Abstract

We report for the first time Erbium doped Tellurium dioxide single-mode planar rib waveguide amplifiers with net fiber to fiber gain and wide bandwidth operation. Peak internal gains of up to 14dB have been achieved in 5cm long rib waveguides (2.8dB/cm) fabricated by co-sputtering of Tellurium and Erbium in an oxygen ambient and reactive ion etching.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. El-Mallawany, Tellurite Glasses Handbook: physical properties and data (CRC Press, 2002).
  2. S. Berneschi, G. Nunzi Conti, and G. Righini, “Planar Waveguide Ampflifiers,” Ceramist: Jnl Korean Ceram. Soc. 10, 75–85 (2007).
  3. G. van den Hoven, R. Koper, A. Polman, C. van Dam, J. van Uffelen, and M. Smit, “Net optical gain at 1.53 m in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
    [CrossRef]
  4. Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 m,” Appl. Phys. Lett. 71(20), 2922 (1997).
    [CrossRef]
  5. G. Della Valle, S. Taccheo, P. Laporta, G. Sorbello, E. Cianci, and V. Foglietti, “Compact high gain erbium-ytterbium doped waveguide amplifier fabricated by Ag-Na ion exchange,” Electron. Lett. 42(11), 632–633 (2006).
    [CrossRef]
  6. F. Patel, S. DiCarolis, P. Lum, S. Venkatesh, and J. Miller, “A compact high-performance optical waveguide amplifier,” IEEE Photon. Technol. Lett. 16(12), 2607–2609 (2004).
    [CrossRef]
  7. A. Mori, “Tellurite-based fibers and their applications to optical communication networks,” J. Ceram. Soc. Jpn. 116(1358), 1040–1051 (2008).
    [CrossRef]
  8. C. Chryssou, F. Di Pasquale, and C. Pitt, “Er3+ doped channel waveguide amplifiers for WDM systems: A comparison of tellurite, alumina and Al/P silicate materials,” IEEE J. Sel. Top. Quantum Electron. 6(1), 114–121 (2000).
    [CrossRef]
  9. S. Dai, C. Yu, G. Zhou, J. Zhang, G. Wang, and L. Hu, “Concentration quenching in erbium-doped tellurite glasses,” J. Lumin. 117(1), 39–45 (2006).
    [CrossRef]
  10. S. Shen, A. Jha, X. Liu, M. Naftaly, K. Bindra, H. J. Bookey, and A. K. Kar, “Tellurite glasses for broadband amplifiers and integrated optics,” J. Am. Ceram. Soc. 85(6), 1391–1395 (2002).
    [CrossRef]
  11. T. T. Fernandez, G. Della Valle, R. Osellame, G. Jose, N. Chiodo, A. Jha, and P. Laporta, “Active waveguides written by femtosecond laser irradiation in an erbium-doped phospho-tellurite glass,” Opt. Express 16(19), 15198–15205 (2008).
    [CrossRef] [PubMed]
  12. S. J. Madden and K. T. Vu, “Very low loss reactively ion etched Tellurium Dioxide planar rib waveguides for linear and non-linear optics,” Opt. Express 17(20), 17645–17651 (2009).
    [CrossRef] [PubMed]
  13. C. D. Wilkinson and M. Rahman, “Dry etching and sputtering,” Philos. Transact. A Math. Phys. Eng. Sci. 362(1814), 125–138 (2004).
    [CrossRef] [PubMed]
  14. S. M. Pietralunga, M. Lanata, M. Ferè, D. Piccinin, G. Cusmai, M. Torregiani, and M. Martinelli, “High-contrast waveguides in sputtered pure TeO2 glass thin films,” Opt. Express 16(26), 21662–21670 (2008).
    [CrossRef] [PubMed]
  15. C. Tewell and S. King, “Observation of metastable erbium trihydride,” Appl. Surf. Sci. 253(5), 2597–2602 (2006).
    [CrossRef]
  16. R. Grew, H. Ebendorff-Heidepriem, P. Veitch, and T. Monro, “Concentration effects in erbium doped tellurite glass,” in Conference on Optoelectronic and Microelectronic Materials and Devices, Proceedings, COMMAD(Institute of Electrical and Electronics Engineers Inc., Perth, Australia, 2006), pp. 196–199.
  17. J. Wang, E. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
    [CrossRef]
  18. X. Feng, W. H. Loh, J. C. Flanagan, A. Camerlingo, S. Dasgupta, P. Petropoulos, P. Horak, K. E. Frampton, N. M. White, J. H. Price, H. N. Rutt, and D. J. Richardson, “Single-mode tellurite glass holey fiber with extremely large mode area for infrared nonlinear applications,” Opt. Express 16(18), 13651–13656 (2008).
    [CrossRef] [PubMed]
  19. E. Taylor, L. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-doped Tellurite Fiber Amplifier,” IEEE Photon. Technol. Lett. 16(3), 777–779 (2004).
    [CrossRef]
  20. S. Dai, C. Yu, G. Zhou, J. Zhang, and G. Wang, “Effect of OH- content on emission properties in Er3+-doped tellurite glasses,” J. Non-Cryst. Solids 354(12-13), 1357–1360 (2008).
    [CrossRef]
  21. A. A. Rieznik and G. Rigolin, “Spontaneous decay rates in active waveguides,” Opt. Lett. 30(10), 1108–1110 (2005).
    [CrossRef] [PubMed]
  22. A. Wucher, Sputtering: Experiment (Det Kongelige Danske Videnskabernes Selskab, Copenhagen, 2006).
  23. P. Sun and R. M. Reano, “Cantilever couplers for intra-chip coupling to silicon photonic integrated circuits,” Opt. Express 17(6), 4565–4574 (2009).
    [CrossRef] [PubMed]
  24. W. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500nm,” J. Lightwave Technol. 9(2), 234–250 (1991).
    [CrossRef]
  25. P. Becker, N. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and technology (Academic Press, San Diego, CA, 1997).

