Abstract

The nonlinear optical (NLO) properties of induced transmission filters (ITFs) based on Ag are experimentally determined using white light continuum pump-probe measurements. The experimental results are supported using simulations based on the matrix transfer method. The magnitude of the NLO response is shown to be 30 times that of an isolated Ag film of comparable thickness. The impacts of design variations on the linear and NLO response are simulated. It is shown that the design can be modified to enhance the NLO response of an ITF by a factor of 2 or more over a perfectly matched ITF structure.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Ricard, P. Roussignol, and C. Flytzanis, “Surface-mediated enhancement of optical phase conjugation in metal colloids,” Opt. Lett. 10(10), 511–513 (1985).
    [CrossRef] [PubMed]
  2. K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A. J. Ikushima, T. Tokizaki, and A. Nakamura, “Optical nonlinearities of a high concentration of small metal particles dispersed in glass - copper and silver particles,” J. Opt. Soc. Am. B 11(7), 1236–1243 (1994).
    [CrossRef]
  3. H. B. Liao, R. F. Xiao, J. S. Fu, and G. K. L. Wong, “Large third-order nonlinear optical susceptibility of Au-Al2O3 composite films near the resonant frequency,” Appl. Phys. B 65(4-5), 673–676 (1997).
    [CrossRef]
  4. X. Zhang, H. Fang, S. Tang, and W. Ji, “Determination of two-photon-generated free-carrier lifetime in semiconductors by a single-beam Z-scan technique,” Appl. Phys. B 65(4-5), 549–554 (1997).
    [CrossRef]
  5. X. J. Zhang, W. Ji, and S. H. Tang, “Determination of optical nonlinearities and carrier lifetime in ZnO,” J. Opt. Soc. Am. B 14(8), 1951–1955 (1997).
    [CrossRef]
  6. J. H. Bechtel and W. L. Smith, “2-photon absorption in semiconductors with picosecond laser pulses,” Phys. Rev. B 13(8), 3515–3522 (1976).
    [CrossRef]
  7. R. W. Boyd, Nonlinear Optics (Academic Press, San Diego, CA, 2003).
  8. R. S. Bennink, Y. K. Yoon, R. W. Boyd, and J. E. Sipe, “Accessing the optical nonlinearity of metals with metal- dielectric photonic bandgap structures,” Opt. Lett. 24(20), 1416–1418 (1999).
    [CrossRef]
  9. M. Scalora, N. Mattiucci, G. D’Aguanno, M. Larciprete, and M. J. Bloemer, “Nonlinear pulse propagation in one-dimensional metal-dielectric multilayer stacks: ultrawide bandwidth optical limiting,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(1), 016603 (2006).
    [CrossRef] [PubMed]
  10. G. D’Aguanno, N. Mattiucci, M. J. Bloemer, and M. Scalora, “Accessing quadratic nonlinearities of metals through metallodielectric photonic-band-gap structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036605 (2006).
    [CrossRef] [PubMed]
  11. T. K. Lee, A. D. Bristow, J. Hubner, and H. M. van Driel, “Linear and nonlinear optical properties of Au-polymer metallodielectric Bragg stacks,” J. Opt. Soc. Am. B 23(10), 2142–2147 (2006).
    [CrossRef]
  12. G. J. Lee, Y. Lee, S. G. Jung, B. Y. Jung, C. K. Hwangbo, S. Kim, and I. Park, “Design, fabrication, linear and nonlinear optical properties of metal-dielectric photonic bandgap structures,” J. Korean Phys. Soc. 51(91), 431–437 (2007).
    [CrossRef]
  13. G. H. Ma and S. H. Tang, “Ultrafast optical nonlinearity enhancement in metallodielectric multilayer stacks,” Opt. Lett. 32(23), 3435–3437 (2007).
    [CrossRef] [PubMed]
  14. T. Ergin, T. Benkert, H. Giessen, and M. Lippitz, “Ultrafast time-resolved spectroscopy of one-dimensional metal-dielectric photonic crystals,” Phys. Rev. B 79, 245134 (2009).
    [CrossRef]
  15. A. Husakou and J. Herrmann, “Steplike transmission of light through a metal-dielectric multilayer structure due to an intensity-dependent sign of the effective dielectric constant,” Phys. Rev. Lett. 99(12), 127402 (2007).
    [CrossRef] [PubMed]
  16. P. H. Berning and A. F. Turner, “Induced transmission in absorbing films applied to band pass filter design,” J. Opt. Soc. Am. 47(3), 230–239 (1957).
    [CrossRef]
  17. H. A. Macleod, Thin-film optical filters (Institute of Physics Publishing, Philadelphia, PA, 2001).
  18. G. Q. Du, H. T. Jiang, Z. S. Wang, and H. Chen, “Optical nonlinearity enhancement in heterostructures with thick metallic film and truncated photonic crystals,” Opt. Lett. 34(5), 578–580 (2009).
    [CrossRef] [PubMed]
  19. P. W. Milonni, and J. H. Eberly, Lasers (John Wiley & Sons, USA, 1988).
  20. D. T. Owens, C. Fuentes-Hernandez, J. M. Hales, J. W. Perry, and B. Kippelen, “A comprehensive analysis of the contributions to the nonlinear optical properties of thin Ag films,” J. Appl. Phys. 107(12), 123114 (2010).
    [CrossRef]
  21. G. L. Eesley, “Observation of non-equilibrium electron heating in copper,” Phys. Rev. Lett. 51(23), 2140–2143 (1983).
    [CrossRef]
  22. H. E. Elsayed-Ali, T. B. Norris, M. A. Pessot, and G. A. Mourou, “Time-resolved observation of electron-phonon relaxation in copper,” Phys. Rev. Lett. 58(12), 1212–1215 (1987).
    [CrossRef] [PubMed]
  23. R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Eesley, “Femtosecond studies of nonequilibrium electronic processes in metals,” Phys. Rev. Lett. 58(16), 1680–1683 (1987).
    [CrossRef] [PubMed]
  24. S. D. Brorson, A. Kazeroonian, J. S. Moodera, D. W. Face, T. K. Cheng, E. P. Ippen, M. S. Dresselhaus, and G. Dresselhaus, “Femtosecond room-temperature measurement of the electron-phonon coupling constant gamma in metallic superconductors,” Phys. Rev. Lett. 64(18), 2172–2175 (1990).
    [CrossRef] [PubMed]
  25. T. Tokizaki, A. Nakamura, S. Kaneko, K. Uchida, S. Omi, H. Tanji, and Y. Asahara, “Subpicosecond time response of third order optical nonlinearity of small copper particles in glass,” Appl. Phys. Lett. 65(8), 941–943 (1994).
    [CrossRef]
  26. T. S. Ahmadi, S. L. Logunov, and M. A. ElSayed, “Picosecond dynamics of colloidal gold nanoparticles,” J. Phys. Chem. 100(20), 8053–8056 (1996).
    [CrossRef]
  27. Y. Hamanaka, N. Hayashi, A. Nakamura, and S. Omi, “Ultrafast relaxation dynamics of electrons in silver nanocrystals embedded in glass,” J. Lumin. 76–77, 221–225 (1998).
    [CrossRef]

