Abstract

We observe the appearance of multiple dipole surface plasmon resonances in spherical Ag nanoparticles when embedded in an organic semiconductor that exhibits a highly dispersive permittivity. Comparing the absorption spectra of thin-films with and without Ag nanoparticles reveals the presence of two plasmon peaks. Numerical simulations and calculations based on an electrostatic model allow us to attribute both peaks to dipole resonances, and show that the strong dispersion of the organic permittivity is responsible for this behavior. The presence of these two plasmon resonances was found to enhance the absorption of the organic semiconductor over a broad wavelength range.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C 111(10), 3806–3819 (2007).
    [CrossRef]
  2. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
    [CrossRef]
  3. D. D. Evanoff, R. L. White, and G. Chumanov, “Measuring the distance dependence of the local electromagnetic field from silver nanoparticles,” J. Phys. Chem. B 108(5), 1522–1524 (2004).
    [CrossRef]
  4. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
    [CrossRef] [PubMed]
  5. J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
    [CrossRef]
  6. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [CrossRef] [PubMed]
  7. M.-C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104(1), 293–346 (2004).
    [CrossRef] [PubMed]
  8. H. Haick, “Chemical sensors based on molecularly modified metallic nanoparticles,” J. Phys. D Appl. Phys. 40(23), 7173–7186 (2007).
    [CrossRef]
  9. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  10. F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A 205(12), 2844–2861 (2008).
    [CrossRef]
  11. B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
    [CrossRef]
  12. A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
    [CrossRef]
  13. H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
    [CrossRef]
  14. S. A. Choulis, M. K. Mathai, and V.-E. Choong, “Influence of metallic nanoparticles on the performance of organic electrophosphorescence devices,” Appl. Phys. Lett. 88(21), 213503 (2006).
    [CrossRef]
  15. M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
    [CrossRef]
  16. S. Schlücker, “SERS microscopy: nanoparticle probes and biomedical applications,” ChemPhysChem 10(9-10), 1344–1354 (2009).
    [CrossRef] [PubMed]
  17. X. X. Han, B. Zhao, and Y. Ozaki, “Surface-enhanced Raman scattering for protein detection,” Anal. Bioanal. Chem. 394(7), 1719–1727 (2009).
    [CrossRef] [PubMed]
  18. U. Kreibig, and M. Vollmer, Optical properties of metal clusters, Springer Series in Materials Science (Springer-Verlag, 1995).
  19. C. F. Bohren, and D. R. Huffman, Absorption and scattering of light by small particles (Wiley-Interscience, 1983).
  20. K. L. Mutolo, E. I. Mayo, B. P. Rand, S. R. Forrest, and M. E. Thompson, “Enhanced open-circuit voltage in subphthalocyanine/C60 organic photovoltaic cells,” J. Am. Chem. Soc. 128(25), 8108–8109 (2006).
    [CrossRef] [PubMed]
  21. H. H. P. Gommans, D. Cheyns, T. Aernouts, C. Girotto, J. Poortmans, and P. Heremans, “Electro-optical study of subphthalocyanine in a bilayer organic solar cell,” Adv. Funct. Mater. 17(15), 2653–2658 (2007).
    [CrossRef]
  22. N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
    [CrossRef] [PubMed]
  23. A A. J. Haes, S. Zou, J. Zhao, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy near molecular resonances,” J. Am. Chem. Soc. 128(33), 10905–10914 (2006).
    [CrossRef] [PubMed]
  24. G. Gupta, D. Tanaka, Y. Ito, D. Shibata, M. Shimojo, K. Furuya, K. Mitsui, and K. Kajikawa, “Absorption spectroscopy of gold nanoisland films: optical and structural characterization,” Nanotechnology 20(2), 025703 (2009).
    [CrossRef] [PubMed]
  25. P. Royer, J. L. Bijeon, J. P. Goudonnet, T. Inagaki, and E. T. Arakawa, “Optical absorbance of silver oblate particles - Substrate and shape effects,” Surf. Sci. 217(1-2), 384–402 (1989).
    [CrossRef]
  26. U. Kreibig, B. Schmitz, and H. D. Breuer, “Separation of plasmon-polariton modes of small metal particles,” Phys. Rev. B Condens. Matter 36(9), 5027–5030 (1987).
    [CrossRef] [PubMed]
  27. K. Tanabe, “Field enhancement around metal nanoparticles and nanoshells: a systematic investigation,” J. Phys. Chem. C 112(40), 15721–15728 (2008).
    [CrossRef]
  28. J. B. Khurgin and G. Sun, “Enhancement of optical properties of nanoscaled objects by metal nanoparticles,” J. Opt. Soc. Am. B 26(12), B83–B95 (2009).
    [CrossRef]
  29. N. I. Cade, T. Ritman-Meer, and D. Richards, “Strong coupling of localized plasmons and molecular excitons in nanostructured silver films,” Phys. Rev. B 79(24), 241404 (2009).
    [CrossRef]
  30. T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater. 22(16), 1805–1825 (2010).
    [CrossRef] [PubMed]
  31. B. P. Rand, J. Genoe, P. Heremans, and J. Poortmans, “Solar cells utilizing small molecular weight organic semiconductors,” Prog. Photovolt. Res. Appl. 15(8), 659–676 (2007).
    [CrossRef]
  32. B. C. Thompson and J. M. J. Fréchet, “Polymer-fullerene composite solar cells,” Angew. Chem. Int. Ed. Engl. 47(1), 58–77 (2008).
    [CrossRef]