2009

2008

2007

S. Berneschi, G. Nunzi Conti, and G. Righini, “Planar Waveguide Ampflifiers,” Ceramist: Jnl Korean Ceram. Soc. 10, 75–85 (2007).

2006

G. Della Valle, S. Taccheo, P. Laporta, G. Sorbello, E. Cianci, and V. Foglietti, “Compact high gain erbium-ytterbium doped waveguide amplifier fabricated by Ag-Na ion exchange,” Electron. Lett. 42(11), 632–633 (2006).
[CrossRef]

S. Dai, C. Yu, G. Zhou, J. Zhang, G. Wang, and L. Hu, “Concentration quenching in erbium-doped tellurite glasses,” J. Lumin. 117(1), 39–45 (2006).
[CrossRef]

C. Tewell and S. King, “Observation of metastable erbium trihydride,” Appl. Surf. Sci. 253(5), 2597–2602 (2006).
[CrossRef]

2005

2004

E. Taylor, L. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-doped Tellurite Fiber Amplifier,” IEEE Photon. Technol. Lett. 16(3), 777–779 (2004).
[CrossRef]

C. D. Wilkinson and M. Rahman, “Dry etching and sputtering,” Philos. Transact. A Math. Phys. Eng. Sci. 362(1814), 125–138 (2004).
[CrossRef] [PubMed]

F. Patel, S. DiCarolis, P. Lum, S. Venkatesh, and J. Miller, “A compact high-performance optical waveguide amplifier,” IEEE Photon. Technol. Lett. 16(12), 2607–2609 (2004).
[CrossRef]

2002

S. Shen, A. Jha, X. Liu, M. Naftaly, K. Bindra, H. J. Bookey, and A. K. Kar, “Tellurite glasses for broadband amplifiers and integrated optics,” J. Am. Ceram. Soc. 85(6), 1391–1395 (2002).
[CrossRef]

2000

C. Chryssou, F. Di Pasquale, and C. Pitt, “Er3+ doped channel waveguide amplifiers for WDM systems: A comparison of tellurite, alumina and Al/P silicate materials,” IEEE J. Sel. Top. Quantum Electron. 6(1), 114–121 (2000).
[CrossRef]

1997

Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 m,” Appl. Phys. Lett. 71(20), 2922 (1997).
[CrossRef]

1996

G. van den Hoven, R. Koper, A. Polman, C. van Dam, J. van Uffelen, and M. Smit, “Net optical gain at 1.53 m in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[CrossRef]

1994

J. Wang, E. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[CrossRef]

1991

W. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500nm,” J. Lightwave Technol. 9(2), 234–250 (1991).
[CrossRef]

Berneschi, S.