2010 (1)

D. T. Owens, C. Fuentes-Hernandez, J. M. Hales, J. W. Perry, and B. Kippelen, “A comprehensive analysis of the contributions to the nonlinear optical properties of thin Ag films,” J. Appl. Phys. 107(12), 123114 (2010).
[CrossRef]

2009 (2)

T. Ergin, T. Benkert, H. Giessen, and M. Lippitz, “Ultrafast time-resolved spectroscopy of one-dimensional metal-dielectric photonic crystals,” Phys. Rev. B 79, 245134 (2009).
[CrossRef]

G. Q. Du, H. T. Jiang, Z. S. Wang, and H. Chen, “Optical nonlinearity enhancement in heterostructures with thick metallic film and truncated photonic crystals,” Opt. Lett. 34(5), 578–580 (2009).
[CrossRef] [PubMed]

2007 (3)

G. H. Ma and S. H. Tang, “Ultrafast optical nonlinearity enhancement in metallodielectric multilayer stacks,” Opt. Lett. 32(23), 3435–3437 (2007).
[CrossRef] [PubMed]

A. Husakou and J. Herrmann, “Steplike transmission of light through a metal-dielectric multilayer structure due to an intensity-dependent sign of the effective dielectric constant,” Phys. Rev. Lett. 99(12), 127402 (2007).
[CrossRef] [PubMed]

G. J. Lee, Y. Lee, S. G. Jung, B. Y. Jung, C. K. Hwangbo, S. Kim, and I. Park, “Design, fabrication, linear and nonlinear optical properties of metal-dielectric photonic bandgap structures,” J. Korean Phys. Soc. 51(91), 431–437 (2007).
[CrossRef]

2006 (3)

M. Scalora, N. Mattiucci, G. D’Aguanno, M. Larciprete, and M. J. Bloemer, “Nonlinear pulse propagation in one-dimensional metal-dielectric multilayer stacks: ultrawide bandwidth optical limiting,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(1), 016603 (2006).
[CrossRef] [PubMed]

G. D’Aguanno, N. Mattiucci, M. J. Bloemer, and M. Scalora, “Accessing quadratic nonlinearities of metals through metallodielectric photonic-band-gap structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036605 (2006).
[CrossRef] [PubMed]

T. K. Lee, A. D. Bristow, J. Hubner, and H. M. van Driel, “Linear and nonlinear optical properties of Au-polymer metallodielectric Bragg stacks,” J. Opt. Soc. Am. B 23(10), 2142–2147 (2006).
[CrossRef]

1999 (1)

1998 (1)

Y. Hamanaka, N. Hayashi, A. Nakamura, and S. Omi, “Ultrafast relaxation dynamics of electrons in silver nanocrystals embedded in glass,” J. Lumin. 76–77, 221–225 (1998).
[CrossRef]

1997 (3)

H. B. Liao, R. F. Xiao, J. S. Fu, and G. K. L. Wong, “Large third-order nonlinear optical susceptibility of Au-Al2O3 composite films near the resonant frequency,” Appl. Phys. B 65(4-5), 673–676 (1997).
[CrossRef]

X. Zhang, H. Fang, S. Tang, and W. Ji, “Determination of two-photon-generated free-carrier lifetime in semiconductors by a single-beam Z-scan technique,” Appl. Phys. B 65(4-5), 549–554 (1997).
[CrossRef]

X. J. Zhang, W. Ji, and S. H. Tang, “Determination of optical nonlinearities and carrier lifetime in ZnO,” J. Opt. Soc. Am. B 14(8), 1951–1955 (1997).
[CrossRef]

1996 (1)

T. S. Ahmadi, S. L. Logunov, and M. A. ElSayed, “Picosecond dynamics of colloidal gold nanoparticles,” J. Phys. Chem. 100(20), 8053–8056 (1996).
[CrossRef]