2010

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater. 22(16), 1805–1825 (2010).
[CrossRef] [PubMed]

2009

G. Gupta, D. Tanaka, Y. Ito, D. Shibata, M. Shimojo, K. Furuya, K. Mitsui, and K. Kajikawa, “Absorption spectroscopy of gold nanoisland films: optical and structural characterization,” Nanotechnology 20(2), 025703 (2009).
[CrossRef] [PubMed]

J. B. Khurgin and G. Sun, “Enhancement of optical properties of nanoscaled objects by metal nanoparticles,” J. Opt. Soc. Am. B 26(12), B83–B95 (2009).
[CrossRef]

N. I. Cade, T. Ritman-Meer, and D. Richards, “Strong coupling of localized plasmons and molecular excitons in nanostructured silver films,” Phys. Rev. B 79(24), 241404 (2009).
[CrossRef]

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[CrossRef]

S. Schlücker, “SERS microscopy: nanoparticle probes and biomedical applications,” ChemPhysChem 10(9-10), 1344–1354 (2009).
[CrossRef] [PubMed]

X. X. Han, B. Zhao, and Y. Ozaki, “Surface-enhanced Raman scattering for protein detection,” Anal. Bioanal. Chem. 394(7), 1719–1727 (2009).
[CrossRef] [PubMed]

2008

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[CrossRef]

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[CrossRef]

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A 205(12), 2844–2861 (2008).
[CrossRef]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

K. Tanabe, “Field enhancement around metal nanoparticles and nanoshells: a systematic investigation,” J. Phys. Chem. C 112(40), 15721–15728 (2008).
[CrossRef]

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[CrossRef] [PubMed]

B. C. Thompson and J. M. J. Fréchet, “Polymer-fullerene composite solar cells,” Angew. Chem. Int. Ed. Engl. 47(1), 58–77 (2008).
[CrossRef]

2007

B. P. Rand, J. Genoe, P. Heremans, and J. Poortmans, “Solar cells utilizing small molecular weight organic semiconductors,” Prog. Photovolt. Res. Appl. 15(8), 659–676 (2007).
[CrossRef]

H. H. P. Gommans, D. Cheyns, T. Aernouts, C. Girotto, J. Poortmans, and P. Heremans, “Electro-optical study of subphthalocyanine in a bilayer organic solar cell,” Adv. Funct. Mater. 17(15), 2653–2658 (2007).
[CrossRef]

H. Haick, “Chemical sensors based on molecularly modified metallic nanoparticles,” J. Phys. D Appl. Phys. 40(23), 7173–7186 (2007).
[CrossRef]

C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C 111(10), 3806–3819 (2007).
[CrossRef]

2006

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

S. A. Choulis, M. K. Mathai, and V.-E. Choong, “Influence of metallic nanoparticles on the performance of organic electrophosphorescence devices,” Appl. Phys. Lett. 88(21), 213503 (2006).
[CrossRef]