S. Berneschi, G. Nunzi Conti, and G. Righini, “Planar Waveguide Ampflifiers,” Ceramist: Jnl Korean Ceram. Soc. 10, 75–85 (2007).

Bindra, K.

S. Shen, A. Jha, X. Liu, M. Naftaly, K. Bindra, H. J. Bookey, and A. K. Kar, “Tellurite glasses for broadband amplifiers and integrated optics,” J. Am. Ceram. Soc. 85(6), 1391–1395 (2002).
[CrossRef]

Bookey, H. J.

S. Shen, A. Jha, X. Liu, M. Naftaly, K. Bindra, H. J. Bookey, and A. K. Kar, “Tellurite glasses for broadband amplifiers and integrated optics,” J. Am. Ceram. Soc. 85(6), 1391–1395 (2002).
[CrossRef]

Camerlingo, A.

Caponi, R.

E. Taylor, L. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-doped Tellurite Fiber Amplifier,” IEEE Photon. Technol. Lett. 16(3), 777–779 (2004).
[CrossRef]

Chiodo, N.

Chryssou, C.

C. Chryssou, F. Di Pasquale, and C. Pitt, “Er3+ doped channel waveguide amplifiers for WDM systems: A comparison of tellurite, alumina and Al/P silicate materials,” IEEE J. Sel. Top. Quantum Electron. 6(1), 114–121 (2000).
[CrossRef]

Cianci, E.

G. Della Valle, S. Taccheo, P. Laporta, G. Sorbello, E. Cianci, and V. Foglietti, “Compact high gain erbium-ytterbium doped waveguide amplifier fabricated by Ag-Na ion exchange,” Electron. Lett. 42(11), 632–633 (2006).
[CrossRef]

Cusmai, G.

Dai, S.

S. Dai, C. Yu, G. Zhou, J. Zhang, and G. Wang, “Effect of OH- content on emission properties in Er3+-doped tellurite glasses,” J. Non-Cryst. Solids 354(12-13), 1357–1360 (2008).
[CrossRef]

S. Dai, C. Yu, G. Zhou, J. Zhang, G. Wang, and L. Hu, “Concentration quenching in erbium-doped tellurite glasses,” J. Lumin. 117(1), 39–45 (2006).
[CrossRef]

Dasgupta, S.

de Waal, H.

Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 m,” Appl. Phys. Lett. 71(20), 2922 (1997).
[CrossRef]

Della Valle, G.

T. T. Fernandez, G. Della Valle, R. Osellame, G. Jose, N. Chiodo, A. Jha, and P. Laporta, “Active waveguides written by femtosecond laser irradiation in an erbium-doped phospho-tellurite glass,” Opt. Express 16(19), 15198–15205 (2008).
[CrossRef] [PubMed]

G. Della Valle, S. Taccheo, P. Laporta, G. Sorbello, E. Cianci, and V. Foglietti, “Compact high gain erbium-ytterbium doped waveguide amplifier fabricated by Ag-Na ion exchange,” Electron. Lett. 42(11), 632–633 (2006).
[CrossRef]

Di Pasquale, F.

C. Chryssou, F. Di Pasquale, and C. Pitt, “Er3+ doped channel waveguide amplifiers for WDM systems: A comparison of tellurite, alumina and Al/P silicate materials,” IEEE J. Sel. Top. Quantum Electron. 6(1), 114–121 (2000).
[CrossRef]

DiCarolis, S.

F. Patel, S. DiCarolis, P. Lum, S. Venkatesh, and J. Miller, “A compact high-performance optical waveguide amplifier,” IEEE Photon. Technol. Lett. 16(12), 2607–2609 (2004).
[CrossRef]

Faber, A. J.

Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 m,” Appl. Phys. Lett. 71(20), 2922 (1997).
[CrossRef]

Feng, X.

Ferè, M.

Fernandez, T. T.

Flanagan, J. C.

Foglietti, V.

G. Della Valle, S. Taccheo, P. Laporta, G. Sorbello, E. Cianci, and V. Foglietti, “Compact high gain erbium-ytterbium doped waveguide amplifier fabricated by Ag-Na ion exchange,” Electron. Lett. 42(11), 632–633 (2006).
[CrossRef]

Frampton, K. E.

Horak, P.

Hu, L.