1994 (2)

T. Tokizaki, A. Nakamura, S. Kaneko, K. Uchida, S. Omi, H. Tanji, and Y. Asahara, “Subpicosecond time response of third order optical nonlinearity of small copper particles in glass,” Appl. Phys. Lett. 65(8), 941–943 (1994).
[CrossRef]

K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A. J. Ikushima, T. Tokizaki, and A. Nakamura, “Optical nonlinearities of a high concentration of small metal particles dispersed in glass - copper and silver particles,” J. Opt. Soc. Am. B 11(7), 1236–1243 (1994).
[CrossRef]

1990 (1)

S. D. Brorson, A. Kazeroonian, J. S. Moodera, D. W. Face, T. K. Cheng, E. P. Ippen, M. S. Dresselhaus, and G. Dresselhaus, “Femtosecond room-temperature measurement of the electron-phonon coupling constant gamma in metallic superconductors,” Phys. Rev. Lett. 64(18), 2172–2175 (1990).
[CrossRef] [PubMed]

1987 (2)

H. E. Elsayed-Ali, T. B. Norris, M. A. Pessot, and G. A. Mourou, “Time-resolved observation of electron-phonon relaxation in copper,” Phys. Rev. Lett. 58(12), 1212–1215 (1987).
[CrossRef] [PubMed]

R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Eesley, “Femtosecond studies of nonequilibrium electronic processes in metals,” Phys. Rev. Lett. 58(16), 1680–1683 (1987).
[CrossRef] [PubMed]

1985 (1)

1983 (1)

G. L. Eesley, “Observation of non-equilibrium electron heating in copper,” Phys. Rev. Lett. 51(23), 2140–2143 (1983).
[CrossRef]

1976 (1)

J. H. Bechtel and W. L. Smith, “2-photon absorption in semiconductors with picosecond laser pulses,” Phys. Rev. B 13(8), 3515–3522 (1976).
[CrossRef]

1957 (1)

Ahmadi, T. S.

T. S. Ahmadi, S. L. Logunov, and M. A. ElSayed, “Picosecond dynamics of colloidal gold nanoparticles,” J. Phys. Chem. 100(20), 8053–8056 (1996).
[CrossRef]

Asahara, Y.

T. Tokizaki, A. Nakamura, S. Kaneko, K. Uchida, S. Omi, H. Tanji, and Y. Asahara, “Subpicosecond time response of third order optical nonlinearity of small copper particles in glass,” Appl. Phys. Lett. 65(8), 941–943 (1994).
[CrossRef]

K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A. J. Ikushima, T. Tokizaki, and A. Nakamura, “Optical nonlinearities of a high concentration of small metal particles dispersed in glass - copper and silver particles,” J. Opt. Soc. Am. B 11(7), 1236–1243 (1994).
[CrossRef]

Bechtel, J. H.

J. H. Bechtel and W. L. Smith, “2-photon absorption in semiconductors with picosecond laser pulses,” Phys. Rev. B 13(8), 3515–3522 (1976).
[CrossRef]

Benkert, T.

T. Ergin, T. Benkert, H. Giessen, and M. Lippitz, “Ultrafast time-resolved spectroscopy of one-dimensional metal-dielectric photonic crystals,” Phys. Rev. B 79, 245134 (2009).
[CrossRef]

Bennink, R. S.

Berning, P. H.

Bloemer, M. J.

M. Scalora, N. Mattiucci, G. D’Aguanno, M. Larciprete, and M. J. Bloemer, “Nonlinear pulse propagation in one-dimensional metal-dielectric multilayer stacks: ultrawide bandwidth optical limiting,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(1), 016603 (2006).
[CrossRef] [PubMed]

G. D’Aguanno, N. Mattiucci, M. J. Bloemer, and M. Scalora, “Accessing quadratic nonlinearities of metals through metallodielectric photonic-band-gap structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036605 (2006).
[CrossRef] [PubMed]

Boyd, R. W.

Bristow, A. D.

Brorson, S. D.

S. D. Brorson, A. Kazeroonian, J. S. Moodera, D. W. Face, T. K. Cheng, E. P. Ippen, M. S. Dresselhaus, and G. Dresselhaus, “Femtosecond room-temperature measurement of the electron-phonon coupling constant gamma in metallic superconductors,” Phys. Rev. Lett. 64(18), 2172–2175 (1990).
[CrossRef] [PubMed]

Chen, H.

Cheng, T. K.

S. D. Brorson, A. Kazeroonian, J. S. Moodera, D. W. Face, T. K. Cheng, E. P. Ippen, M. S. Dresselhaus, and G. Dresselhaus, “Femtosecond room-temperature measurement of the electron-phonon coupling constant gamma in metallic superconductors,” Phys. Rev. Lett. 64(18), 2172–2175 (1990).
[CrossRef] [PubMed]

D’Aguanno, G.

G. D’Aguanno, N. Mattiucci, M. J. Bloemer, and M. Scalora, “Accessing quadratic nonlinearities of metals through metallodielectric photonic-band-gap structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036605 (2006).
[CrossRef] [PubMed]

M. Scalora, N. Mattiucci, G. D’Aguanno, M. Larciprete, and M. J. Bloemer, “Nonlinear pulse propagation in one-dimensional metal-dielectric multilayer stacks: ultrawide bandwidth optical limiting,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(1), 016603 (2006).
[CrossRef] [PubMed]

Dresselhaus, G.

