymers for information technology: from planar technology to 3D nanostructures,” Adv. Eng. Mater. 5(8), 551–555 (2003).
[CrossRef]

Adv. Mater. (1)

P. Tayalia, C. R. Mendonca, T. Baldacchini, D. J. Mooney, and E. Mazur, “3D Cell-Migration Studies using Two-Photon Engineered Polymer Scaffolds,” Adv. Mater. 20(23), 4494–4498 (2008).
[CrossRef]

Adv. Polym. Sci. (1)

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-Dimensional Structuring of Resists and Resins by Direct Laser Writing and Holographic Recording,” Adv. Polym. Sci. 213, 157–206 (2008).

Angew. Chem. Int. Ed. Engl. (1)

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton fabrication,” Angew. Chem. Int. Ed. Engl. 46(33), 6238–6258 (2007).
[CrossRef] [PubMed]

Annu Rev Anal Chem (Palo Alto Calif) (1)

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 883–909 (2008).
[CrossRef]

Appl. Phys. B (1)

H. Kano and H. Hamaguchi, “Near-infrared coherent anti-Stokes Raman scattering microscopy using supercontinuum generated from a photonic crystal fiber,” Appl. Phys. B 80(2), 243–246 (2005).
[CrossRef]

Appl. Phys. Lett. (4)

S. Maruo and H. Inoue, “Optically driven viscous micropump using a rotating microdisk,” Appl. Phys. Lett. 91(8), 084101 (2007).
[CrossRef]

S. Nakanishi, S. Shoji, S. Kawata, and H. B. Sun, “Giant elasticity of photopolymer nanowires,” Appl. Phys. Lett. 91(6), 063112 (2007).
[CrossRef]

W. H. Teh, U. Durig, G. Salis, R. Harbers, U. Drechsler, R. F. Mahrt, C. G. Smith, and H. J. Guntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett. 84(20), 4095–4097 (2004).
[CrossRef]

H. Kano and H. Hamaguchi, “Ultrabroadband (> 2500 cm(−1)) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 86(12), 121113 (2005).
[CrossRef]

Appl. Spectrosc. (1)

Biomaterials (1)

M. H. Bland and N. A. Peppas, “Photopolymerized multifunctional (meth)acrylates as model polymers for dental applications,” Biomaterials 17(11), 1109–1114 (1996).
[CrossRef] [PubMed]

ChemPhysChem (1)

M. Müller and A. Zumbusch, “Coherent anti-stokes Raman scattering microscopy,” ChemPhysChem 8(15), 2156–2170 (2007).
[CrossRef] [PubMed]

CIRP Annals - Manuf Tech. (1)

S. O. Onuh and K. K. B. Hon, ““An esperimental investigation into the effect of hatch pattern in stereolithography,” CIRP Annals - Manuf Tech. 47(1), 157–160 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. K. Seet, V. Mizeikis, K. Kannari, S. Juodkazis, H. Misawa, N. Tétreault, and S. John, “Templating and replication of spiral photonic crystals for silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1064–1073 (2008).
[CrossRef]

Int. J. Adv. Manuf. Technol. (1)

S. O. Onuh and K. K. B. Hon, “Improving stereolithography part accuracy for industrial applications,” Int. J. Adv. Manuf. Technol. 17(1), 61–68 (2001).
[CrossRef]

J. Am. Chem. Soc. (1)

R. A. Farrer, C. N. LaFratta, L. J. Li, J. Praino, M. J. Naughton, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, “Selective functionalization of 3-D polymer microstructures,” J. Am. Chem. Soc. 128(6), 1796–1797 (2006).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

M. Balu, T. Baldacchini, J. Carter, T. B. Krasieva, R. Zadoyan, and B. J. Tromberg, “Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media,” J. Biomed. Opt. 14(1), 010508 (2009).
[CrossRef] [PubMed]

A. C. T. Ko, A. Ridsdale, M. S. D. Smith, L. B. Mostaço-Guidolin, M. D. Hewko, A. F. Pegoraro, E. K. Kohlenberg, B. Schattka, M. Shiomi, A. Stolow, and M. G. Sowa, “Multimodal nonlinear optical imaging of atherosclerotic plaque development in myocardial infarction-prone rabbits,” J. Biomed. Opt. 15(2), 020501 (2010).
[CrossRef] [PubMed]

