Abstract

We describe a compact, tunable, optical time-delay module that functions by means of total internal reflection within two glass prisms. The delay is controlled by small mechanical motions of the prisms. The device is inherently extremely broad band, unlike time delay modules based on “slow light” methods. In the prototype device that we fabricated, we obtain time delays as large as 1.45 ns in a device of linear dimensions of the order of 3.6 cm. We have delayed pulses with a full width at half-maximum pulse duration of 25 fs, implying a delay bandwidth product (measured in delay time divided by the FWHM pulse width) of 5.8x104. We also show that the dispersion properties of this device are sufficiently small that quantum features of a light pulse are preserved upon delay.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. S. Tucker, P.-C. Ku, and C. J. Chang-Hasnain, “Slow-light optical buffers: Capabilities and fundamental limitations,” J. Lightwave Technol. 23(12), 4046–4066 (2005).
    [CrossRef]
  2. A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of Einstein-Podolsky-Rosen entanglement,” Nature 457(7231), 859–862 (2009).
    [CrossRef] [PubMed]
  3. J. U. White, “Long optical paths of large aperture,” J. Opt. Soc. Am. 32(5), 285–288 (1942).
    [CrossRef]
  4. D. R. Herriott and H. J. Schulte, “Folded optical delay lines,” Appl. Opt. 4(8), 883–889 (1965).
    [CrossRef]
  5. D. B. Sarrazin, H. F. Jordan, and V. P. Heuring, “Fiber optic delay line memory,” Appl. Opt. 29(5), 627–637 (1990).
    [CrossRef] [PubMed]
  6. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
    [CrossRef]
  7. M. Kash, V. Sautenkov, A. Zibrov, L. Hollberg, G. Welch, M. Lukin, Y. Rostovtsev, E. Fry, and M. Scully, “Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas,” Phys. Rev. Lett. 82(26), 5229–5232 (1999).
    [CrossRef]
  8. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
    [CrossRef] [PubMed]
  9. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
    [CrossRef]
  10. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
    [CrossRef] [PubMed]
  11. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
    [CrossRef]
  12. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2001).
    [CrossRef]
  13. J. Hahn and B. S. Ham, “Observations of self-induced ultraslow light in a persistent spectral hole burning medium,” Opt. Express 16(21), 16723–16728 (2008).
    [CrossRef] [PubMed]
  14. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
    [CrossRef] [PubMed]
  15. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
    [CrossRef] [PubMed]
  16. R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor,” Phys. Rev. Lett. 98(15), 153601 (2007).
    [CrossRef] [PubMed]
  17. J. U. Nöckel and A. D. Stone, “Ray and wave chaos in asymmetric resonant optical cavities,” Nature 385(6611), 45–47 (1997).
    [CrossRef]
  18. C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nockel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280(5369), 1556–1564 (1998).
    [CrossRef] [PubMed]

2009

A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of Einstein-Podolsky-Rosen entanglement,” Nature 457(7231), 859–862 (2009).
[CrossRef] [PubMed]

2008

2007

R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor,” Phys. Rev. Lett. 98(15), 153601 (2007).
[CrossRef] [PubMed]

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

2006

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[CrossRef] [PubMed]

2005

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[CrossRef]

R. S. Tucker, P.-C. Ku, and C. J. Chang-Hasnain, “Slow-light optical buffers: Capabilities and fundamental limitations,” J. Lightwave Technol. 23(12), 4046–4066 (2005).
[CrossRef]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

2003

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[CrossRef] [PubMed]

2001

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2001).
[CrossRef]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[CrossRef] [PubMed]

1999

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

M. Kash, V. Sautenkov, A. Zibrov, L. Hollberg, G. Welch, M. Lukin, Y. Rostovtsev, E. Fry, and M. Scully, “Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas,” Phys. Rev. Lett. 82(26), 5229–5232 (1999).
[CrossRef]

1998

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nockel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280(5369), 1556–1564 (1998).
[CrossRef] [PubMed]

1997

J. U. Nöckel and A. D. Stone, “Ray and wave chaos in asymmetric resonant optical cavities,” Nature 385(6611), 45–47 (1997).
[CrossRef]

1990

1965

1942

Behroozi, C. H.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[CrossRef] [PubMed]

Boyd, R. W.

R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor,” Phys. Rev. Lett. 98(15), 153601 (2007).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[CrossRef] [PubMed]

Boyer, V.

A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of Einstein-Podolsky-Rosen entanglement,” Nature 457(7231), 859–862 (2009).
[CrossRef] [PubMed]

Camacho, R. M.

R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor,” Phys. Rev. Lett. 98(15), 153601 (2007).
[CrossRef] [PubMed]

Capasso, F.

