Abstract

We demonstrate a tunable laser frequency comb operating near 420 nm with mode spacing of 20-50 GHz, usable bandwidth of 15 nm and output power per line of ~20 nW. Using the TRES spectrograph at the Fred Lawrence Whipple Observatory, we characterize this system to an accuracy below 1m/s, suitable for calibrating high-resolution astrophysical spectrographs used, e.g., in exoplanet studies.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D'Odorico, M. Fischer, T. W. Hansch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).
    [CrossRef]
  2. S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
    [CrossRef]
  3. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. Hänsch, and T. Udem, “Fabry–Pérot filter cavities for wide-spaced frequency combs with large spectral bandwidth,” Appl. Phys. B 96(2-3), 251–256 (2009).
    [CrossRef]
  4. M. S. Kirchner, D. A. Braje, T. M. Fortier, A. M. Weiner, L. Hollberg, and S. A. Diddams, “Generation of 20 GHz, sub-40 fs pulses at 960 nm via repetition-rate multiplication,” Opt. Lett. 34(7), 872–874 (2009).
    [CrossRef] [PubMed]
  5. G. T. Nogueira, B. W. Xu, Y. Coello, M. Dantus, and F. C. Cruz, “Broadband 2.12 GHz Ti:sapphire laser compressed to 5.9 femtoseconds using MIIPS,” Opt. Express 16(14), 10033–10038 (2008).
    [CrossRef] [PubMed]
  6. L.-J. Chen, A. J. Benedick, J. R. Birge, M. Y. Sander, and F. Kärtner, “Octave-spanning, dual-output 2.166 GHz Ti:sapphire laser,” Opt. Express 16(25), 20699–20705 (2008).
    [CrossRef] [PubMed]
  7. A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326(5953), 681 (2009).
    [CrossRef] [PubMed]
  8. A. Sandage, “The change of redshift and apparrent luminosity of galaxies due to the deceleration of selected expanding universes,” Astrophys. J. 136, 319–333 (1962).
    [CrossRef]
  9. A. Loeb, “Direct Measurement of Cosmological Parameters from the Cosmic Deceleration of Extragalactic Objects,” Astrophys. J. 499(2), L111–L114 (1998).
    [CrossRef]
  10. S. Osterman, S. Diddams, M. Beasley, C. Froning, L. Hollberg, P. MacQueen, V. Mbele, and A. Weiner, “A proposed laser frequency comb-based wavelength reference for high-resolution spectroscopy,” in Techniques and Instrumentation for Detection of Exoplanets III, (SPIE, 2007), 66931G–66939.
  11. C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
    [CrossRef] [PubMed]
  12. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
    [CrossRef] [PubMed]
  13. D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” Eur. Phys. J. D 48(1), 57–66 (2008).
    [CrossRef]
  14. T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. W. Hänsch, R. Holzwarth, and T. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc. Lett. 405(1), L16–L20 (2010).
    [CrossRef]
  15. F. Bouchy, F. Pepe, and D. Queloz, “Fundamental photon noise limit to radial velocity measurements,” Astron. Astrophys. 374(2), 733–739 (2001).
  16. C.-H. Li, A. G. Glenday, A. J. Benedick, G. Chang, L.-J. Chen, C. Cramer, P. Fendel, G. Furesz, F. X. Kärtner, S. Korzennik, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “In-situ determination of astro-comb calibrator lines to better than 10 cm s(-1),” Opt. Express 18(12), 13239–13249 (2010).
    [CrossRef] [PubMed]
  17. J. W. Brault, “High precision Fourier transform spectrometry: The critical role of phase corrections,” Mikrochim. Acta 93(1–6), 215–227 (1987).
    [CrossRef]
  18. L.-J. Chen, G. Chang, C.-H. Li, A. Glenday, A. J. Benedick, D. F. Phillips, R. L. Walsworth, and F. X. Kärtner, “High-Finesse Dispersion-Free Cavities for Broadband Filtration of Laser Comb Lines,” in Ultrafast Phenomena, (OSA, Snowmass, CO, 2010), TuF1.
  19. A. Benedick, D. Tyurikov, M. Gubin, R. Shewmon, I. Chuang, and F. X. Kärtner, “Compact, Ti:sapphire-based, methane-stabilized optical molecular frequency comb and clock,” Opt. Lett. 34(14), 2168–2170 (2009).
    [CrossRef] [PubMed]
  20. J. R. Birge, and F. X. Kärtner, “Design of Optimal Dispersive Mirrors for Femtosecond Enhancement Cavities and Compressors by Minimizing Phase Distortion Power,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), CThDD1.
  21. G. Furesz, “Design and application of high resolution and multiobject spectrographs: Dynamical studies of open clusters,” Phd Thesis, (University of Szeged, Hungary, 2008).

