Abstract

We report an imaging sensor capable of recording the optical properties of partially polarized light by monolithically integrating aluminum nanowire optical filters with a CCD imaging array. The imaging sensor, composed of 1000 by 1000 imaging elements with 7.4μm pixel pitch, is covered with an array of pixel-pitch matched nanowire optical filters with four different orientations offset by 45°. The polarization imaging sensor has a signal-to-noise ratio of 45dB and captures intensity, angle and degree of linear polarization in the visible spectrum at 40 frames per second with 300mW of power consumption.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. R. Fossum, “CMOS image sensors: electronic camera-on-a-chip,” IEEE Trans. Electron. Dev. 44(10), 1689–1698 (1997).
    [CrossRef]
  2. D. Goldstein, “Polarized Light,” (Marcel Dekker: New York, NY, 2003).
  3. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006).
    [CrossRef] [PubMed]
  4. S. Shwartz, E. Namer, and Y. Schechner, “Blind Haze Seperation,” Proc. IEEE Comp. Vision and Pat. Recog. 2, 1984–1991 (2006).
  5. T. Treibitz and Y. Y. Schechner, “Active polarization descattering,” IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 385–399 (2009).
    [CrossRef] [PubMed]
  6. W. Plucknett and R. Dowd, “Refraction and Polarization Properties of Binary Solutions of the Nitrotoluene Isomers with the Xylene Isomers, Chloroform and Cyclohexane,” J. Chem. Eng. Data 8(2), 207–210 (1963).
    [CrossRef]
  7. J. L. Deuzé, F. M. Bréon, C. Devaux, P. Goloub, M. Herman, B. Lafrance, F. Maignan, A. Marchand, F. Nadal, G. Perry, and D. Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res. 106(D5), 4913–4926 (2001).
    [CrossRef]
  8. E. Puttonen, J. Suomalainen, T. Hakala, and J. Peltoniemi, “Measurement of Reflectance Properties of Asphalt Surfaces and Their Usability as Reference Targets for Aerial Photos,” IEEE Trans. Geosci. Rem. Sens. 47(7), 2330–2339 (2009).
    [CrossRef]
  9. S. S. Lin, K. M. Yemelyanov, E. N. Pugh, and N. Engheta, “Polarization-based and specular-reflection-based noncontact latent fingerprint imaging and lifting,” J. Opt. Soc. Am. A 23(9), 2137–2153 (2006).
    [CrossRef]
  10. E. Salomatina-Motts, V. A. Neel, and A. N. Yaroslavskaya, “Multimodal polarization system for imaging skin cancer,” Opt. Spectrosc. 107(6), 884–890 (2009).
    [CrossRef]
  11. B. I. Gramatikov, O. H. Zalloum, Y. K. Wu, D. G. Hunter, and D. L. Guyton, “Directional eye fixation sensor using birefringence-based foveal detection,” Appl. Opt. 46(10), 1809–1818 (2007).
    [CrossRef] [PubMed]
  12. A. Andreou and Z. Kalayjian, “Polarization imaging: principles and integrated polarimeters,” IEEE Sens. J. 2(6), 566–576 (2002).
    [CrossRef]
  13. M. Momeni and A. H. Titus, “An analog VLSI chip emulating polarization vision of Octopus retina,” IEEE Trans. Neural Netw. 17(1), 222–232 (2006).
    [CrossRef] [PubMed]
  14. T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarisation-analysing CMOS photosensor with monolithically embedded wire grid polarizer,” Electron. Lett. 45(4), 228–230 (2009).
    [CrossRef]
  15. X. Zhao, F. Boussaid, A. Bermak, and V. G. Chigrinov, “Thin Photo-Patterned Micropolarizer Array for CMOS Image Sensors,” IEEE Photon. Technol. Lett. 21(12), 805–807 (2009).
    [CrossRef]
  16. V. Gruev, A. Ortu, N. Lazarus, J. Van der Spiegel, and N. Engheta, “Fabrication of a dual-tier thin film micropolarization array,” Opt. Express 15(8), 4994–5007 (2007).
    [CrossRef] [PubMed]
  17. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
    [CrossRef]
  18. M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, “High-sensitivity, single-beam n(2) measurements,” Opt. Lett. 14(17), 955–957 (1989).
    [CrossRef] [PubMed]