S. D. Brorson, A. Kazeroonian, J. S. Moodera, D. W. Face, T. K. Cheng, E. P. Ippen, M. S. Dresselhaus, and G. Dresselhaus, “Femtosecond room-temperature measurement of the electron-phonon coupling constant gamma in metallic superconductors,” Phys. Rev. Lett. 64(18), 2172–2175 (1990).
[CrossRef] [PubMed]

Dresselhaus, M. S.

S. D. Brorson, A. Kazeroonian, J. S. Moodera, D. W. Face, T. K. Cheng, E. P. Ippen, M. S. Dresselhaus, and G. Dresselhaus, “Femtosecond room-temperature measurement of the electron-phonon coupling constant gamma in metallic superconductors,” Phys. Rev. Lett. 64(18), 2172–2175 (1990).
[CrossRef] [PubMed]

Du, G. Q.

Eesley, G. L.

R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Eesley, “Femtosecond studies of nonequilibrium electronic processes in metals,” Phys. Rev. Lett. 58(16), 1680–1683 (1987).
[CrossRef] [PubMed]

G. L. Eesley, “Observation of non-equilibrium electron heating in copper,” Phys. Rev. Lett. 51(23), 2140–2143 (1983).
[CrossRef]

ElSayed, M. A.

T. S. Ahmadi, S. L. Logunov, and M. A. ElSayed, “Picosecond dynamics of colloidal gold nanoparticles,” J. Phys. Chem. 100(20), 8053–8056 (1996).
[CrossRef]

Elsayed-Ali, H. E.

H. E. Elsayed-Ali, T. B. Norris, M. A. Pessot, and G. A. Mourou, “Time-resolved observation of electron-phonon relaxation in copper,” Phys. Rev. Lett. 58(12), 1212–1215 (1987).
[CrossRef] [PubMed]

Ergin, T.

T. Ergin, T. Benkert, H. Giessen, and M. Lippitz, “Ultrafast time-resolved spectroscopy of one-dimensional metal-dielectric photonic crystals,” Phys. Rev. B 79, 245134 (2009).
[CrossRef]

Face, D. W.

S. D. Brorson, A. Kazeroonian, J. S. Moodera, D. W. Face, T. K. Cheng, E. P. Ippen, M. S. Dresselhaus, and G. Dresselhaus, “Femtosecond room-temperature measurement of the electron-phonon coupling constant gamma in metallic superconductors,” Phys. Rev. Lett. 64(18), 2172–2175 (1990).
[CrossRef] [PubMed]

Fang, H.

X. Zhang, H. Fang, S. Tang, and W. Ji, “Determination of two-photon-generated free-carrier lifetime in semiconductors by a single-beam Z-scan technique,” Appl. Phys. B 65(4-5), 549–554 (1997).
[CrossRef]

Flytzanis, C.

Fu, J. S.

H. B. Liao, R. F. Xiao, J. S. Fu, and G. K. L. Wong, “Large third-order nonlinear optical susceptibility of Au-Al2O3 composite films near the resonant frequency,” Appl. Phys. B 65(4-5), 673–676 (1997).
[CrossRef]

Fuentes-Hernandez, C.

D. T. Owens, C. Fuentes-Hernandez, J. M. Hales, J. W. Perry, and B. Kippelen, “A comprehensive analysis of the contributions to the nonlinear optical properties of thin Ag films,” J. Appl. Phys. 107(12), 123114 (2010).
[CrossRef]

Fujimoto, J. G.

R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Eesley, “Femtosecond studies of nonequilibrium electronic processes in metals,” Phys. Rev. Lett. 58(16), 1680–1683 (1987).
[CrossRef] [PubMed]

Giessen, H.

T. Ergin, T. Benkert, H. Giessen, and M. Lippitz, “Ultrafast time-resolved spectroscopy of one-dimensional metal-dielectric photonic crystals,” Phys. Rev. B 79, 245134 (2009).
[CrossRef]

Hales, J. M.

D. T. Owens, C. Fuentes-Hernandez, J. M. Hales, J. W. Perry, and B. Kippelen, “A comprehensive analysis of the contributions to the nonlinear optical properties of thin Ag films,” J. Appl. Phys. 107(12), 123114 (2010).
[CrossRef]

Hamanaka, Y.

Y. Hamanaka, N. Hayashi, A. Nakamura, and S. Omi, “Ultrafast relaxation dynamics of electrons in silver nanocrystals embedded in glass,” J. Lumin. 76–77, 221–225 (1998).
[CrossRef]

Hata, C.

Hayashi, N.

Y. Hamanaka, N. Hayashi, A. Nakamura, and S. Omi, “Ultrafast relaxation dynamics of electrons in silver nanocrystals embedded in glass,” J. Lumin. 76–77, 221–225 (1998).
[CrossRef]

Herrmann, J.

A. Husakou and J. Herrmann, “Steplike transmission of light through a metal-dielectric multilayer structure due to an intensity-dependent sign of the effective dielectric constant,” Phys. Rev. Lett. 99(12), 127402 (2007).
[CrossRef] [PubMed]

Hubner, J.

Husakou, A.

A. Husakou and J. Herrmann, “Steplike transmission of light through a metal-dielectric multilayer structure due to an intensity-dependent sign of the effective dielectric constant,” Phys. Rev. Lett. 99(12), 127402 (2007).
[CrossRef] [PubMed]

Hwangbo, C. K.