2010 (2)

2009 (4)

M. S. Kirchner, D. A. Braje, T. M. Fortier, A. M. Weiner, L. Hollberg, and S. A. Diddams, “Generation of 20 GHz, sub-40 fs pulses at 960 nm via repetition-rate multiplication,” Opt. Lett. 34(7), 872–874 (2009).
[CrossRef] [PubMed]

A. Benedick, D. Tyurikov, M. Gubin, R. Shewmon, I. Chuang, and F. X. Kärtner, “Compact, Ti:sapphire-based, methane-stabilized optical molecular frequency comb and clock,” Opt. Lett. 34(14), 2168–2170 (2009).
[CrossRef] [PubMed]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. Hänsch, and T. Udem, “Fabry–Pérot filter cavities for wide-spaced frequency combs with large spectral bandwidth,” Appl. Phys. B 96(2-3), 251–256 (2009).
[CrossRef]

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326(5953), 681 (2009).
[CrossRef] [PubMed]

2008 (5)

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
[CrossRef] [PubMed]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” Eur. Phys. J. D 48(1), 57–66 (2008).
[CrossRef]

G. T. Nogueira, B. W. Xu, Y. Coello, M. Dantus, and F. C. Cruz, “Broadband 2.12 GHz Ti:sapphire laser compressed to 5.9 femtoseconds using MIIPS,” Opt. Express 16(14), 10033–10038 (2008).
[CrossRef] [PubMed]

L.-J. Chen, A. J. Benedick, J. R. Birge, M. Y. Sander, and F. Kärtner, “Octave-spanning, dual-output 2.166 GHz Ti:sapphire laser,” Opt. Express 16(25), 20699–20705 (2008).
[CrossRef] [PubMed]

2007 (1)

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D'Odorico, M. Fischer, T. W. Hansch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).
[CrossRef]

2003 (1)

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[CrossRef]

2001 (1)

F. Bouchy, F. Pepe, and D. Queloz, “Fundamental photon noise limit to radial velocity measurements,” Astron. Astrophys. 374(2), 733–739 (2001).

1998 (1)

A. Loeb, “Direct Measurement of Cosmological Parameters from the Cosmic Deceleration of Extragalactic Objects,” Astrophys. J. 499(2), L111–L114 (1998).
[CrossRef]

1987 (1)

J. W. Brault, “High precision Fourier transform spectrometry: The critical role of phase corrections,” Mikrochim. Acta 93(1–6), 215–227 (1987).
[CrossRef]

1962 (1)

A. Sandage, “The change of redshift and apparrent luminosity of galaxies due to the deceleration of selected expanding universes,” Astrophys. J. 136, 319–333 (1962).
[CrossRef]

Araujo-Hauck, C.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. Hänsch, and T. Udem, “Fabry–Pérot filter cavities for wide-spaced frequency combs with large spectral bandwidth,” Appl. Phys. B 96(2-3), 251–256 (2009).
[CrossRef]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D'Odorico, M. Fischer, T. W. Hansch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).
[CrossRef]

Bartels, A.

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326(5953), 681 (2009).
[CrossRef] [PubMed]

Benedick, A.

Benedick, A. J.

Birge, J. R.

Bouchy, F.

F. Bouchy, F. Pepe, and D. Queloz, “Fundamental photon noise limit to radial velocity measurements,” Astron. Astrophys. 374(2), 733–739 (2001).

Braje, D. A.

M. S. Kirchner, D. A. Braje, T. M. Fortier, A. M. Weiner, L. Hollberg, and S. A. Diddams, “Generation of 20 GHz, sub-40 fs pulses at 960 nm via repetition-rate multiplication,” Opt. Lett. 34(7), 872–874 (2009).
[CrossRef] [PubMed]

D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” Eur. Phys. J. D 48(1), 57–66 (2008).
[CrossRef]

Brault, J. W.