2009

T. Treibitz and Y. Y. Schechner, “Active polarization descattering,” IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 385–399 (2009).
[CrossRef] [PubMed]

E. Puttonen, J. Suomalainen, T. Hakala, and J. Peltoniemi, “Measurement of Reflectance Properties of Asphalt Surfaces and Their Usability as Reference Targets for Aerial Photos,” IEEE Trans. Geosci. Rem. Sens. 47(7), 2330–2339 (2009).
[CrossRef]

E. Salomatina-Motts, V. A. Neel, and A. N. Yaroslavskaya, “Multimodal polarization system for imaging skin cancer,” Opt. Spectrosc. 107(6), 884–890 (2009).
[CrossRef]

T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarisation-analysing CMOS photosensor with monolithically embedded wire grid polarizer,” Electron. Lett. 45(4), 228–230 (2009).
[CrossRef]

X. Zhao, F. Boussaid, A. Bermak, and V. G. Chigrinov, “Thin Photo-Patterned Micropolarizer Array for CMOS Image Sensors,” IEEE Photon. Technol. Lett. 21(12), 805–807 (2009).
[CrossRef]

2007

2006

2002

A. Andreou and Z. Kalayjian, “Polarization imaging: principles and integrated polarimeters,” IEEE Sens. J. 2(6), 566–576 (2002).
[CrossRef]

2001

J. L. Deuzé, F. M. Bréon, C. Devaux, P. Goloub, M. Herman, B. Lafrance, F. Maignan, A. Marchand, F. Nadal, G. Perry, and D. Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res. 106(D5), 4913–4926 (2001).
[CrossRef]

1997

E. R. Fossum, “CMOS image sensors: electronic camera-on-a-chip,” IEEE Trans. Electron. Dev. 44(10), 1689–1698 (1997).
[CrossRef]

1989

1963

W. Plucknett and R. Dowd, “Refraction and Polarization Properties of Binary Solutions of the Nitrotoluene Isomers with the Xylene Isomers, Chloroform and Cyclohexane,” J. Chem. Eng. Data 8(2), 207–210 (1963).
[CrossRef]

Andreou, A.

A. Andreou and Z. Kalayjian, “Polarization imaging: principles and integrated polarimeters,” IEEE Sens. J. 2(6), 566–576 (2002).
[CrossRef]

Bermak, A.

X. Zhao, F. Boussaid, A. Bermak, and V. G. Chigrinov, “Thin Photo-Patterned Micropolarizer Array for CMOS Image Sensors,” IEEE Photon. Technol. Lett. 21(12), 805–807 (2009).
[CrossRef]

Boussaid, F.

X. Zhao, F. Boussaid, A. Bermak, and V. G. Chigrinov, “Thin Photo-Patterned Micropolarizer Array for CMOS Image Sensors,” IEEE Photon. Technol. Lett. 21(12), 805–807 (2009).
[CrossRef]

Bréon, F. M.

J. L. Deuzé, F. M. Bréon, C. Devaux, P. Goloub, M. Herman, B. Lafrance, F. Maignan, A. Marchand, F. Nadal, G. Perry, and D. Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res. 106(D5), 4913–4926 (2001).
[CrossRef]

Chenault, D. B.

Chigrinov, V. G.

X. Zhao, F. Boussaid, A. Bermak, and V. G. Chigrinov, “Thin Photo-Patterned Micropolarizer Array for CMOS Image Sensors,” IEEE Photon. Technol. Lett. 21(12), 805–807 (2009).
[CrossRef]

Deng, X.

J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[CrossRef]

Deuzé, J. L.

J. L. Deuzé, F. M. Bréon, C. Devaux, P. Goloub, M. Herman, B. Lafrance, F. Maignan, A. Marchand, F. Nadal, G. Perry, and D. Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res. 106(D5), 4913–4926 (2001).
[CrossRef]

Devaux, C.

J. L. Deuzé, F. M. Bréon, C. Devaux, P. Goloub, M. Herman, B. Lafrance, F. Maignan, A. Marchand, F. Nadal, G. Perry, and D. Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res. 106(D5), 4913–4926 (2001).
[CrossRef]

Dowd, R.

W. Plucknett and R. Dowd, “Refraction and Polarization Properties of Binary Solutions of the Nitrotoluene Isomers with the Xylene Isomers, Chloroform and Cyclohexane,” J. Chem. Eng. Data 8(2), 207–210 (1963).
[CrossRef]

Engheta, N.