G. J. Lee, Y. Lee, S. G. Jung, B. Y. Jung, C. K. Hwangbo, S. Kim, and I. Park, “Design, fabrication, linear and nonlinear optical properties of metal-dielectric photonic bandgap structures,” J. Korean Phys. Soc. 51(91), 431–437 (2007).
[CrossRef]

Ikushima, A. J.

Ippen, E. P.

S. D. Brorson, A. Kazeroonian, J. S. Moodera, D. W. Face, T. K. Cheng, E. P. Ippen, M. S. Dresselhaus, and G. Dresselhaus, “Femtosecond room-temperature measurement of the electron-phonon coupling constant gamma in metallic superconductors,” Phys. Rev. Lett. 64(18), 2172–2175 (1990).
[CrossRef] [PubMed]

Ji, W.

X. Zhang, H. Fang, S. Tang, and W. Ji, “Determination of two-photon-generated free-carrier lifetime in semiconductors by a single-beam Z-scan technique,” Appl. Phys. B 65(4-5), 549–554 (1997).
[CrossRef]

X. J. Zhang, W. Ji, and S. H. Tang, “Determination of optical nonlinearities and carrier lifetime in ZnO,” J. Opt. Soc. Am. B 14(8), 1951–1955 (1997).
[CrossRef]

Jiang, H. T.

Jung, B. Y.

G. J. Lee, Y. Lee, S. G. Jung, B. Y. Jung, C. K. Hwangbo, S. Kim, and I. Park, “Design, fabrication, linear and nonlinear optical properties of metal-dielectric photonic bandgap structures,” J. Korean Phys. Soc. 51(91), 431–437 (2007).
[CrossRef]

Jung, S. G.

G. J. Lee, Y. Lee, S. G. Jung, B. Y. Jung, C. K. Hwangbo, S. Kim, and I. Park, “Design, fabrication, linear and nonlinear optical properties of metal-dielectric photonic bandgap structures,” J. Korean Phys. Soc. 51(91), 431–437 (2007).
[CrossRef]

Kaneko, S.

T. Tokizaki, A. Nakamura, S. Kaneko, K. Uchida, S. Omi, H. Tanji, and Y. Asahara, “Subpicosecond time response of third order optical nonlinearity of small copper particles in glass,” Appl. Phys. Lett. 65(8), 941–943 (1994).
[CrossRef]

K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A. J. Ikushima, T. Tokizaki, and A. Nakamura, “Optical nonlinearities of a high concentration of small metal particles dispersed in glass - copper and silver particles,” J. Opt. Soc. Am. B 11(7), 1236–1243 (1994).
[CrossRef]

Kazeroonian, A.

S. D. Brorson, A. Kazeroonian, J. S. Moodera, D. W. Face, T. K. Cheng, E. P. Ippen, M. S. Dresselhaus, and G. Dresselhaus, “Femtosecond room-temperature measurement of the electron-phonon coupling constant gamma in metallic superconductors,” Phys. Rev. Lett. 64(18), 2172–2175 (1990).
[CrossRef] [PubMed]

Kim, S.

G. J. Lee, Y. Lee, S. G. Jung, B. Y. Jung, C. K. Hwangbo, S. Kim, and I. Park, “Design, fabrication, linear and nonlinear optical properties of metal-dielectric photonic bandgap structures,” J. Korean Phys. Soc. 51(91), 431–437 (2007).
[CrossRef]

Kippelen, B.

D. T. Owens, C. Fuentes-Hernandez, J. M. Hales, J. W. Perry, and B. Kippelen, “A comprehensive analysis of the contributions to the nonlinear optical properties of thin Ag films,” J. Appl. Phys. 107(12), 123114 (2010).
[CrossRef]

Larciprete, M.

M. Scalora, N. Mattiucci, G. D’Aguanno, M. Larciprete, and M. J. Bloemer, “Nonlinear pulse propagation in one-dimensional metal-dielectric multilayer stacks: ultrawide bandwidth optical limiting,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(1), 016603 (2006).
[CrossRef] [PubMed]

Lee, G. J.

G. J. Lee, Y. Lee, S. G. Jung, B. Y. Jung, C. K. Hwangbo, S. Kim, and I. Park, “Design, fabrication, linear and nonlinear optical properties of metal-dielectric photonic bandgap structures,” J. Korean Phys. Soc. 51(91), 431–437 (2007).
[CrossRef]

Lee, T. K.

Lee, Y.

G. J. Lee, Y. Lee, S. G. Jung, B. Y. Jung, C. K. Hwangbo, S. Kim, and I. Park, “Design, fabrication, linear and nonlinear optical properties of metal-dielectric photonic bandgap structures,” J. Korean Phys. Soc. 51(91), 431–437 (2007).
[CrossRef]

Liao, H. B.

H. B. Liao, R. F. Xiao, J. S. Fu, and G. K. L. Wong, “Large third-order nonlinear optical susceptibility of Au-Al2O3 composite films near the resonant frequency,” Appl. Phys. B 65(4-5), 673–676 (1997).
[CrossRef]

Lin, W. Z.

R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Eesley, “Femtosecond studies of nonequilibrium electronic processes in metals,” Phys. Rev. Lett. 58(16), 1680–1683 (1987).
[CrossRef] [PubMed]

Lippitz, M.

T. Ergin, T. Benkert, H. Giessen, and M. Lippitz, “Ultrafast time-resolved spectroscopy of one-dimensional metal-dielectric photonic crystals,” Phys. Rev. B 79, 245134 (2009).
[CrossRef]

Logunov, S. L.

