Abstract

We show that a distributed-feedback terahertz quantum cascade laser can be tuned with a coupled microcavity by anti-crossing of the respective eigenfrequencies. In this proof-of-concept experiment, a tuning range of 20 GHz is obtained, in good agreement with a simple finite element model, which shows that the tuning is determined by the coupling strength between the resonators. The concept could be applied to any laser cavity, but becomes progressively more attractive the lower the emission frequency.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
    [CrossRef] [PubMed]
  2. B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
    [CrossRef]
  3. J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett. 91(12), 121104 (2007).
    [CrossRef]
  4. A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Tunable terahertz quantum cascade lasers with external gratings,” Opt. Lett. 35(7), 910–912 (2010).
    [CrossRef] [PubMed]
  5. L. A. Dunbar, R. Houdré, G. Scalari, L. Sirigu, M. Giovannini, and J. Faist, “Small optical volume terahertz emitting microdisk quantum cascade lasers,” Appl. Phys. Lett. 90(14), 141114 (2007).
    [CrossRef]
  6. J. M. Hensley, J. Montoya, M. G. Allen, J. Xu, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “Spectral behavior of a terahertz quantum-cascade laser,” Opt. Express 17(22), 20476–20483 (2009).
    [CrossRef] [PubMed]
  7. Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, “Tuning a terahertz wire laser,” Nat. Photonics 3(12), 732–737 (2009).
    [CrossRef]
  8. G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser Photon. Rev. 3(1–2), 45–66 (2009).
    [CrossRef]
  9. L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, and D. A. Ritchie, “High-power surface emission from terahertz distributed feedback lasers with a dual-slit unit cell,” Appl. Phys. Lett. 96(19), 191109 (2010).
    [CrossRef]
  10. M. Schubert and F. Rana, “Analysis of Terahertz Surface Emitting Quantum-Cascade Lasers,” IEEE J. Quantum Electron. 42(3), 257–265 (2006).
    [CrossRef]
  11. J. A. Fan, M. A. Belkin, F. Capasso, S. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, “Surface emitting terahertz quantum cascade laser with a double-metal waveguide,” Opt. Express 14(24), 11672–11680 (2006).
    [CrossRef] [PubMed]
  12. S. Kumar, B. S. Williams, Q. Qin, A. W. Lee, Q. Hu, and J. L. Reno, “Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides,” Opt. Express 15(1), 113–128 (2007).
    [CrossRef] [PubMed]
  13. L. Mahler, A. Tredicucci, F. Beltram, C. Walther, H. E. Beere, and D. A. Ritchie, “Finite size effects in surface emitting Terahertz quantum cascade lasers,” Opt. Express 17(8), 6703–6709 (2009).
    [CrossRef] [PubMed]
  14. L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
    [CrossRef]
  15. L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, “Vertically emitting microdisk lasers,” Nat. Photonics 3(1), 46–49 (2009).
    [CrossRef]

2010 (3)

A. W. M. Lee, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Tunable terahertz quantum cascade lasers with external gratings,” Opt. Lett. 35(7), 910–912 (2010).
[CrossRef] [PubMed]

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, and D. A. Ritchie, “High-power surface emission from terahertz distributed feedback lasers with a dual-slit unit cell,” Appl. Phys. Lett. 96(19), 191109 (2010).
[CrossRef]

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[CrossRef]

2009 (5)

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, “Vertically emitting microdisk lasers,” Nat. Photonics 3(1), 46–49 (2009).
[CrossRef]

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, H. E. Beere, and D. A. Ritchie, “Finite size effects in surface emitting Terahertz quantum cascade lasers,” Opt. Express 17(8), 6703–6709 (2009).
[CrossRef] [PubMed]

J. M. Hensley, J. Montoya, M. G. Allen, J. Xu, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “Spectral behavior of a terahertz quantum-cascade laser,” Opt. Express 17(22), 20476–20483 (2009).
[CrossRef] [PubMed]

Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, “Tuning a terahertz wire laser,” Nat. Photonics 3(12), 732–737 (2009).
[CrossRef]