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nockel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280(5369), 1556–1564 (1998).
[CrossRef] [PubMed]

Chang-Hasnain, C. J.

Cho, A. Y.

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nockel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280(5369), 1556–1564 (1998).
[CrossRef] [PubMed]

Dutton, Z.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Faist, J.

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nockel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280(5369), 1556–1564 (1998).
[CrossRef] [PubMed]

Fan, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[CrossRef] [PubMed]

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[CrossRef]

Fry, E.

M. Kash, V. Sautenkov, A. Zibrov, L. Hollberg, G. Welch, M. Lukin, Y. Rostovtsev, E. Fry, and M. Scully, “Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas,” Phys. Rev. Lett. 82(26), 5229–5232 (1999).
[CrossRef]

Gaeta, A. L.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Gauthier, D. J.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Gmachl, C.

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nockel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280(5369), 1556–1564 (1998).
[CrossRef] [PubMed]

Hahn, J.

Ham, B. S.

J. Hahn and B. S. Ham, “Observations of self-induced ultraslow light in a persistent spectral hole burning medium,” Opt. Express 16(21), 16723–16728 (2008).
[CrossRef] [PubMed]

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2001).
[CrossRef]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Hau, L. V.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Hemmer, P. R.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2001).
[CrossRef]

Herriott, D. R.

Heuring, V. P.

Hollberg, L.

M. Kash, V. Sautenkov, A. Zibrov, L. Hollberg, G. Welch, M. Lukin, Y. Rostovtsev, E. Fry, and M. Scully, “Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas,” Phys. Rev. Lett. 82(26), 5229–5232 (1999).
[CrossRef]

Howell, J. C.

R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor,” Phys. Rev. Lett. 98(15), 153601 (2007).
[CrossRef] [PubMed]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[CrossRef]

Jordan, H. F.

Kash, M.

M. Kash, V. Sautenkov, A. Zibrov, L. Hollberg, G. Welch, M. Lukin, Y. Rostovtsev, E. Fry, and M. Scully, “Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas,” Phys. Rev. Lett. 82(26), 5229–5232 (1999).
[CrossRef]

Ku, P.-C.

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[CrossRef] [PubMed]

Lett, P. D.

A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of Einstein-Podolsky-Rosen entanglement,” Nature 457(7231), 859–862 (2009).
[CrossRef] [PubMed]

Lipson, M.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[CrossRef] [PubMed]

Liu, C.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[CrossRef] [PubMed]

Lukin, M.

M. Kash, V. Sautenkov, A. Zibrov, L. Hollberg, G. Welch, M. Lukin, Y. Rostovtsev, E. Fry, and M. Scully, “Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas,” Phys. Rev. Lett. 82(26), 5229–5232 (1999).
[CrossRef]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[CrossRef]

Marino, A. M.

A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of Einstein-Podolsky-Rosen entanglement,” Nature 457(7231), 859–862 (2009).
[CrossRef] [PubMed]

Musser, J. A.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2001).
[CrossRef]

Narimanov, E. E.

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nockel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280(5369), 1556–1564 (1998).
[CrossRef] [PubMed]

Nockel, J. U.

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nockel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280(5369), 1556–1564 (1998).
[CrossRef] [PubMed]

Nöckel, J. U.

J. U. Nöckel and A. D. Stone, “Ray and wave chaos in asymmetric resonant optical cavities,” Nature 385(6611), 45–47 (1997).
[CrossRef]

Okawachi, Y.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Pack, M. V.

R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor,” Phys. Rev. Lett. 98(15), 153601 (2007).
[CrossRef] [PubMed]

Pooser, R. C.

A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of Einstein-Podolsky-Rosen entanglement,” Nature 457(7231), 859–862 (2009).
[CrossRef] [PubMed]

Povinelli, M. L.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[CrossRef] [PubMed]

Rostovtsev, Y.

M. Kash, V. Sautenkov, A. Zibrov, L. Hollberg, G. Welch, M. Lukin, Y. Rostovtsev, E. Fry, and M. Scully, “Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas,” Phys. Rev. Lett. 82(26), 5229–5232 (1999).
[CrossRef]

Sandhu, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[CrossRef] [PubMed]

Sarrazin, D. B.

Sautenkov, V.

M. Kash, V. Sautenkov, A. Zibrov, L. Hollberg, G. Welch, M. Lukin, Y. Rostovtsev, E. Fry, and M. Scully, “Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas,” Phys. Rev. Lett. 82(26), 5229–5232 (1999).
[CrossRef]

Schulte, H. J.

Schweinsberg, A.

R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor,” Phys. Rev. Lett. 98(15), 153601 (2007).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Scully, M.