T. S. Ahmadi, S. L. Logunov, and M. A. ElSayed, “Picosecond dynamics of colloidal gold nanoparticles,” J. Phys. Chem. 100(20), 8053–8056 (1996).
[CrossRef]

Ma, G. H.

Mattiucci, N.

M. Scalora, N. Mattiucci, G. D’Aguanno, M. Larciprete, and M. J. Bloemer, “Nonlinear pulse propagation in one-dimensional metal-dielectric multilayer stacks: ultrawide bandwidth optical limiting,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(1), 016603 (2006).
[CrossRef] [PubMed]

G. D’Aguanno, N. Mattiucci, M. J. Bloemer, and M. Scalora, “Accessing quadratic nonlinearities of metals through metallodielectric photonic-band-gap structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036605 (2006).
[CrossRef] [PubMed]

Moodera, J. S.

S. D. Brorson, A. Kazeroonian, J. S. Moodera, D. W. Face, T. K. Cheng, E. P. Ippen, M. S. Dresselhaus, and G. Dresselhaus, “Femtosecond room-temperature measurement of the electron-phonon coupling constant gamma in metallic superconductors,” Phys. Rev. Lett. 64(18), 2172–2175 (1990).
[CrossRef] [PubMed]

Mourou, G. A.

H. E. Elsayed-Ali, T. B. Norris, M. A. Pessot, and G. A. Mourou, “Time-resolved observation of electron-phonon relaxation in copper,” Phys. Rev. Lett. 58(12), 1212–1215 (1987).
[CrossRef] [PubMed]

Nakamura, A.

Y. Hamanaka, N. Hayashi, A. Nakamura, and S. Omi, “Ultrafast relaxation dynamics of electrons in silver nanocrystals embedded in glass,” J. Lumin. 76–77, 221–225 (1998).
[CrossRef]

T. Tokizaki, A. Nakamura, S. Kaneko, K. Uchida, S. Omi, H. Tanji, and Y. Asahara, “Subpicosecond time response of third order optical nonlinearity of small copper particles in glass,” Appl. Phys. Lett. 65(8), 941–943 (1994).
[CrossRef]

K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A. J. Ikushima, T. Tokizaki, and A. Nakamura, “Optical nonlinearities of a high concentration of small metal particles dispersed in glass - copper and silver particles,” J. Opt. Soc. Am. B 11(7), 1236–1243 (1994).
[CrossRef]

Norris, T. B.

H. E. Elsayed-Ali, T. B. Norris, M. A. Pessot, and G. A. Mourou, “Time-resolved observation of electron-phonon relaxation in copper,” Phys. Rev. Lett. 58(12), 1212–1215 (1987).
[CrossRef] [PubMed]

Omi, S.

Y. Hamanaka, N. Hayashi, A. Nakamura, and S. Omi, “Ultrafast relaxation dynamics of electrons in silver nanocrystals embedded in glass,” J. Lumin. 76–77, 221–225 (1998).
[CrossRef]

K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A. J. Ikushima, T. Tokizaki, and A. Nakamura, “Optical nonlinearities of a high concentration of small metal particles dispersed in glass - copper and silver particles,” J. Opt. Soc. Am. B 11(7), 1236–1243 (1994).
[CrossRef]

T. Tokizaki, A. Nakamura, S. Kaneko, K. Uchida, S. Omi, H. Tanji, and Y. Asahara, “Subpicosecond time response of third order optical nonlinearity of small copper particles in glass,” Appl. Phys. Lett. 65(8), 941–943 (1994).
[CrossRef]

Owens, D. T.

D. T. Owens, C. Fuentes-Hernandez, J. M. Hales, J. W. Perry, and B. Kippelen, “A comprehensive analysis of the contributions to the nonlinear optical properties of thin Ag films,” J. Appl. Phys. 107(12), 123114 (2010).
[CrossRef]

Park, I.

G. J. Lee, Y. Lee, S. G. Jung, B. Y. Jung, C. K. Hwangbo, S. Kim, and I. Park, “Design, fabrication, linear and nonlinear optical properties of metal-dielectric photonic bandgap structures,” J. Korean Phys. Soc. 51(91), 431–437 (2007).
[CrossRef]

Perry, J. W.

D. T. Owens, C. Fuentes-Hernandez, J. M. Hales, J. W. Perry, and B. Kippelen, “A comprehensive analysis of the contributions to the nonlinear optical properties of thin Ag films,” J. Appl. Phys. 107(12), 123114 (2010).
[CrossRef]

Pessot, M. A.

H. E. Elsayed-Ali, T. B. Norris, M. A. Pessot, and G. A. Mourou, “Time-resolved observation of electron-phonon relaxation in copper,” Phys. Rev. Lett. 58(12), 1212–1215 (1987).
[CrossRef] [PubMed]

Ricard, D.

Roussignol, P.

Scalora, M.

G. D’Aguanno, N. Mattiucci, M. J. Bloemer, and M. Scalora, “Accessing quadratic nonlinearities of metals through metallodielectric photonic-band-gap structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036605 (2006).
[CrossRef] [PubMed]

M. Scalora, N. Mattiucci, G. D’Aguanno, M. Larciprete, and M. J. Bloemer, “Nonlinear pulse propagation in one-dimensional metal-dielectric multilayer stacks: ultrawide bandwidth optical limiting,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(1), 016603 (2006).
[CrossRef] [PubMed]

Schoenlein, R. W.

R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Eesley, “Femtosecond studies of nonequilibrium electronic processes in metals,” Phys. Rev. Lett. 58(16), 1680–1683 (1987).
[CrossRef] [PubMed]

Sipe, J. E.