J. Microelectromech. Syst. (1)

S. Maruo, K. Ikuta, and H. Korogi, “Force-controllable, optically driven micromachines fabricated by single-step two-photon micro stereolithography,” J. Microelectromech. Syst. 12(5), 533–539 (2003).
[CrossRef]

J. Micromech. Microeng. (1)

Q. Sun, S. Juodkazis, N. Murazawa, V. Mizeikis, and H. Misawa, “Freestanding and movable photonic microstructures fabricated by photopolymerization with femtosecond laser pulses,” J. Micromech. Microeng. 20(3), 035004 (2010).
[CrossRef]

J. Neurosci. Methods (1)

Q. T. Nguyen, P. S. Tsai, and D. Kleinfeld, “MPScope: a versatile software suite for multiphoton microscopy,” J. Neurosci. Methods 156(1-2), 351–359 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. B (5)

M. Muller and J. M. Schins, “Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy,” J. Phys. Chem. B 106(14), 3715–3723 (2002).
[CrossRef]

S. H. Lim, A. G. Caster, O. Nicolet, and S. R. Leone, “Chemical imaging by single pulse interferometric coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 110(11), 5196–5204 (2006).
[CrossRef] [PubMed]

J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004).
[CrossRef]

T. Baldacchini, M. Zimmerley, C. H. Kuo, E. O. Potma, and R. Zadoyan, “Characterization of microstructures fabricated by two-photon polymerization using coherent anti-stokes Raman scattering microscopy,” J. Phys. Chem. B 113(38), 12663–12668 (2009).
[CrossRef] [PubMed]

S. Nakanishi, H. Yoshikawa, S. Shoji, Z. Sekkat, and S. Kawata, “Size dependence of transition temperature in polymer nanowires,” J. Phys. Chem. B 112(12), 3586–3589 (2008).
[CrossRef] [PubMed]

J. Polym. Sci. A (1)

K. S. Anseth, C. N. Bowman, and N. A. Peppas, “Polymerization Kinetics and Volume Relaxation Behavior of Photopolymerized Multifunctional Monomers Producing Highly Cross-Linked Networks,” J. Polym. Sci. A 32(1), 139–147 (1994).
[CrossRef]

J. Raman Spectrosc. (1)

B. von Vacano, L. Meyer, and M. Motzkus, “Rapid polymer blend imaging with quantitative broadband multiplex CARS microscopy,” J. Raman Spectrosc. 38(7), 916–926 (2007).
[CrossRef]

Nat. Mater. (1)

M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater. 3(7), 444–447 (2004).
[CrossRef] [PubMed]

Nature (1)

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[CrossRef] [PubMed]

Opt. Express (7)

W. Haske, V. W. Chen, J. M. Hales, W. T. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express 15(6), 3426–3436 (2007).
[CrossRef] [PubMed]

S. Murugkar, C. Brideau, A. Ridsdale, M. Naji, P. K. Stys, and H. Anis, “Coherent anti-Stokes Raman scattering microscopy using photonic crystal fiber with two closely lying zero dispersion wavelengths,” Opt. Express 15(21), 14028–14037 (2007).
[CrossRef] [PubMed]

A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. W. Jia, J. P. Pezacki, and A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express 17(4), 2984–2996 (2009).
[CrossRef] [PubMed]

Y. J. Lee, S. H. Parekh, Y. H. Kim, and M. T. Cicerone, “Optimized continuum from a photonic crystal fiber for broadband time-resolved coherent anti-Stokes Raman scattering,” Opt. Express 18(5), 4371–4379 (2010).
[CrossRef] [PubMed]

M. Malinauskas, A. Zukauskas, G. Bickauskaite, R. Gadonas, and S. Juodkazis, “Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses,” Opt. Express 18(10), 10209–10221 (2010).
[CrossRef] [PubMed]

K. M. Hilligsøe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. P. Hansen, and J. J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Opt. Express 12(6), 1045–1054 (2004).
[CrossRef] [PubMed]

H. Kano and H. O. Hamaguchi, “In-vivo multi-nonlinear optical imaging of a living cell using a supercontinuum light source generated from a photonic crystal fiber,” Opt. Express 14(7), 2798–2804 (2006).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti- Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