S. Dai, C. Yu, G. Zhou, J. Zhang, G. Wang, and L. Hu, “Concentration quenching in erbium-doped tellurite glasses,” J. Lumin. 117(1), 39–45 (2006).
[CrossRef]

Jha, A.

T. T. Fernandez, G. Della Valle, R. Osellame, G. Jose, N. Chiodo, A. Jha, and P. Laporta, “Active waveguides written by femtosecond laser irradiation in an erbium-doped phospho-tellurite glass,” Opt. Express 16(19), 15198–15205 (2008).
[CrossRef] [PubMed]

S. Shen, A. Jha, X. Liu, M. Naftaly, K. Bindra, H. J. Bookey, and A. K. Kar, “Tellurite glasses for broadband amplifiers and integrated optics,” J. Am. Ceram. Soc. 85(6), 1391–1395 (2002).
[CrossRef]

Jose, G.

Kar, A. K.

S. Shen, A. Jha, X. Liu, M. Naftaly, K. Bindra, H. J. Bookey, and A. K. Kar, “Tellurite glasses for broadband amplifiers and integrated optics,” J. Am. Ceram. Soc. 85(6), 1391–1395 (2002).
[CrossRef]

Kik, P. G.

Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 m,” Appl. Phys. Lett. 71(20), 2922 (1997).
[CrossRef]

King, S.

C. Tewell and S. King, “Observation of metastable erbium trihydride,” Appl. Surf. Sci. 253(5), 2597–2602 (2006).
[CrossRef]

Koper, R.

G. van den Hoven, R. Koper, A. Polman, C. van Dam, J. van Uffelen, and M. Smit, “Net optical gain at 1.53 m in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[CrossRef]

Lanata, M.

Laporta, P.

T. T. Fernandez, G. Della Valle, R. Osellame, G. Jose, N. Chiodo, A. Jha, and P. Laporta, “Active waveguides written by femtosecond laser irradiation in an erbium-doped phospho-tellurite glass,” Opt. Express 16(19), 15198–15205 (2008).
[CrossRef] [PubMed]

G. Della Valle, S. Taccheo, P. Laporta, G. Sorbello, E. Cianci, and V. Foglietti, “Compact high gain erbium-ytterbium doped waveguide amplifier fabricated by Ag-Na ion exchange,” Electron. Lett. 42(11), 632–633 (2006).
[CrossRef]

Liu, X.

S. Shen, A. Jha, X. Liu, M. Naftaly, K. Bindra, H. J. Bookey, and A. K. Kar, “Tellurite glasses for broadband amplifiers and integrated optics,” J. Am. Ceram. Soc. 85(6), 1391–1395 (2002).
[CrossRef]

Loh, W. H.

Lum, P.

F. Patel, S. DiCarolis, P. Lum, S. Venkatesh, and J. Miller, “A compact high-performance optical waveguide amplifier,” IEEE Photon. Technol. Lett. 16(12), 2607–2609 (2004).
[CrossRef]

Madden, S. J.

Martinelli, M.

Miller, J.

F. Patel, S. DiCarolis, P. Lum, S. Venkatesh, and J. Miller, “A compact high-performance optical waveguide amplifier,” IEEE Photon. Technol. Lett. 16(12), 2607–2609 (2004).
[CrossRef]

Miniscalco, W.

W. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500nm,” J. Lightwave Technol. 9(2), 234–250 (1991).
[CrossRef]

Mori, A.

A. Mori, “Tellurite-based fibers and their applications to optical communication networks,” J. Ceram. Soc. Jpn. 116(1358), 1040–1051 (2008).
[CrossRef]

Naftaly, M.

S. Shen, A. Jha, X. Liu, M. Naftaly, K. Bindra, H. J. Bookey, and A. K. Kar, “Tellurite glasses for broadband amplifiers and integrated optics,” J. Am. Ceram. Soc. 85(6), 1391–1395 (2002).
[CrossRef]

Ng, L.

E. Taylor, L. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-doped Tellurite Fiber Amplifier,” IEEE Photon. Technol. Lett. 16(3), 777–779 (2004).
[CrossRef]

Nilsson, J.

E. Taylor, L. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-doped Tellurite Fiber Amplifier,” IEEE Photon. Technol. Lett. 16(3), 777–779 (2004).
[CrossRef]

Nunzi Conti, G.