Smith, W. L.

J. H. Bechtel and W. L. Smith, “2-photon absorption in semiconductors with picosecond laser pulses,” Phys. Rev. B 13(8), 3515–3522 (1976).
[CrossRef]

Tang, S.

X. Zhang, H. Fang, S. Tang, and W. Ji, “Determination of two-photon-generated free-carrier lifetime in semiconductors by a single-beam Z-scan technique,” Appl. Phys. B 65(4-5), 549–554 (1997).
[CrossRef]

Tang, S. H.

Tanji, H.

K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A. J. Ikushima, T. Tokizaki, and A. Nakamura, “Optical nonlinearities of a high concentration of small metal particles dispersed in glass - copper and silver particles,” J. Opt. Soc. Am. B 11(7), 1236–1243 (1994).
[CrossRef]

T. Tokizaki, A. Nakamura, S. Kaneko, K. Uchida, S. Omi, H. Tanji, and Y. Asahara, “Subpicosecond time response of third order optical nonlinearity of small copper particles in glass,” Appl. Phys. Lett. 65(8), 941–943 (1994).
[CrossRef]

Tokizaki, T.

T. Tokizaki, A. Nakamura, S. Kaneko, K. Uchida, S. Omi, H. Tanji, and Y. Asahara, “Subpicosecond time response of third order optical nonlinearity of small copper particles in glass,” Appl. Phys. Lett. 65(8), 941–943 (1994).
[CrossRef]

K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A. J. Ikushima, T. Tokizaki, and A. Nakamura, “Optical nonlinearities of a high concentration of small metal particles dispersed in glass - copper and silver particles,” J. Opt. Soc. Am. B 11(7), 1236–1243 (1994).
[CrossRef]

Turner, A. F.

Uchida, K.

T. Tokizaki, A. Nakamura, S. Kaneko, K. Uchida, S. Omi, H. Tanji, and Y. Asahara, “Subpicosecond time response of third order optical nonlinearity of small copper particles in glass,” Appl. Phys. Lett. 65(8), 941–943 (1994).
[CrossRef]

K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A. J. Ikushima, T. Tokizaki, and A. Nakamura, “Optical nonlinearities of a high concentration of small metal particles dispersed in glass - copper and silver particles,” J. Opt. Soc. Am. B 11(7), 1236–1243 (1994).
[CrossRef]

van Driel, H. M.

Wang, Z. S.

Wong, G. K. L.

H. B. Liao, R. F. Xiao, J. S. Fu, and G. K. L. Wong, “Large third-order nonlinear optical susceptibility of Au-Al2O3 composite films near the resonant frequency,” Appl. Phys. B 65(4-5), 673–676 (1997).
[CrossRef]

Xiao, R. F.

H. B. Liao, R. F. Xiao, J. S. Fu, and G. K. L. Wong, “Large third-order nonlinear optical susceptibility of Au-Al2O3 composite films near the resonant frequency,” Appl. Phys. B 65(4-5), 673–676 (1997).
[CrossRef]

Yoon, Y. K.

Zhang, X.

X. Zhang, H. Fang, S. Tang, and W. Ji, “Determination of two-photon-generated free-carrier lifetime in semiconductors by a single-beam Z-scan technique,” Appl. Phys. B 65(4-5), 549–554 (1997).
[CrossRef]

Zhang, X. J.

Appl. Phys. B (2)

H. B. Liao, R. F. Xiao, J. S. Fu, and G. K. L. Wong, “Large third-order nonlinear optical susceptibility of Au-Al2O3 composite films near the resonant frequency,” Appl. Phys. B 65(4-5), 673–676 (1997).
[CrossRef]

X. Zhang, H. Fang, S. Tang, and W. Ji, “Determination of two-photon-generated free-carrier lifetime in semiconductors by a single-beam Z-scan technique,” Appl. Phys. B 65(4-5), 549–554 (1997).
[CrossRef]

Appl. Phys. Lett. (1)

T. Tokizaki, A. Nakamura, S. Kaneko, K. Uchida, S. Omi, H. Tanji, and Y. Asahara, “Subpicosecond time response of third order optical nonlinearity of small copper particles in glass,” Appl. Phys. Lett. 65(8), 941–943 (1994).
[CrossRef]

J. Appl. Phys. (1)

D. T. Owens, C. Fuentes-Hernandez, J. M. Hales, J. W. Perry, and B. Kippelen, “A comprehensive analysis of the contributions to the nonlinear optical properties of thin Ag films,” J. Appl. Phys. 107(12), 123114 (2010).
[CrossRef]

J. Korean Phys. Soc. (1)

G. J. Lee, Y. Lee, S. G. Jung, B. Y. Jung, C. K. Hwangbo, S. Kim, and I. Park, “Design, fabrication, linear and nonlinear optical properties of metal-dielectric photonic bandgap structures,” J. Korean Phys. Soc. 51(91), 431–437 (2007).
[CrossRef]

J. Lumin. (1)

Y. Hamanaka, N. Hayashi, A. Nakamura, and S. Omi, “Ultrafast relaxation dynamics of electrons in silver nanocrystals embedded in glass,” J. Lumin. 76–77, 221–225 (1998).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (3)

J. Phys. Chem. (1)

T. S. Ahmadi, S. L. Logunov, and M. A. ElSayed, “Picosecond dynamics of colloidal gold nanoparticles,” J. Phys. Chem. 100(20), 8053–8056 (1996).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. B (2)