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser Photon. Rev. 3(1–2), 45–66 (2009).
[CrossRef]

2007 (4)

L. A. Dunbar, R. Houdré, G. Scalari, L. Sirigu, M. Giovannini, and J. Faist, “Small optical volume terahertz emitting microdisk quantum cascade lasers,” Appl. Phys. Lett. 90(14), 141114 (2007).
[CrossRef]

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
[CrossRef]

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett. 91(12), 121104 (2007).
[CrossRef]

S. Kumar, B. S. Williams, Q. Qin, A. W. Lee, Q. Hu, and J. L. Reno, “Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides,” Opt. Express 15(1), 113–128 (2007).
[CrossRef] [PubMed]

2006 (2)

2002 (1)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Allen, M. G.

J. M. Hensley, J. Montoya, M. G. Allen, J. Xu, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “Spectral behavior of a terahertz quantum-cascade laser,” Opt. Express 17(22), 20476–20483 (2009).
[CrossRef] [PubMed]

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett. 91(12), 121104 (2007).
[CrossRef]

Beere, H.

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser Photon. Rev. 3(1–2), 45–66 (2009).
[CrossRef]

Beere, H. E.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, and D. A. Ritchie, “High-power surface emission from terahertz distributed feedback lasers with a dual-slit unit cell,” Appl. Phys. Lett. 96(19), 191109 (2010).
[CrossRef]

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[CrossRef]

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, “Vertically emitting microdisk lasers,” Nat. Photonics 3(1), 46–49 (2009).
[CrossRef]

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, H. E. Beere, and D. A. Ritchie, “Finite size effects in surface emitting Terahertz quantum cascade lasers,” Opt. Express 17(8), 6703–6709 (2009).
[CrossRef] [PubMed]

J. M. Hensley, J. Montoya, M. G. Allen, J. Xu, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “Spectral behavior of a terahertz quantum-cascade laser,” Opt. Express 17(22), 20476–20483 (2009).
[CrossRef] [PubMed]

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett. 91(12), 121104 (2007).
[CrossRef]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Belkin, M. A.

Beltram, F.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, and D. A. Ritchie, “High-power surface emission from terahertz distributed feedback lasers with a dual-slit unit cell,” Appl. Phys. Lett. 96(19), 191109 (2010).
[CrossRef]

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[CrossRef]

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, H. E. Beere, and D. A. Ritchie, “Finite size effects in surface emitting Terahertz quantum cascade lasers,” Opt. Express 17(8), 6703–6709 (2009).
[CrossRef] [PubMed]

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, “Vertically emitting microdisk lasers,” Nat. Photonics 3(1), 46–49 (2009).
[CrossRef]

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett. 91(12), 121104 (2007).
[CrossRef]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Capasso, F.

Davies, A. G.

J. A. Fan, M. A. Belkin, F. Capasso, S. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, “Surface emitting terahertz quantum cascade laser with a double-metal waveguide,” Opt. Express 14(24), 11672–11680 (2006).
[CrossRef] [PubMed]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Dunbar, L. A.

L. A. Dunbar, R. Houdré, G. Scalari, L. Sirigu, M. Giovannini, and J. Faist, “Small optical volume terahertz emitting microdisk quantum cascade lasers,” Appl. Phys. Lett. 90(14), 141114 (2007).
[CrossRef]

Faist, J.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, and D. A. Ritchie, “High-power surface emission from terahertz distributed feedback lasers with a dual-slit unit cell,” Appl. Phys. Lett. 96(19), 191109 (2010).
[CrossRef]

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[CrossRef]

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, “Vertically emitting microdisk lasers,” Nat. Photonics 3(1), 46–49 (2009).
[CrossRef]

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser Photon. Rev. 3(1–2), 45–66 (2009).
[CrossRef]

L. A. Dunbar, R. Houdré, G. Scalari, L. Sirigu, M. Giovannini, and J. Faist, “Small optical volume terahertz emitting microdisk quantum cascade lasers,” Appl. Phys. Lett. 90(14), 141114 (2007).
[CrossRef]

Fan, J. A.