Fossum, E. R.

E. R. Fossum, “CMOS image sensors: electronic camera-on-a-chip,” IEEE Trans. Electron. Dev. 44(10), 1689–1698 (1997).
[CrossRef]

Goldstein, D. L.

Goloub, P.

J. L. Deuzé, F. M. Bréon, C. Devaux, P. Goloub, M. Herman, B. Lafrance, F. Maignan, A. Marchand, F. Nadal, G. Perry, and D. Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res. 106(D5), 4913–4926 (2001).
[CrossRef]

Gramatikov, B. I.

Gruev, V.

Guyton, D. L.

Hakala, T.

E. Puttonen, J. Suomalainen, T. Hakala, and J. Peltoniemi, “Measurement of Reflectance Properties of Asphalt Surfaces and Their Usability as Reference Targets for Aerial Photos,” IEEE Trans. Geosci. Rem. Sens. 47(7), 2330–2339 (2009).
[CrossRef]

Herman, M.

J. L. Deuzé, F. M. Bréon, C. Devaux, P. Goloub, M. Herman, B. Lafrance, F. Maignan, A. Marchand, F. Nadal, G. Perry, and D. Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res. 106(D5), 4913–4926 (2001).
[CrossRef]

Hunter, D. G.

Kalayjian, Z.

A. Andreou and Z. Kalayjian, “Polarization imaging: principles and integrated polarimeters,” IEEE Sens. J. 2(6), 566–576 (2002).
[CrossRef]

Lafrance, B.

J. L. Deuzé, F. M. Bréon, C. Devaux, P. Goloub, M. Herman, B. Lafrance, F. Maignan, A. Marchand, F. Nadal, G. Perry, and D. Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res. 106(D5), 4913–4926 (2001).
[CrossRef]

Lazarus, N.

Lin, S. S.

Liu, X.

J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[CrossRef]

Maignan, F.

J. L. Deuzé, F. M. Bréon, C. Devaux, P. Goloub, M. Herman, B. Lafrance, F. Maignan, A. Marchand, F. Nadal, G. Perry, and D. Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res. 106(D5), 4913–4926 (2001).
[CrossRef]

Marchand, A.

J. L. Deuzé, F. M. Bréon, C. Devaux, P. Goloub, M. Herman, B. Lafrance, F. Maignan, A. Marchand, F. Nadal, G. Perry, and D. Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res. 106(D5), 4913–4926 (2001).
[CrossRef]

Momeni, M.

M. Momeni and A. H. Titus, “An analog VLSI chip emulating polarization vision of Octopus retina,” IEEE Trans. Neural Netw. 17(1), 222–232 (2006).
[CrossRef] [PubMed]

Nadal, F.

J. L. Deuzé, F. M. Bréon, C. Devaux, P. Goloub, M. Herman, B. Lafrance, F. Maignan, A. Marchand, F. Nadal, G. Perry, and D. Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res. 106(D5), 4913–4926 (2001).
[CrossRef]

Neel, V. A.

E. Salomatina-Motts, V. A. Neel, and A. N. Yaroslavskaya, “Multimodal polarization system for imaging skin cancer,” Opt. Spectrosc. 107(6), 884–890 (2009).
[CrossRef]

Ohta, J.

T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarisation-analysing CMOS photosensor with monolithically embedded wire grid polarizer,” Electron. Lett. 45(4), 228–230 (2009).
[CrossRef]

Ortu, A.

Peltoniemi, J.

E. Puttonen, J. Suomalainen, T. Hakala, and J. Peltoniemi, “Measurement of Reflectance Properties of Asphalt Surfaces and Their Usability as Reference Targets for Aerial Photos,” IEEE Trans. Geosci. Rem. Sens. 47(7), 2330–2339 (2009).
[CrossRef]

Perry, G.

J. L. Deuzé, F. M. Bréon, C. Devaux, P. Goloub, M. Herman, B. Lafrance, F. Maignan, A. Marchand, F. Nadal, G. Perry, and D. Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res. 106(D5), 4913–4926 (2001).
[CrossRef]

Plucknett, W.

W. Plucknett and R. Dowd, “Refraction and Polarization Properties of Binary Solutions of the Nitrotoluene Isomers with the Xylene Isomers, Chloroform and Cyclohexane,” J. Chem. Eng. Data 8(2), 207–210 (1963).
[CrossRef]

Pugh, E. N.