T. Ergin, T. Benkert, H. Giessen, and M. Lippitz, “Ultrafast time-resolved spectroscopy of one-dimensional metal-dielectric photonic crystals,” Phys. Rev. B 79, 245134 (2009).
[CrossRef]

J. H. Bechtel and W. L. Smith, “2-photon absorption in semiconductors with picosecond laser pulses,” Phys. Rev. B 13(8), 3515–3522 (1976).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

M. Scalora, N. Mattiucci, G. D’Aguanno, M. Larciprete, and M. J. Bloemer, “Nonlinear pulse propagation in one-dimensional metal-dielectric multilayer stacks: ultrawide bandwidth optical limiting,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(1), 016603 (2006).
[CrossRef] [PubMed]

G. D’Aguanno, N. Mattiucci, M. J. Bloemer, and M. Scalora, “Accessing quadratic nonlinearities of metals through metallodielectric photonic-band-gap structures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(3), 036605 (2006).
[CrossRef] [PubMed]

Phys. Rev. Lett. (5)

A. Husakou and J. Herrmann, “Steplike transmission of light through a metal-dielectric multilayer structure due to an intensity-dependent sign of the effective dielectric constant,” Phys. Rev. Lett. 99(12), 127402 (2007).
[CrossRef] [PubMed]

G. L. Eesley, “Observation of non-equilibrium electron heating in copper,” Phys. Rev. Lett. 51(23), 2140–2143 (1983).
[CrossRef]

H. E. Elsayed-Ali, T. B. Norris, M. A. Pessot, and G. A. Mourou, “Time-resolved observation of electron-phonon relaxation in copper,” Phys. Rev. Lett. 58(12), 1212–1215 (1987).
[CrossRef] [PubMed]

R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Eesley, “Femtosecond studies of nonequilibrium electronic processes in metals,” Phys. Rev. Lett. 58(16), 1680–1683 (1987).
[CrossRef] [PubMed]

S. D. Brorson, A. Kazeroonian, J. S. Moodera, D. W. Face, T. K. Cheng, E. P. Ippen, M. S. Dresselhaus, and G. Dresselhaus, “Femtosecond room-temperature measurement of the electron-phonon coupling constant gamma in metallic superconductors,” Phys. Rev. Lett. 64(18), 2172–2175 (1990).
[CrossRef] [PubMed]

Other (3)

R. W. Boyd, Nonlinear Optics (Academic Press, San Diego, CA, 2003).

H. A. Macleod, Thin-film optical filters (Institute of Physics Publishing, Philadelphia, PA, 2001).

P. W. Milonni, and J. H. Eberly, Lasers (John Wiley & Sons, USA, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematics of single sided and double sided ITFs.

Fig. 2
Fig. 2

Example simulated ITF transmittance, reflectance, and absorbance.

Fig. 3
Fig. 3

(a) Measured transmittance of all three fabricated structures; (b) measured and simulated transmittance, reflectance, and absorbance of ITF 1.

Fig. 4
Fig. 4

(a) Measured temporal change in transmittance and reflectance of a 30 nm Ag film at 600 nm with a pump fluence of 32 J/m2. (b) Measured and simulated spectral change in complex permittivity of the Ag film at 0.8 ps time delay.

Fig. 5
Fig. 5

Measured spectral changes in (a) transmittance and (b) reflectance of 30 nm Ag film and ITF 1, and simulated changes in ITF 1, at t = 0.8 ps due to 32 J/m2 pump pulse at 600 nm.

Fig. 6
Fig. 6

Measured spectral changes in (a) transmittance and (b) reflectance of 30 nm Ag film and ITF 2, and simulated changes in ITF 2, at t = 0.8 ps due to 32 J/m2 pump pulse at 600 nm.

Fig. 7
Fig. 7

Transmittance and reflectance of ITF structures 1-4.

Fig. 8
Fig. 8

(a) Intensity distribution of 600 nm wavelength within structure 1. (b) Intensity distribution of 600 nm wavelength in Ag layer of structures 1-4 and isolated Ag film.

Fig. 9
Fig. 9

(a) Transmittance, reflectance, and absorbance of structure 1 under illumination by pump pulses at 600 nm with powers ranging from 0 to 50 J/m2. (b) Changes in transmittance, reflectance, and absorbance of structures 1-4 due to a 50 J/m2 pump pulse.

Fig. 10
Fig. 10

Changes in transmittance and absorbance for an optimized double-sided ITF structure compared to structures 1 and 4 due to a 50 J/m2 pump pulse.

Tables (1)

Tables Icon

Table 1 Structures of ITFs Used for Simulation

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

( H L ) x R   A g ,
ε = ε ω p 2 ω 2 + i ( γ + β ω 2 ) ω ,
C e ( T e ) d T e d t = P ( t ) ,
C e ( T e ) = 65 T e     [ J/m 3 K ]
P ( t ) = a I ( t ) d     [ W/m 3 ]
T e = 2 a F 65 d + 300 2 ,
G ( H L ) x R   A g   P ,
ε = 4 + 4.4 × 10 8 ( 0.7 + 3 × 10 32 ω 2 ) T e 2
γ = 7.97 × 10 13 + 2.9 × 10 6 T e 2 .
Φ A g + Φ D + 2 × Φ S = 2 π n ,
Φ A g N L + d λ ( Φ A g λ + Φ D λ + 2 × Φ S λ ) = 0 ,
( H 1 L ) 4 R 1 Ag R 2 ( LH 2 ) 2 ,

Metrics