K. L. Mutolo, E. I. Mayo, B. P. Rand, S. R. Forrest, and M. E. Thompson, “Enhanced open-circuit voltage in subphthalocyanine/C60 organic photovoltaic cells,” J. Am. Chem. Soc. 128(25), 8108–8109 (2006).
[CrossRef] [PubMed]

A A. J. Haes, S. Zou, J. Zhao, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy near molecular resonances,” J. Am. Chem. Soc. 128(33), 10905–10914 (2006).
[CrossRef] [PubMed]

2004

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[CrossRef]

D. D. Evanoff, R. L. White, and G. Chumanov, “Measuring the distance dependence of the local electromagnetic field from silver nanoparticles,” J. Phys. Chem. B 108(5), 1522–1524 (2004).
[CrossRef]

M.-C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104(1), 293–346 (2004).
[CrossRef] [PubMed]

2003

J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
[CrossRef]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

1989

P. Royer, J. L. Bijeon, J. P. Goudonnet, T. Inagaki, and E. T. Arakawa, “Optical absorbance of silver oblate particles - Substrate and shape effects,” Surf. Sci. 217(1-2), 384–402 (1989).
[CrossRef]

1987

U. Kreibig, B. Schmitz, and H. D. Breuer, “Separation of plasmon-polariton modes of small metal particles,” Phys. Rev. B Condens. Matter 36(9), 5027–5030 (1987).
[CrossRef] [PubMed]

Aernouts, T.

H. H. P. Gommans, D. Cheyns, T. Aernouts, C. Girotto, J. Poortmans, and P. Heremans, “Electro-optical study of subphthalocyanine in a bilayer organic solar cell,” Adv. Funct. Mater. 17(15), 2653–2658 (2007).
[CrossRef]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Arakawa, E. T.

P. Royer, J. L. Bijeon, J. P. Goudonnet, T. Inagaki, and E. T. Arakawa, “Optical absorbance of silver oblate particles - Substrate and shape effects,” Surf. Sci. 217(1-2), 384–402 (1989).
[CrossRef]

Astruc, D.

M.-C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104(1), 293–346 (2004).
[CrossRef] [PubMed]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Bienstman, P.

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[CrossRef]

Bijeon, J. L.

P. Royer, J. L. Bijeon, J. P. Goudonnet, T. Inagaki, and E. T. Arakawa, “Optical absorbance of silver oblate particles - Substrate and shape effects,” Surf. Sci. 217(1-2), 384–402 (1989).
[CrossRef]

Breuer, H. D.

U. Kreibig, B. Schmitz, and H. D. Breuer, “Separation of plasmon-polariton modes of small metal particles,” Phys. Rev. B Condens. Matter 36(9), 5027–5030 (1987).
[CrossRef] [PubMed]

Byeon, C. C.

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[CrossRef]

Cade, N. I.

N. I. Cade, T. Ritman-Meer, and D. Richards, “Strong coupling of localized plasmons and molecular excitons in nanostructured silver films,” Phys. Rev. B 79(24), 241404 (2009).
[CrossRef]

Cheyns, D.

H. H. P. Gommans, D. Cheyns, T. Aernouts, C. Girotto, J. Poortmans, and P. Heremans, “Electro-optical study of subphthalocyanine in a bilayer organic solar cell,” Adv. Funct. Mater. 17(15), 2653–2658 (2007).
[CrossRef]

Cho, C.-Y.

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[CrossRef]

Choong, V.-E.

S. A. Choulis, M. K. Mathai, and V.-E. Choong, “Influence of metallic nanoparticles on the performance of organic electrophosphorescence devices,” Appl. Phys. Lett. 88(21), 213503 (2006).
[CrossRef]

Choulis, S. A.

S. A. Choulis, M. K. Mathai, and V.-E. Choong, “Influence of metallic nanoparticles on the performance of organic electrophosphorescence devices,” Appl. Phys. Lett. 88(21), 213503 (2006).
[CrossRef]

Chumanov, G.

D. D. Evanoff, R. L. White, and G. Chumanov, “Measuring the distance dependence of the local electromagnetic field from silver nanoparticles,” J. Phys. Chem. B 108(5), 1522–1524 (2004).
[CrossRef]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Daniel, M.-C.