J. W. Brault, “High precision Fourier transform spectrometry: The critical role of phase corrections,” Mikrochim. Acta 93(1–6), 215–227 (1987).
[CrossRef]

Chang, G.

Chen, L.-J.

Chuang, I.

Coello, Y.

Cramer, C.

Cruz, F. C.

Cundiff, S. T.

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[CrossRef]

D’Odorico, S.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

Dantus, M.

Dekker, H.

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D'Odorico, M. Fischer, T. W. Hansch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).
[CrossRef]

Diddams, S. A.

M. S. Kirchner, D. A. Braje, T. M. Fortier, A. M. Weiner, L. Hollberg, and S. A. Diddams, “Generation of 20 GHz, sub-40 fs pulses at 960 nm via repetition-rate multiplication,” Opt. Lett. 34(7), 872–874 (2009).
[CrossRef] [PubMed]

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326(5953), 681 (2009).
[CrossRef] [PubMed]

D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” Eur. Phys. J. D 48(1), 57–66 (2008).
[CrossRef]

D'Odorico, S.

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D'Odorico, M. Fischer, T. W. Hansch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).
[CrossRef]

Fendel, P.

C.-H. Li, A. G. Glenday, A. J. Benedick, G. Chang, L.-J. Chen, C. Cramer, P. Fendel, G. Furesz, F. X. Kärtner, S. Korzennik, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “In-situ determination of astro-comb calibrator lines to better than 10 cm s(-1),” Opt. Express 18(12), 13239–13249 (2010).
[CrossRef] [PubMed]

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Fischer, M.

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D'Odorico, M. Fischer, T. W. Hansch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).
[CrossRef]

Fortier, T.

D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” Eur. Phys. J. D 48(1), 57–66 (2008).
[CrossRef]

Fortier, T. M.

Furesz, G.

Glenday, A. G.

C.-H. Li, A. G. Glenday, A. J. Benedick, G. Chang, L.-J. Chen, C. Cramer, P. Fendel, G. Furesz, F. X. Kärtner, S. Korzennik, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “In-situ determination of astro-comb calibrator lines to better than 10 cm s(-1),” Opt. Express 18(12), 13239–13249 (2010).
[CrossRef] [PubMed]

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Gubin, M.

Hansch, T. W.

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D'Odorico, M. Fischer, T. W. Hansch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).
[CrossRef]

Hänsch, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. Hänsch, and T. Udem, “Fabry–Pérot filter cavities for wide-spaced frequency combs with large spectral bandwidth,” Appl. Phys. B 96(2-3), 251–256 (2009).
[CrossRef]

Hänsch, T. W.

T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. W. Hänsch, R. Holzwarth, and T. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc. Lett. 405(1), L16–L20 (2010).
[CrossRef]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

Heinecke, D.

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326(5953), 681 (2009).
[CrossRef] [PubMed]

Hollberg, L.

Holzwarth, R.

T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. W. Hänsch, R. Holzwarth, and T. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc. Lett. 405(1), L16–L20 (2010).
[CrossRef]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. Hänsch, and T. Udem, “Fabry–Pérot filter cavities for wide-spaced frequency combs with large spectral bandwidth,” Appl. Phys. B 96(2-3), 251–256 (2009).
[CrossRef]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D'Odorico, M. Fischer, T. W. Hansch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).
[CrossRef]

Kärtner, F.

Kärtner, F. X.

Kentischer, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

Kirchner, M. S.

M. S. Kirchner, D. A. Braje, T. M. Fortier, A. M. Weiner, L. Hollberg, and S. A. Diddams, “Generation of 20 GHz, sub-40 fs pulses at 960 nm via repetition-rate multiplication,” Opt. Lett. 34(7), 872–874 (2009).
[CrossRef] [PubMed]

D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” Eur. Phys. J. D 48(1), 57–66 (2008).
[CrossRef]

Korzennik, S.

Li, C.-H.