Fenner, D. B.

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett. 91(12), 121104 (2007).
[CrossRef]

Fischer, M.

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser Photon. Rev. 3(1–2), 45–66 (2009).
[CrossRef]

Giovannini, M.

L. A. Dunbar, R. Houdré, G. Scalari, L. Sirigu, M. Giovannini, and J. Faist, “Small optical volume terahertz emitting microdisk quantum cascade lasers,” Appl. Phys. Lett. 90(14), 141114 (2007).
[CrossRef]

Green, R. P.

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett. 91(12), 121104 (2007).
[CrossRef]

Hensley, J. M.

J. M. Hensley, J. Montoya, M. G. Allen, J. Xu, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “Spectral behavior of a terahertz quantum-cascade laser,” Opt. Express 17(22), 20476–20483 (2009).
[CrossRef] [PubMed]

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett. 91(12), 121104 (2007).
[CrossRef]

Houdré, R.

L. A. Dunbar, R. Houdré, G. Scalari, L. Sirigu, M. Giovannini, and J. Faist, “Small optical volume terahertz emitting microdisk quantum cascade lasers,” Appl. Phys. Lett. 90(14), 141114 (2007).
[CrossRef]

Hu, Q.

Iotti, R. C.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Khanna, S.

Köhler, R.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Kumar, S.

Lachab, M.

Lee, A. W.

Lee, A. W. M.

Linfield, E. H.

J. A. Fan, M. A. Belkin, F. Capasso, S. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, “Surface emitting terahertz quantum cascade laser with a double-metal waveguide,” Opt. Express 14(24), 11672–11680 (2006).
[CrossRef] [PubMed]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Mahler, L.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, and D. A. Ritchie, “High-power surface emission from terahertz distributed feedback lasers with a dual-slit unit cell,” Appl. Phys. Lett. 96(19), 191109 (2010).
[CrossRef]

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[CrossRef]

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, H. E. Beere, and D. A. Ritchie, “Finite size effects in surface emitting Terahertz quantum cascade lasers,” Opt. Express 17(8), 6703–6709 (2009).
[CrossRef] [PubMed]

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, “Vertically emitting microdisk lasers,” Nat. Photonics 3(1), 46–49 (2009).
[CrossRef]

J. M. Hensley, J. Montoya, M. G. Allen, J. Xu, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “Spectral behavior of a terahertz quantum-cascade laser,” Opt. Express 17(22), 20476–20483 (2009).
[CrossRef] [PubMed]

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett. 91(12), 121104 (2007).
[CrossRef]

Montoya, J.

Qin, Q.

Rana, F.

M. Schubert and F. Rana, “Analysis of Terahertz Surface Emitting Quantum-Cascade Lasers,” IEEE J. Quantum Electron. 42(3), 257–265 (2006).
[CrossRef]

Reno, J. L.

Ritchie, D.

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser Photon. Rev. 3(1–2), 45–66 (2009).
[CrossRef]

Ritchie, D. A.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, and D. A. Ritchie, “High-power surface emission from terahertz distributed feedback lasers with a dual-slit unit cell,” Appl. Phys. Lett. 96(19), 191109 (2010).
[CrossRef]

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[CrossRef]

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, “Vertically emitting microdisk lasers,” Nat. Photonics 3(1), 46–49 (2009).
[CrossRef]

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, H. E. Beere, and D. A. Ritchie, “Finite size effects in surface emitting Terahertz quantum cascade lasers,” Opt. Express 17(8), 6703–6709 (2009).
[CrossRef] [PubMed]

J. M. Hensley, J. Montoya, M. G. Allen, J. Xu, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “Spectral behavior of a terahertz quantum-cascade laser,” Opt. Express 17(22), 20476–20483 (2009).
[CrossRef] [PubMed]

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett. 91(12), 121104 (2007).
[CrossRef]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Rossi, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Scalari, G.