S. Berneschi, G. Nunzi Conti, and G. Righini, “Planar Waveguide Ampflifiers,” Ceramist: Jnl Korean Ceram. Soc. 10, 75–85 (2007).

Osellame, R.

Pagano, A.

E. Taylor, L. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-doped Tellurite Fiber Amplifier,” IEEE Photon. Technol. Lett. 16(3), 777–779 (2004).
[CrossRef]

Patel, F.

F. Patel, S. DiCarolis, P. Lum, S. Venkatesh, and J. Miller, “A compact high-performance optical waveguide amplifier,” IEEE Photon. Technol. Lett. 16(12), 2607–2609 (2004).
[CrossRef]

Petropoulos, P.

Piccinin, D.

Pietralunga, S. M.

Pitt, C.

C. Chryssou, F. Di Pasquale, and C. Pitt, “Er3+ doped channel waveguide amplifiers for WDM systems: A comparison of tellurite, alumina and Al/P silicate materials,” IEEE J. Sel. Top. Quantum Electron. 6(1), 114–121 (2000).
[CrossRef]

Polman, A.

Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 m,” Appl. Phys. Lett. 71(20), 2922 (1997).
[CrossRef]

G. van den Hoven, R. Koper, A. Polman, C. van Dam, J. van Uffelen, and M. Smit, “Net optical gain at 1.53 m in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[CrossRef]

Potenza, M.

E. Taylor, L. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-doped Tellurite Fiber Amplifier,” IEEE Photon. Technol. Lett. 16(3), 777–779 (2004).
[CrossRef]

Price, J. H.

Rahman, M.

C. D. Wilkinson and M. Rahman, “Dry etching and sputtering,” Philos. Transact. A Math. Phys. Eng. Sci. 362(1814), 125–138 (2004).
[CrossRef] [PubMed]

Reano, R. M.

Richardson, D. J.

Rieznik, A. A.

Righini, G.

S. Berneschi, G. Nunzi Conti, and G. Righini, “Planar Waveguide Ampflifiers,” Ceramist: Jnl Korean Ceram. Soc. 10, 75–85 (2007).

Rigolin, G.

Rutt, H. N.

Shen, S.

S. Shen, A. Jha, X. Liu, M. Naftaly, K. Bindra, H. J. Bookey, and A. K. Kar, “Tellurite glasses for broadband amplifiers and integrated optics,” J. Am. Ceram. Soc. 85(6), 1391–1395 (2002).
[CrossRef]

Smit, M.

G. van den Hoven, R. Koper, A. Polman, C. van Dam, J. van Uffelen, and M. Smit, “Net optical gain at 1.53 m in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[CrossRef]

Snitzer, E.

J. Wang, E. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[CrossRef]

Sorbello, G.

G. Della Valle, S. Taccheo, P. Laporta, G. Sorbello, E. Cianci, and V. Foglietti, “Compact high gain erbium-ytterbium doped waveguide amplifier fabricated by Ag-Na ion exchange,” Electron. Lett. 42(11), 632–633 (2006).
[CrossRef]

Sordo, B.

E. Taylor, L. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-doped Tellurite Fiber Amplifier,” IEEE Photon. Technol. Lett. 16(3), 777–779 (2004).
[CrossRef]

Sun, P.

Taccheo, S.

G. Della Valle, S. Taccheo, P. Laporta, G. Sorbello, E. Cianci, and V. Foglietti, “Compact high gain erbium-ytterbium doped waveguide amplifier fabricated by Ag-Na ion exchange,” Electron. Lett. 42(11), 632–633 (2006).
[CrossRef]

Taylor, E.

E. Taylor, L. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-doped Tellurite Fiber Amplifier,” IEEE Photon. Technol. Lett. 16(3), 777–779 (2004).
[CrossRef]

Tewell, C.

C. Tewell and S. King, “Observation of metastable erbium trihydride,” Appl. Surf. Sci. 253(5), 2597–2602 (2006).
[CrossRef]

Torregiani, M.

van Dam, C.

G. van den Hoven, R. Koper, A. Polman, C. van Dam, J. van Uffelen, and M. Smit, “Net optical gain at 1.53 m in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[CrossRef]

van den Hoven, G.

G. van den Hoven, R. Koper, A. Polman, C. van Dam, J. van Uffelen, and M. Smit, “Net optical gain at 1.53 m in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[CrossRef]

van Uffelen, J.