C.-H. Li, A. G. Glenday, A. J. Benedick, G. Chang, L.-J. Chen, C. Cramer, P. Fendel, G. Furesz, F. X. Kärtner, S. Korzennik, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “In-situ determination of astro-comb calibrator lines to better than 10 cm s(-1),” Opt. Express 18(12), 13239–13249 (2010).
[CrossRef] [PubMed]

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Lo Curto, G.

T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. W. Hänsch, R. Holzwarth, and T. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc. Lett. 405(1), L16–L20 (2010).
[CrossRef]

Loeb, A.

A. Loeb, “Direct Measurement of Cosmological Parameters from the Cosmic Deceleration of Extragalactic Objects,” Astrophys. J. 499(2), L111–L114 (1998).
[CrossRef]

Lovis, C.

T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. W. Hänsch, R. Holzwarth, and T. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc. Lett. 405(1), L16–L20 (2010).
[CrossRef]

Manescau, A.

T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. W. Hänsch, R. Holzwarth, and T. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc. Lett. 405(1), L16–L20 (2010).
[CrossRef]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D'Odorico, M. Fischer, T. W. Hansch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).
[CrossRef]

Murphy, M. T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D'Odorico, M. Fischer, T. W. Hansch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).
[CrossRef]

Nogueira, G. T.

Osterman, S.

D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” Eur. Phys. J. D 48(1), 57–66 (2008).
[CrossRef]

Pasquini, L.

T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. W. Hänsch, R. Holzwarth, and T. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc. Lett. 405(1), L16–L20 (2010).
[CrossRef]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D'Odorico, M. Fischer, T. W. Hansch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).
[CrossRef]

Pepe, F.

F. Bouchy, F. Pepe, and D. Queloz, “Fundamental photon noise limit to radial velocity measurements,” Astron. Astrophys. 374(2), 733–739 (2001).

Phillips, D. F.

C.-H. Li, A. G. Glenday, A. J. Benedick, G. Chang, L.-J. Chen, C. Cramer, P. Fendel, G. Furesz, F. X. Kärtner, S. Korzennik, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “In-situ determination of astro-comb calibrator lines to better than 10 cm s(-1),” Opt. Express 18(12), 13239–13249 (2010).
[CrossRef] [PubMed]

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Queloz, D.

F. Bouchy, F. Pepe, and D. Queloz, “Fundamental photon noise limit to radial velocity measurements,” Astron. Astrophys. 374(2), 733–739 (2001).

Sandage, A.

A. Sandage, “The change of redshift and apparrent luminosity of galaxies due to the deceleration of selected expanding universes,” Astrophys. J. 136, 319–333 (1962).
[CrossRef]

Sander, M. Y.

Sasselov, D.

C.-H. Li, A. G. Glenday, A. J. Benedick, G. Chang, L.-J. Chen, C. Cramer, P. Fendel, G. Furesz, F. X. Kärtner, S. Korzennik, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “In-situ determination of astro-comb calibrator lines to better than 10 cm s(-1),” Opt. Express 18(12), 13239–13249 (2010).
[CrossRef] [PubMed]

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Schmidt, W.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

Shewmon, R.

Sizmann, A.

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D'Odorico, M. Fischer, T. W. Hansch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).
[CrossRef]

Steinmetz, T.

T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. W. Hänsch, R. Holzwarth, and T. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc. Lett. 405(1), L16–L20 (2010).
[CrossRef]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. Hänsch, and T. Udem, “Fabry–Pérot filter cavities for wide-spaced frequency combs with large spectral bandwidth,” Appl. Phys. B 96(2-3), 251–256 (2009).
[CrossRef]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

Szentgyorgyi, A.

C.-H. Li, A. G. Glenday, A. J. Benedick, G. Chang, L.-J. Chen, C. Cramer, P. Fendel, G. Furesz, F. X. Kärtner, S. Korzennik, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “In-situ determination of astro-comb calibrator lines to better than 10 cm s(-1),” Opt. Express 18(12), 13239–13249 (2010).
[CrossRef] [PubMed]

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Tyurikov, D.

Udem, T.

T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. W. Hänsch, R. Holzwarth, and T. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc. Lett. 405(1), L16–L20 (2010).
[CrossRef]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. Hänsch, and T. Udem, “Fabry–Pérot filter cavities for wide-spaced frequency combs with large spectral bandwidth,” Appl. Phys. B 96(2-3), 251–256 (2009).
[CrossRef]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D'Odorico, M. Fischer, T. W. Hansch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).
[CrossRef]

Walsworth, R. L.