Proc. SPIE (1)

T. Baldacchini, M. Zimmerley, E. O. Potma, and R. Zadoyan, “Chemical mapping of three-dimensional microstructures fabricated by two-photon polymerization using CARS microscopy,” Proc. SPIE 7201, 72010Q72011 (2009).
[CrossRef]

Science (1)

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[CrossRef] [PubMed]

Ultrafast Phenomena XVI, Springer Series in Chemical Physics (1)

R. Zadoyan, T. Baldacchini, M. Karavitis, and J. Carter, “CARS microspectrometer with a suppressed nonresonant background,” Ultrafast Phenomena XVI, Springer Series in Chemical Physics 92, 997–999 (2009).
[CrossRef]

Supplementary Material (1)

» Media 1: AVI (4005 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Diagram of the experimental setup used for TPP and CARS microscopy. BS, beam splitter; M, metallic mirror; HWP, half-wave plate; GLP, Glan-laser polarizer; S, shutter; SL, scan lens; TL, tube lens; OL, objective lens; CL, condenser lens; F, filter; L, lens; M*, metallic mirror on a flip mount; PMT, photomultiplier tube detector.

Fig. 2
Fig. 2

(a) Schematic representation of the optical layout in the wavelength extension unit (WEU). FI, Faraday isolator; BS, beam splitter; M, metallic mirror; HWP, half-wave plate; GLP, Glan-laser polarizer; L, lens; PCF, photonic crystal fiber; LP, long pass filter; BP, band pass filter; NDA, neutral density attenuator; RELP, RazorEdge® long pass filter. (b) Spectrum of the pump and Stokes beams as measured after the WEU.

Fig. 3
Fig. 3

(a) Raman (red line) and CARS (blue line) spectra of the polymerized resin. (b) CARS signal dependence on the pump (△) and Stokes (▲) beams intensities. The values of the slopes in the log-log plot are 2.0 ± 0.1 and 0.9 ± 0.1 for the pump and Stokes beams, respectively. The fitted values are illustrated as solid and dashed lines. The image of the test sample is shown in false color in the inset. The scale bar is 10 μm.

Fig. 4
Fig. 4

(a) CARS spectrum of the polymerized resin. The shaded regions represent the transmission windows of filters A and B. (b) Tilted view of the microstructure created by TPP used for broadband CARS microscopy. This image was recorded using SEM. A top view of the same microstructure is shown in the inset. The scale bar for this image is 10 μm. On-resonance (c) and off-resonance (d) CARS images of the microstructure relative to its carbon-hydrogen stretching modes. (e) CARS image with solely resonant contribution. Signal intensities scales in all three images are equal (LUT shown on far right). The scale bars in (c), (d), and (e) are 20 μm.

Fig. 5
Fig. 5

Broadband CARS microscopy of microstructures created by TPP while still immersed in the bath of unpolymerized resin. (a) Image of a bridge recorded at a plane 50 μm above the substrate level. (b) Set of suspended cantilevers attached to a 50 μm tall rectangular shaped tower. The cantilevers were made with same writing conditions but different spacing between the laser passes used to create them. Cross-section images of the microstructure recorded at two heights of (c) 30 μm and (d) 60 μm. The microstructure consists of a closed box trapping in its interior unpolymerized resin. A cross shaped pattern was written inside the box at a height of 30 μm. (e) Lines made by single laser passes and imaged at a plane 25 μm above the substrate level. The lines are attached to two walls that are 50 μm tall. Each polymerized line was written by TPP using different laser average powers. (f) Intensity profile of the CARS signal along the blue line depicted in (e). The scales bars are 20 μm, 30 μm, 15 μm, 15 μm, and 20 μm for (a), (b), (c), (d), and (e), respectively. The intensity scale in all images are equal (LUT shown on the top right of the figure).

Fig. 6
Fig. 6

Real time imaging of TPP using broadband CARS microscopy. The images in the sequence represent frames acquired at different times during the writing of a two-dimensional grid-like microstructure. The scale bar in all images is 25 μm. The signal intensity scale is the same in all images (LUT shown on the bottom right of the figure) Media 1.

Metrics