G. van den Hoven, R. Koper, A. Polman, C. van Dam, J. van Uffelen, and M. Smit, “Net optical gain at 1.53 m in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[CrossRef]

Venkatesh, S.

F. Patel, S. DiCarolis, P. Lum, S. Venkatesh, and J. Miller, “A compact high-performance optical waveguide amplifier,” IEEE Photon. Technol. Lett. 16(12), 2607–2609 (2004).
[CrossRef]

Vogel, E.

J. Wang, E. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[CrossRef]

Vu, K. T.

Wang, G.

S. Dai, C. Yu, G. Zhou, J. Zhang, and G. Wang, “Effect of OH- content on emission properties in Er3+-doped tellurite glasses,” J. Non-Cryst. Solids 354(12-13), 1357–1360 (2008).
[CrossRef]

S. Dai, C. Yu, G. Zhou, J. Zhang, G. Wang, and L. Hu, “Concentration quenching in erbium-doped tellurite glasses,” J. Lumin. 117(1), 39–45 (2006).
[CrossRef]

Wang, J.

J. Wang, E. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[CrossRef]

White, N. M.

Wilkinson, C. D.

C. D. Wilkinson and M. Rahman, “Dry etching and sputtering,” Philos. Transact. A Math. Phys. Eng. Sci. 362(1814), 125–138 (2004).
[CrossRef] [PubMed]

Yan, Y. C.

Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 m,” Appl. Phys. Lett. 71(20), 2922 (1997).
[CrossRef]

Yu, C.

S. Dai, C. Yu, G. Zhou, J. Zhang, and G. Wang, “Effect of OH- content on emission properties in Er3+-doped tellurite glasses,” J. Non-Cryst. Solids 354(12-13), 1357–1360 (2008).
[CrossRef]

S. Dai, C. Yu, G. Zhou, J. Zhang, G. Wang, and L. Hu, “Concentration quenching in erbium-doped tellurite glasses,” J. Lumin. 117(1), 39–45 (2006).
[CrossRef]

Zhang, J.

S. Dai, C. Yu, G. Zhou, J. Zhang, and G. Wang, “Effect of OH- content on emission properties in Er3+-doped tellurite glasses,” J. Non-Cryst. Solids 354(12-13), 1357–1360 (2008).
[CrossRef]

S. Dai, C. Yu, G. Zhou, J. Zhang, G. Wang, and L. Hu, “Concentration quenching in erbium-doped tellurite glasses,” J. Lumin. 117(1), 39–45 (2006).
[CrossRef]

Zhou, G.

S. Dai, C. Yu, G. Zhou, J. Zhang, and G. Wang, “Effect of OH- content on emission properties in Er3+-doped tellurite glasses,” J. Non-Cryst. Solids 354(12-13), 1357–1360 (2008).
[CrossRef]

S. Dai, C. Yu, G. Zhou, J. Zhang, G. Wang, and L. Hu, “Concentration quenching in erbium-doped tellurite glasses,” J. Lumin. 117(1), 39–45 (2006).
[CrossRef]

Appl. Phys. Lett.

G. van den Hoven, R. Koper, A. Polman, C. van Dam, J. van Uffelen, and M. Smit, “Net optical gain at 1.53 m in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett. 68(14), 1886–1888 (1996).
[CrossRef]

Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 m,” Appl. Phys. Lett. 71(20), 2922 (1997).
[CrossRef]

Appl. Surf. Sci.

C. Tewell and S. King, “Observation of metastable erbium trihydride,” Appl. Surf. Sci. 253(5), 2597–2602 (2006).
[CrossRef]

Ceramist: Jnl Korean Ceram. Soc.

S. Berneschi, G. Nunzi Conti, and G. Righini, “Planar Waveguide Ampflifiers,” Ceramist: Jnl Korean Ceram. Soc. 10, 75–85 (2007).

Electron. Lett.

G. Della Valle, S. Taccheo, P. Laporta, G. Sorbello, E. Cianci, and V. Foglietti, “Compact high gain erbium-ytterbium doped waveguide amplifier fabricated by Ag-Na ion exchange,” Electron. Lett. 42(11), 632–633 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

C. Chryssou, F. Di Pasquale, and C. Pitt, “Er3+ doped channel waveguide amplifiers for WDM systems: A comparison of tellurite, alumina and Al/P silicate materials,” IEEE J. Sel. Top. Quantum Electron. 6(1), 114–121 (2000).
[CrossRef]

IEEE Photon. Technol. Lett.