M.-C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104(1), 293–346 (2004).
[CrossRef] [PubMed]

El-Sayed, I. H.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

El-Sayed, M. A.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

Evanoff, D. D.

D. D. Evanoff, R. L. White, and G. Chumanov, “Measuring the distance dependence of the local electromagnetic field from silver nanoparticles,” J. Phys. Chem. B 108(5), 1522–1524 (2004).
[CrossRef]

Fahr, S.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A 205(12), 2844–2861 (2008).
[CrossRef]

Feldmann, J.

T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater. 22(16), 1805–1825 (2010).
[CrossRef] [PubMed]

Fofang, N. T.

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[CrossRef] [PubMed]

Forrest, S. R.

K. L. Mutolo, E. I. Mayo, B. P. Rand, S. R. Forrest, and M. E. Thompson, “Enhanced open-circuit voltage in subphthalocyanine/C60 organic photovoltaic cells,” J. Am. Chem. Soc. 128(25), 8108–8109 (2006).
[CrossRef] [PubMed]

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[CrossRef]

Fréchet, J. M. J.

B. C. Thompson and J. M. J. Fréchet, “Polymer-fullerene composite solar cells,” Angew. Chem. Int. Ed. Engl. 47(1), 58–77 (2008).
[CrossRef]

Furuya, K.

G. Gupta, D. Tanaka, Y. Ito, D. Shibata, M. Shimojo, K. Furuya, K. Mitsui, and K. Kajikawa, “Absorption spectroscopy of gold nanoisland films: optical and structural characterization,” Nanotechnology 20(2), 025703 (2009).
[CrossRef] [PubMed]

Genoe, J.

B. P. Rand, J. Genoe, P. Heremans, and J. Poortmans, “Solar cells utilizing small molecular weight organic semiconductors,” Prog. Photovolt. Res. Appl. 15(8), 659–676 (2007).
[CrossRef]

Girotto, C.

H. H. P. Gommans, D. Cheyns, T. Aernouts, C. Girotto, J. Poortmans, and P. Heremans, “Electro-optical study of subphthalocyanine in a bilayer organic solar cell,” Adv. Funct. Mater. 17(15), 2653–2658 (2007).
[CrossRef]

Gommans, H. H. P.

H. H. P. Gommans, D. Cheyns, T. Aernouts, C. Girotto, J. Poortmans, and P. Heremans, “Electro-optical study of subphthalocyanine in a bilayer organic solar cell,” Adv. Funct. Mater. 17(15), 2653–2658 (2007).
[CrossRef]

Goudonnet, J. P.

P. Royer, J. L. Bijeon, J. P. Goudonnet, T. Inagaki, and E. T. Arakawa, “Optical absorbance of silver oblate particles - Substrate and shape effects,” Surf. Sci. 217(1-2), 384–402 (1989).
[CrossRef]

Graener, H.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A 205(12), 2844–2861 (2008).
[CrossRef]

Gupta, G.

G. Gupta, D. Tanaka, Y. Ito, D. Shibata, M. Shimojo, K. Furuya, K. Mitsui, and K. Kajikawa, “Absorption spectroscopy of gold nanoisland films: optical and structural characterization,” Nanotechnology 20(2), 025703 (2009).
[CrossRef] [PubMed]

Haes, A A. J.

A A. J. Haes, S. Zou, J. Zhao, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy near molecular resonances,” J. Am. Chem. Soc. 128(33), 10905–10914 (2006).
[CrossRef] [PubMed]

Haick, H.

H. Haick, “Chemical sensors based on molecularly modified metallic nanoparticles,” J. Phys. D Appl. Phys. 40(23), 7173–7186 (2007).
[CrossRef]

Halas, N. J.

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[CrossRef] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Hallermann, F.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A 205(12), 2844–2861 (2008).
[CrossRef]

Han, X. X.

X. X. Han, B. Zhao, and Y. Ozaki, “Surface-enhanced Raman scattering for protein detection,” Anal. Bioanal. Chem. 394(7), 1719–1727 (2009).
[CrossRef] [PubMed]

Heremans, P.