C.-H. Li, A. G. Glenday, A. J. Benedick, G. Chang, L.-J. Chen, C. Cramer, P. Fendel, G. Furesz, F. X. Kärtner, S. Korzennik, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “In-situ determination of astro-comb calibrator lines to better than 10 cm s(-1),” Opt. Express 18(12), 13239–13249 (2010).
[CrossRef] [PubMed]

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Weiner, A. M.

Wilken, T.

T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. W. Hänsch, R. Holzwarth, and T. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc. Lett. 405(1), L16–L20 (2010).
[CrossRef]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. Hänsch, and T. Udem, “Fabry–Pérot filter cavities for wide-spaced frequency combs with large spectral bandwidth,” Appl. Phys. B 96(2-3), 251–256 (2009).
[CrossRef]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

Xu, B. W.

Ye, J.

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[CrossRef]

Appl. Phys. B (1)

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. Hänsch, and T. Udem, “Fabry–Pérot filter cavities for wide-spaced frequency combs with large spectral bandwidth,” Appl. Phys. B 96(2-3), 251–256 (2009).
[CrossRef]

Astron. Astrophys. (1)

F. Bouchy, F. Pepe, and D. Queloz, “Fundamental photon noise limit to radial velocity measurements,” Astron. Astrophys. 374(2), 733–739 (2001).

Astrophys. J. (2)

A. Sandage, “The change of redshift and apparrent luminosity of galaxies due to the deceleration of selected expanding universes,” Astrophys. J. 136, 319–333 (1962).
[CrossRef]

A. Loeb, “Direct Measurement of Cosmological Parameters from the Cosmic Deceleration of Extragalactic Objects,” Astrophys. J. 499(2), L111–L114 (1998).
[CrossRef]

Eur. Phys. J. D (1)

D. A. Braje, M. S. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” Eur. Phys. J. D 48(1), 57–66 (2008).
[CrossRef]

Mikrochim. Acta (1)

J. W. Brault, “High precision Fourier transform spectrometry: The critical role of phase corrections,” Mikrochim. Acta 93(1–6), 215–227 (1987).
[CrossRef]

Mon. Not. R. Astron. Soc. (1)

M. T. Murphy, T. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D'Odorico, M. Fischer, T. W. Hansch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380(2), 839–847 (2007).
[CrossRef]

Mon. Not. R. Astron. Soc. Lett. (1)

T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. W. Hänsch, R. Holzwarth, and T. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc. Lett. 405(1), L16–L20 (2010).
[CrossRef]

Nature (1)

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1),” Nature 452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Rev. Mod. Phys. (1)

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[CrossRef]

Science (2)

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326(5953), 681 (2009).
[CrossRef] [PubMed]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[CrossRef] [PubMed]

Other (4)

L.-J. Chen, G. Chang, C.-H. Li, A. Glenday, A. J. Benedick, D. F. Phillips, R. L. Walsworth, and F. X. Kärtner, “High-Finesse Dispersion-Free Cavities for Broadband Filtration of Laser Comb Lines,” in Ultrafast Phenomena, (OSA, Snowmass, CO, 2010), TuF1.

S. Osterman, S. Diddams, M. Beasley, C. Froning, L. Hollberg, P. MacQueen, V. Mbele, and A. Weiner, “A proposed laser frequency comb-based wavelength reference for high-resolution spectroscopy,” in Techniques and Instrumentation for Detection of Exoplanets III, (SPIE, 2007), 66931G–66939.

J. R. Birge, and F. X. Kärtner, “Design of Optimal Dispersive Mirrors for Femtosecond Enhancement Cavities and Compressors by Minimizing Phase Distortion Power,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), CThDD1.