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser Photon. Rev. 3(1–2), 45–66 (2009).
[CrossRef]

L. A. Dunbar, R. Houdré, G. Scalari, L. Sirigu, M. Giovannini, and J. Faist, “Small optical volume terahertz emitting microdisk quantum cascade lasers,” Appl. Phys. Lett. 90(14), 141114 (2007).
[CrossRef]

Schubert, M.

M. Schubert and F. Rana, “Analysis of Terahertz Surface Emitting Quantum-Cascade Lasers,” IEEE J. Quantum Electron. 42(3), 257–265 (2006).
[CrossRef]

Sirigu, L.

L. A. Dunbar, R. Houdré, G. Scalari, L. Sirigu, M. Giovannini, and J. Faist, “Small optical volume terahertz emitting microdisk quantum cascade lasers,” Appl. Phys. Lett. 90(14), 141114 (2007).
[CrossRef]

Terazzi, R.

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser Photon. Rev. 3(1–2), 45–66 (2009).
[CrossRef]

Tredicucci, A.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, and D. A. Ritchie, “High-power surface emission from terahertz distributed feedback lasers with a dual-slit unit cell,” Appl. Phys. Lett. 96(19), 191109 (2010).
[CrossRef]

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[CrossRef]

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, H. E. Beere, and D. A. Ritchie, “Finite size effects in surface emitting Terahertz quantum cascade lasers,” Opt. Express 17(8), 6703–6709 (2009).
[CrossRef] [PubMed]

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, “Vertically emitting microdisk lasers,” Nat. Photonics 3(1), 46–49 (2009).
[CrossRef]

J. M. Hensley, J. Montoya, M. G. Allen, J. Xu, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “Spectral behavior of a terahertz quantum-cascade laser,” Opt. Express 17(22), 20476–20483 (2009).
[CrossRef] [PubMed]

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett. 91(12), 121104 (2007).
[CrossRef]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Walther, C.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, and D. A. Ritchie, “High-power surface emission from terahertz distributed feedback lasers with a dual-slit unit cell,” Appl. Phys. Lett. 96(19), 191109 (2010).
[CrossRef]

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[CrossRef]

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, H. E. Beere, and D. A. Ritchie, “Finite size effects in surface emitting Terahertz quantum cascade lasers,” Opt. Express 17(8), 6703–6709 (2009).
[CrossRef] [PubMed]

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, “Vertically emitting microdisk lasers,” Nat. Photonics 3(1), 46–49 (2009).
[CrossRef]

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser Photon. Rev. 3(1–2), 45–66 (2009).
[CrossRef]

Wiersma, D. S.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[CrossRef]

Williams, B. S.

Witzigmann, B.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, “Vertically emitting microdisk lasers,” Nat. Photonics 3(1), 46–49 (2009).
[CrossRef]

Xu, J.

J. M. Hensley, J. Montoya, M. G. Allen, J. Xu, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “Spectral behavior of a terahertz quantum-cascade laser,” Opt. Express 17(22), 20476–20483 (2009).
[CrossRef] [PubMed]

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett. 91(12), 121104 (2007).
[CrossRef]

Appl. Phys. Lett. (3)

J. Xu, J. M. Hensley, D. B. Fenner, R. P. Green, L. Mahler, A. Tredicucci, M. G. Allen, F. Beltram, H. E. Beere, and D. A. Ritchie, “Tunable terahertz quantum cascade lasers with an external cavity,” Appl. Phys. Lett. 91(12), 121104 (2007).
[CrossRef]

L. A. Dunbar, R. Houdré, G. Scalari, L. Sirigu, M. Giovannini, and J. Faist, “Small optical volume terahertz emitting microdisk quantum cascade lasers,” Appl. Phys. Lett. 90(14), 141114 (2007).
[CrossRef]

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, and D. A. Ritchie, “High-power surface emission from terahertz distributed feedback lasers with a dual-slit unit cell,” Appl. Phys. Lett. 96(19), 191109 (2010).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Schubert and F. Rana, “Analysis of Terahertz Surface Emitting Quantum-Cascade Lasers,” IEEE J. Quantum Electron. 42(3), 257–265 (2006).
[CrossRef]