F. Patel, S. DiCarolis, P. Lum, S. Venkatesh, and J. Miller, “A compact high-performance optical waveguide amplifier,” IEEE Photon. Technol. Lett. 16(12), 2607–2609 (2004).
[CrossRef]

E. Taylor, L. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-doped Tellurite Fiber Amplifier,” IEEE Photon. Technol. Lett. 16(3), 777–779 (2004).
[CrossRef]

J. Am. Ceram. Soc.

S. Shen, A. Jha, X. Liu, M. Naftaly, K. Bindra, H. J. Bookey, and A. K. Kar, “Tellurite glasses for broadband amplifiers and integrated optics,” J. Am. Ceram. Soc. 85(6), 1391–1395 (2002).
[CrossRef]

J. Ceram. Soc. Jpn.

A. Mori, “Tellurite-based fibers and their applications to optical communication networks,” J. Ceram. Soc. Jpn. 116(1358), 1040–1051 (2008).
[CrossRef]

J. Lightwave Technol.

W. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500nm,” J. Lightwave Technol. 9(2), 234–250 (1991).
[CrossRef]

J. Lumin.

S. Dai, C. Yu, G. Zhou, J. Zhang, G. Wang, and L. Hu, “Concentration quenching in erbium-doped tellurite glasses,” J. Lumin. 117(1), 39–45 (2006).
[CrossRef]

J. Non-Cryst. Solids

S. Dai, C. Yu, G. Zhou, J. Zhang, and G. Wang, “Effect of OH- content on emission properties in Er3+-doped tellurite glasses,” J. Non-Cryst. Solids 354(12-13), 1357–1360 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater.

J. Wang, E. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3(3), 187–203 (1994).
[CrossRef]

Philos. Transact. A Math. Phys. Eng. Sci.

C. D. Wilkinson and M. Rahman, “Dry etching and sputtering,” Philos. Transact. A Math. Phys. Eng. Sci. 362(1814), 125–138 (2004).
[CrossRef] [PubMed]

Other

R. Grew, H. Ebendorff-Heidepriem, P. Veitch, and T. Monro, “Concentration effects in erbium doped tellurite glass,” in Conference on Optoelectronic and Microelectronic Materials and Devices, Proceedings, COMMAD(Institute of Electrical and Electronics Engineers Inc., Perth, Australia, 2006), pp. 196–199.

R. El-Mallawany, Tellurite Glasses Handbook: physical properties and data (CRC Press, 2002).

A. Wucher, Sputtering: Experiment (Det Kongelige Danske Videnskabernes Selskab, Copenhagen, 2006).

P. Becker, N. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and technology (Academic Press, San Diego, CA, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Etching of pure TeO2 waveguide and Er doped waveguide.

Fig. 2
Fig. 2

Insertion loss spectrum of 3.5μm wide 2.7%Er/Te waveguide – note Erbium absorption dip is bleached somewhat due to the use high power ASE source to achieve the required dynamic range to measure dip amplitude in the 1400-1700nm absorption region.

Fig. 3
Fig. 3

Lifetime measurement experimental setup.

Fig. 4
Fig. 4

Measured lifetime data in Er doped Tellurite films. a) minimum pump power 1.3% Er/Te, b) maximum pump power 1.3% Er/Te, c) minimum pump power 0.3% Er/Te.

Fig. 5
Fig. 5

Measured lifetime vs 1290nm absorption loss in waveguide with ~1% Er/Te.

Fig. 6
Fig. 6

Data of Dai et al. [20] replotted and fitted to extract characteristic dependence on OH concentration a) Dai’s original data with fits b). Rate dependencies extracted and plotted as a function of Er concentration.

Fig. 7
Fig. 7

Gain measurement experimental setup, the insert picture on the left shows the pumped waveguide emitting green light due to processes such as upconversion and ESA.

Fig. 8
Fig. 8

a) Measured small signal internal gain b) Pump saturation response at 1535nm 1555nm and 1600nm. c) Signal gain saturation gain characteristics at 1535nm with both pumps.

Tables (1)

Tables Icon

Table 1 Lifetimes for different measurement geometries

Metrics