G. Furesz, “Design and application of high resolution and multiobject spectrographs: Dynamical studies of open clusters,” Phd Thesis, (University of Szeged, Hungary, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Description of an astro-comb in the frequency domain. (a) Frequency-doubled source comb lines and analytic description of the optical spectrum in terms of the repetition rate, frep, and the carrier envelope offset frequency, fCEO, of the underlying Ti:Sapphire laser. The frequency doubled spectrum is multiplied by the transmission function of the Fabry-Perot cavity, filtering the source comb spectrum which becomes the astro-comb spectrum shown in graph (b). The free spectral range of the transmission resonances of the filter cavity, ffilter, is ideally an integer multiple of the repetition rate of the source laser. However due to dispersion from air and mirror reflections, ffilter will generally be a function of frequency. In this example the integer m = 4 (typically m = 20-50 with our 1 GHz repetition rate laser) such that in (b) every 4th line (referred to as an astro-comb line) is fully transmitted. Because the spectrograph resolution (~>15 GHz) is generally larger than the repetition rate of the source comb, finite suppression of the source comb modes closest every astro-comb line results in a power weighted average frequency, fR, to be reported by the spectrograph. The difference Δf must be recovered to realize the full accuracy of the astro-comb.

Fig. 2
Fig. 2

Layout for visible wavelength astro-comb. Output from an octave-spanning 1 GHz Ti:Sapphire laser frequency comb is pre-chirped using two Dispersion Compensating Mirrors (DCM) and focused with an off-axis parabolic mirror into a BBO crystal. Single mode fiber between the Ti:Sapphire laser and the Fabry-Perot cavity filter ensures that the spatial profile of the beam entering the cavity is of lowest order (TEM00), giving the best possible suppression of transmission by higher order transverse modes. A 408 nm external cavity diode laser allows for identification of the desired Fabry-Perot cavity length as well as side-mode suppression estimation. TRES – Tillinghast Reflector Echelle Spectrograph, AOM – acousto-optic modulator, PZT – piezo electric transducer.

Fig. 3
Fig. 3

Output spectrum of the 1 GHz laser used as the source comb for the visible wavelength astro-comb. The large peak at 532 nm is residual power from the pump laser.

Fig. 4
Fig. 4

(A) Measured optical spectra of the visible wavelength astro-comb, after the Fabry-Perot cavity filter, for several angles of the BBO crystal relative to the IR source comb beam. Integrated power for the central spectrum is 25 uW (~25 nW per astro-comb line). Filtered mode spacing is 22 GHz. (B) Calculated characteristics of the Fabry-Perot cavity filter using dispersion-optimized dielectric Bragg reflectors. Round-trip dispersion due to reflection from the Fabry-Perot cavity mirrors is plotted on the right axis, and cavity transmission for an input spectrum centered at 420 nm is plotted on the left axis taking into account air dispersion as well as mirror dispersion and reflectivity.

Fig. 5
Fig. 5

Transmission of the Fabry-Perot cavity filter measured with a swept frequency laser diode. (A) Comparing measured transmission (blue) and calculated transmission assuming R = 98.2% and a free spectral range of 22 GHz (green) shows the asymmetric observed line shape. Coupling of the diode laser into the cavity is identical to that of the frequency comb. (B) No higher order peaks are visible in a sweep spanning the full 22 GHz free spectral range.

Fig. 6
Fig. 6

Extracted one dimensional spectrum of full astro-comb spectrum. The FWHM of the spectrum is approximately 10 nm, with approximately 50,000 peak counts in 10 seconds on the spectrograph. Inset: example of filtered comb lines with mode spacing of 51 GHz. The diode reference laser is used for characterization of the filter cavity transmission profile described in the text.

Fig. 7
Fig. 7

Offset of recovered astro-comb line center caused by misalignment of filter cavity transmission maximum and the source comb lines as measured by the TRES spectrograph (black circles). Error bars at +/−15 cm/s on the recovered offset correspond to the uncertainty of the laser diode frequency used to lock the filter cavity and astro-comb (blue dotted lines). Breaks in the data set at 417 nm and again at 422 nm correspond to transitions between spectrograph orders as recovered from the CCD. The glitch at 408 nm is caused by amplitude to phase conversion by slight saturation of the CCD by the laser diode. Increased fluctuation in the trace above 424 nm and below 402 nm is due to the reduced signal to noise ratio at the edges of the astro-comb spectrum. The offset of recovered astro-comb lines has been low pass filtered to remove oscillations caused by mild etalon effects from the mirror substrates, see text above.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σ V = λ A δ ν 1 2 S N R n
σ V = A c S N R n R 3 2 α λ δ λ i n p u t

Metrics