Puttonen, E.

E. Puttonen, J. Suomalainen, T. Hakala, and J. Peltoniemi, “Measurement of Reflectance Properties of Asphalt Surfaces and Their Usability as Reference Targets for Aerial Photos,” IEEE Trans. Geosci. Rem. Sens. 47(7), 2330–2339 (2009).
[CrossRef]

Said, A. A.

Salomatina-Motts, E.

E. Salomatina-Motts, V. A. Neel, and A. N. Yaroslavskaya, “Multimodal polarization system for imaging skin cancer,” Opt. Spectrosc. 107(6), 884–890 (2009).
[CrossRef]

Sasagawa, K.

T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarisation-analysing CMOS photosensor with monolithically embedded wire grid polarizer,” Electron. Lett. 45(4), 228–230 (2009).
[CrossRef]

Sato, S.

T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarisation-analysing CMOS photosensor with monolithically embedded wire grid polarizer,” Electron. Lett. 45(4), 228–230 (2009).
[CrossRef]

Schechner, Y. Y.

T. Treibitz and Y. Y. Schechner, “Active polarization descattering,” IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 385–399 (2009).
[CrossRef] [PubMed]

Sciortino, P.

J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[CrossRef]

Shaw, J. A.

Sheik-Bahae, M.

Suomalainen, J.

E. Puttonen, J. Suomalainen, T. Hakala, and J. Peltoniemi, “Measurement of Reflectance Properties of Asphalt Surfaces and Their Usability as Reference Targets for Aerial Photos,” IEEE Trans. Geosci. Rem. Sens. 47(7), 2330–2339 (2009).
[CrossRef]

Tanré, D.

J. L. Deuzé, F. M. Bréon, C. Devaux, P. Goloub, M. Herman, B. Lafrance, F. Maignan, A. Marchand, F. Nadal, G. Perry, and D. Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res. 106(D5), 4913–4926 (2001).
[CrossRef]

Titus, A. H.

M. Momeni and A. H. Titus, “An analog VLSI chip emulating polarization vision of Octopus retina,” IEEE Trans. Neural Netw. 17(1), 222–232 (2006).
[CrossRef] [PubMed]

Tokuda, T.

T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarisation-analysing CMOS photosensor with monolithically embedded wire grid polarizer,” Electron. Lett. 45(4), 228–230 (2009).
[CrossRef]

Treibitz, T.

T. Treibitz and Y. Y. Schechner, “Active polarization descattering,” IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 385–399 (2009).
[CrossRef] [PubMed]

Tyo, J. S.

Van der Spiegel, J.

Van Stryland, E. W.

Walters, F.

J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[CrossRef]

Wang, J.

J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[CrossRef]

Wu, Y. K.

Yamada, H.

T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarisation-analysing CMOS photosensor with monolithically embedded wire grid polarizer,” Electron. Lett. 45(4), 228–230 (2009).
[CrossRef]

Yaroslavskaya, A. N.

E. Salomatina-Motts, V. A. Neel, and A. N. Yaroslavskaya, “Multimodal polarization system for imaging skin cancer,” Opt. Spectrosc. 107(6), 884–890 (2009).
[CrossRef]

Yemelyanov, K. M.

Zalloum, O. H.

Zhao, X.

X. Zhao, F. Boussaid, A. Bermak, and V. G. Chigrinov, “Thin Photo-Patterned Micropolarizer Array for CMOS Image Sensors,” IEEE Photon. Technol. Lett. 21(12), 805–807 (2009).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[CrossRef]

Electron. Lett.

T. Tokuda, S. Sato, H. Yamada, K. Sasagawa, and J. Ohta, “Polarisation-analysing CMOS photosensor with monolithically embedded wire grid polarizer,” Electron. Lett. 45(4), 228–230 (2009).
[CrossRef]

IEEE Photon. Technol. Lett.

X. Zhao, F. Boussaid, A. Bermak, and V. G. Chigrinov, “Thin Photo-Patterned Micropolarizer Array for CMOS Image Sensors,” IEEE Photon. Technol. Lett. 21(12), 805–807 (2009).
[CrossRef]

IEEE Sens. J.

A. Andreou and Z. Kalayjian, “Polarization imaging: principles and integrated polarimeters,” IEEE Sens. J. 2(6), 566–576 (2002).
[CrossRef]

IEEE Trans. Electron. Dev.