M. Kash, V. Sautenkov, A. Zibrov, L. Hollberg, G. Welch, M. Lukin, Y. Rostovtsev, E. Fry, and M. Scully, “Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas,” Phys. Rev. Lett. 82(26), 5229–5232 (1999).
[CrossRef]

Sekaric, L.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Shahriar, M. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2001).
[CrossRef]

Shakya, J.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[CrossRef] [PubMed]

Sharping, J. E.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Sivco, D. L.

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nockel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280(5369), 1556–1564 (1998).
[CrossRef] [PubMed]

Stone, A. D.

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nockel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280(5369), 1556–1564 (1998).
[CrossRef] [PubMed]

J. U. Nöckel and A. D. Stone, “Ray and wave chaos in asymmetric resonant optical cavities,” Nature 385(6611), 45–47 (1997).
[CrossRef]

Sudarshanam, V. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2001).
[CrossRef]

Tucker, R. S.

Turukhin, A. V.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2001).
[CrossRef]

Vlasov, Y.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Welch, G.

M. Kash, V. Sautenkov, A. Zibrov, L. Hollberg, G. Welch, M. Lukin, Y. Rostovtsev, E. Fry, and M. Scully, “Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas,” Phys. Rev. Lett. 82(26), 5229–5232 (1999).
[CrossRef]

White, J. U.

Xia, F.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Xu, Q.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[CrossRef] [PubMed]

Zhu, Z.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

Zibrov, A.

M. Kash, V. Sautenkov, A. Zibrov, L. Hollberg, G. Welch, M. Lukin, Y. Rostovtsev, E. Fry, and M. Scully, “Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas,” Phys. Rev. Lett. 82(26), 5229–5232 (1999).
[CrossRef]

Appl. Opt.

J. Lightwave Technol.

J. Opt. Soc. Am.

Nat. Photonics

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Nature

J. U. Nöckel and A. D. Stone, “Ray and wave chaos in asymmetric resonant optical cavities,” Nature 385(6611), 45–47 (1997).
[CrossRef]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[CrossRef] [PubMed]

A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, “Tunable delay of Einstein-Podolsky-Rosen entanglement,” Nature 457(7231), 859–862 (2009).
[CrossRef] [PubMed]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[CrossRef]

Opt. Express

Phys. Rev. Lett.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[CrossRef] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[CrossRef] [PubMed]

R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W. Boyd, “Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor,” Phys. Rev. Lett. 98(15), 153601 (2007).
[CrossRef] [PubMed]

M. Kash, V. Sautenkov, A. Zibrov, L. Hollberg, G. Welch, M. Lukin, Y. Rostovtsev, E. Fry, and M. Scully, “Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas,” Phys. Rev. Lett. 82(26), 5229–5232 (1999).
[CrossRef]

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88(2), 023602 (2001).
[CrossRef]

Rev. Mod. Phys.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[CrossRef]

Science

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301(5630), 200–202 (2003).
[CrossRef] [PubMed]

C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nockel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280(5369), 1556–1564 (1998).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the optical delay method using a prism pair. Normal incidence operation is shown for (a) N = 2 and (b) N = 4. The prism hypotenuse L, displacement parameter d, and air gap length g are also labeled.

Fig. 2
Fig. 2

Numerical simulations of dispersion due to beam divergence. The path length is obtained by simulating one million rays with a normal distribution of θ values (see inset) for L/d = 20 (NL = 40 cm). The input pulse is a delta function in time, so the histogram shows the shape of the output pulse. The bin size is 1 nm, and 95% of the rays fall within the first 50 nm of path deviation.

Fig. 3
Fig. 3

Observation of prism-pair optical delay using 25 fs light pulses. Inset: Optical spectrum of the input and output pulses across the prism pair. M: Mirror, BS: beam splitter, MAM: micromotor activated mirror, RAM: right angled mirror, PBS: polarization beam splitter, QWP: quarter-wave plate with axis at 45°.

Fig. 4
Fig. 4

Measurement of prism-pair optical delay using entangled photons. The Hong-Ou-Mandel interferometer setup is shown on the left. F1 and F2 are band-pass filters, PP is the prism pair system, BS is a non-polarizing beam splitter, and Δz represents the delay added by two independent translation stages. An example data trace for N = 6 is shown in the inset.

Fig. 5
Fig. 5

Measured delay for various prism configurations using the setup of Fig. 4. In the upper plot, the observed values are well-represented by a linear fit (solid line). The slope of the fit is 44.38 mm/transit, in good agreement with the experimental parameters (A = 2 cm and a 1.5 mm gap between prism faces). The bottom plot shows the deviation of the individual data points from the fit, with error bars of ± 500 μm to represent the uncertainty in reading the position of the manual stage.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

N = r o u n d   ( L d )   .
τ = N c ( n L + g ) ,

Metrics