Laser Photon. Rev. (1)

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser Photon. Rev. 3(1–2), 45–66 (2009).
[CrossRef]

Nat. Photonics (4)

Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, “Tuning a terahertz wire laser,” Nat. Photonics 3(12), 732–737 (2009).
[CrossRef]

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1(9), 517–525 (2007).
[CrossRef]

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[CrossRef]

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, and D. A. Ritchie, “Vertically emitting microdisk lasers,” Nat. Photonics 3(1), 46–49 (2009).
[CrossRef]

Nature (1)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic drawing of the experiment. The first resonator is formed by the grating along the double metal waveguide enclosing the gain material. The second resonator is formed by the patterned top metallization and the movable metallic mirror above. (b) Computed eigenfrequencies as a function of the mirror position above the grating. The separate eigenfrequencies of the DFB resonator and the metallic microcavity are plotted in red and green respectively. The DFB is formed by a dual-slit grating with the slits spaced by 70% of the period [9]. Considering the combined system (blue), the lower, vertically emitting band-edge of the DFB is strongly coupled to the metallic cavity where the two cavities share the same eigenfrequencies and therefore an anti-crossing is observed. The upper, non-radiative band-edge is not affected by the mirror and remains unchanged. In the calculation we assumed a 3.3 THz laser waveguide with a DFB grating period of 26 μm.

Fig. 2
Fig. 2

(a) A few branches of of Fig. 1(b), plotted together with the respective threshold currents. According to this calculation, the blue branch would have the lowest threshold for mirror distances ranging from 47 to 93 µm (vertical lines), where the lasing frequency is tuned from 3340 GHz to 3220 GHz (grey rectangle) (b) Eigenmodes corresponding to the eigenfrequencies indicated with numbered arrows in panel (a). Mode 1 and 4 are not affected by the top mirror, and are thus DFB-like and entirely confined in the waveguide. Mode 2 is mostly microcavity-like, thus the confinement inside the active region is strongly reduced (~18%). At the anti-crossing point (3) the mode is equally distributed between waveguide and microcavity.

Fig. 3
Fig. 3

Surface losses at 3.3 THz of a 26 μm dual-slit DFB grating as function of the ratio between wavelength and waveguide thickness. The different curves refer to the slit distance being a different fraction of the grating period.

Fig. 4
Fig. 4

(a) Experimental setup: The mirror is mounted face up on the inverted Aluminium-T, and is moved by the vertical piezo drive below towards the laser mounted upside down on the cold-finger of the cryostat (copper). The drive is in the fully retreated position here. (b) Top panel: Spectrum of a device without mirror. The two band-edges of the DFB-grating are observed. Bottom panel: Spectra with three different mirror positions. While the lower, vertically emitting band-edge clearly tunes with the mirror position, the upper band-edge is not affected by the top-mirror, exactly as predicted by the calculations shown in Fig. 2.

Fig. 5
Fig. 5

Spectra collected from the laser driven with pulses of 800 ns at 12.5 kHz repetition rate and different mirror positions, with the mirror approaching the DFB from upper to lower spectra, where 200-250 steps of the piezo drive correspond to ~λ0/2 or 44 µm. (a) With the mirror at an average distance of ~500 µm, a tuning range of 10 GHz is observed while the mirror is moved by 120 steps. (b) With the mirror at a distance comparable to λ0, a tuning range of 20 GHz is observed. The mirror is moved by 10 steps between two consecutive spectra. Between the two branches, where no peak is observed, the laser oscillates only on the upper band-edge (not shown).

Fig. 6
Fig. 6

Light-current (L-I) characteristics as measured from the device facet for the different positions of the top mirror: near the anti-crossing point between microcavity and radiative DFB mode (black), complete detuning (blue), intermediate (red). In the inset the output power at a current of ~2.6 A is plotted as a function of mirror movement, with zero being the closest position to the laser device. The magnitude of the piezo step depends on the exact temperature of the stage, friction, load etc. According to specifications, it should be of few hundred nm for the employed voltage.

Metrics