E. R. Fossum, “CMOS image sensors: electronic camera-on-a-chip,” IEEE Trans. Electron. Dev. 44(10), 1689–1698 (1997).
[CrossRef]

IEEE Trans. Geosci. Rem. Sens.

E. Puttonen, J. Suomalainen, T. Hakala, and J. Peltoniemi, “Measurement of Reflectance Properties of Asphalt Surfaces and Their Usability as Reference Targets for Aerial Photos,” IEEE Trans. Geosci. Rem. Sens. 47(7), 2330–2339 (2009).
[CrossRef]

IEEE Trans. Neural Netw.

M. Momeni and A. H. Titus, “An analog VLSI chip emulating polarization vision of Octopus retina,” IEEE Trans. Neural Netw. 17(1), 222–232 (2006).
[CrossRef] [PubMed]

IEEE Trans. Pattern Anal. Mach. Intell.

T. Treibitz and Y. Y. Schechner, “Active polarization descattering,” IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 385–399 (2009).
[CrossRef] [PubMed]

J. Chem. Eng. Data

W. Plucknett and R. Dowd, “Refraction and Polarization Properties of Binary Solutions of the Nitrotoluene Isomers with the Xylene Isomers, Chloroform and Cyclohexane,” J. Chem. Eng. Data 8(2), 207–210 (1963).
[CrossRef]

J. Geophys. Res.

J. L. Deuzé, F. M. Bréon, C. Devaux, P. Goloub, M. Herman, B. Lafrance, F. Maignan, A. Marchand, F. Nadal, G. Perry, and D. Tanré, “Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements,” J. Geophys. Res. 106(D5), 4913–4926 (2001).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Express

Opt. Lett.

Opt. Spectrosc.

E. Salomatina-Motts, V. A. Neel, and A. N. Yaroslavskaya, “Multimodal polarization system for imaging skin cancer,” Opt. Spectrosc. 107(6), 884–890 (2009).
[CrossRef]

Other

S. Shwartz, E. Namer, and Y. Schechner, “Blind Haze Seperation,” Proc. IEEE Comp. Vision and Pat. Recog. 2, 1984–1991 (2006).

D. Goldstein, “Polarized Light,” (Marcel Dekker: New York, NY, 2003).

Supplementary Material (1)

» Media 1: MOV (1009 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Block diagram of the integrated CCD polarization image sensor. The imaging array is covered with a pixel pitch-matched micropolarization filter array with four different orientations offset by 45°. The micropolarization filter array is composed of aluminum nanowires with 70nm width, 140nm pitch and 70nm height. (b) SEM image of the aluminum nanowire polarization filters oriented at 45 degrees.

Fig. 2
Fig. 2

Intensity response of four neighboring pixels as a function of different angles of linearly polarized light. The four pixels have nanowire polarization filters offset by 45 o relative to each other. Hence, the four pixels exhibit minimums and maximums shifted 45° from each other

Fig. 3
Fig. 3

(a) Measured angle of linear polarization from a neighborhood of four pixels as a function of different angles of linearly polarized incident light. (b) Measured degree of linear polarization as a function of a reference wave whose degree of linear polarization is modulated from 0 (unpolarized) to 1 (linearly polarized).

Fig. 4
Fig. 4

(a) Measured extinction ratios for three different narrow band wavelengths as a function of integration time. The optical performance of the nanowires is a function of wavelength, leading to spectral dependence of the extinction ratios. (b) Measured extinction ratio as a function of incident angle of the impingent light on the surface of the imaging sensor

Fig. 5
Fig. 5

(Media 1) Single-frame excerpts from video recordings from a CCD polarization imaging sensor of sample objects and linear polarization filters. (a) intensity information; (b) degree of linear polarization and (c) angle of linear polarization of the imaged scene. Angle and degree of linear polarization are a function of the incident angle of the incoming light wave i.e. shape of the object and the material properties of the object i.e. index of refraction

Tables (2)

Tables Icon

Table 1 Brewster angle detection for five materials using optical information recorded by the CCD polarization imaging sensor

Tables Icon

Table 2 Summary of the CCD polarization imaging sensor

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

D o L P = S 1 2 + S 2 2 S o
  A o P = 1 2 arctan ( S 2 S 1 )

Metrics