H. H. P. Gommans, D. Cheyns, T. Aernouts, C. Girotto, J. Poortmans, and P. Heremans, “Electro-optical study of subphthalocyanine in a bilayer organic solar cell,” Adv. Funct. Mater. 17(15), 2653–2658 (2007).
[CrossRef]

B. P. Rand, J. Genoe, P. Heremans, and J. Poortmans, “Solar cells utilizing small molecular weight organic semiconductors,” Prog. Photovolt. Res. Appl. 15(8), 659–676 (2007).
[CrossRef]

Inagaki, T.

P. Royer, J. L. Bijeon, J. P. Goudonnet, T. Inagaki, and E. T. Arakawa, “Optical absorbance of silver oblate particles - Substrate and shape effects,” Surf. Sci. 217(1-2), 384–402 (1989).
[CrossRef]

Ito, Y.

G. Gupta, D. Tanaka, Y. Ito, D. Shibata, M. Shimojo, K. Furuya, K. Mitsui, and K. Kajikawa, “Absorption spectroscopy of gold nanoisland films: optical and structural characterization,” Nanotechnology 20(2), 025703 (2009).
[CrossRef] [PubMed]

Jäckel, F.

T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater. 22(16), 1805–1825 (2010).
[CrossRef] [PubMed]

Jain, P. K.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

Kajikawa, K.

G. Gupta, D. Tanaka, Y. Ito, D. Shibata, M. Shimojo, K. Furuya, K. Mitsui, and K. Kajikawa, “Absorption spectroscopy of gold nanoisland films: optical and structural characterization,” Nanotechnology 20(2), 025703 (2009).
[CrossRef] [PubMed]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Khurgin, J. B.

Kim, B.-H.

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[CrossRef]

Kim, J.-Y.

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[CrossRef]

Klar, T. A.

T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater. 22(16), 1805–1825 (2010).
[CrossRef] [PubMed]

Kreibig, U.

U. Kreibig, B. Schmitz, and H. D. Breuer, “Separation of plasmon-polariton modes of small metal particles,” Phys. Rev. B Condens. Matter 36(9), 5027–5030 (1987).
[CrossRef] [PubMed]

Kwon, M.-K.

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[CrossRef]

Lederer, F.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A 205(12), 2844–2861 (2008).
[CrossRef]

Lee, K. S.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Maes, B.

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[CrossRef]

Mathai, M. K.

S. A. Choulis, M. K. Mathai, and V.-E. Choong, “Influence of metallic nanoparticles on the performance of organic electrophosphorescence devices,” Appl. Phys. Lett. 88(21), 213503 (2006).
[CrossRef]

Mayo, E. I.

K. L. Mutolo, E. I. Mayo, B. P. Rand, S. R. Forrest, and M. E. Thompson, “Enhanced open-circuit voltage in subphthalocyanine/C60 organic photovoltaic cells,” J. Am. Chem. Soc. 128(25), 8108–8109 (2006).
[CrossRef] [PubMed]

Mirin, N. A.

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[CrossRef] [PubMed]

Mitsui, K.

G. Gupta, D. Tanaka, Y. Ito, D. Shibata, M. Shimojo, K. Furuya, K. Mitsui, and K. Kajikawa, “Absorption spectroscopy of gold nanoisland films: optical and structural characterization,” Nanotechnology 20(2), 025703 (2009).
[CrossRef] [PubMed]

Mock, J. J.

J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
[CrossRef]

Morfa, A. J.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[CrossRef]

Mutolo, K. L.

K. L. Mutolo, E. I. Mayo, B. P. Rand, S. R. Forrest, and M. E. Thompson, “Enhanced open-circuit voltage in subphthalocyanine/C60 organic photovoltaic cells,” J. Am. Chem. Soc. 128(25), 8108–8109 (2006).
[CrossRef] [PubMed]

Neumann, O.

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[CrossRef] [PubMed]

Noguez, C.

C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C 111(10), 3806–3819 (2007).
[CrossRef]

Nordlander, P.

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[CrossRef] [PubMed]

Ozaki, Y.

X. X. Han, B. Zhao, and Y. Ozaki, “Surface-enhanced Raman scattering for protein detection,” Anal. Bioanal. Chem. 394(7), 1719–1727 (2009).
[CrossRef] [PubMed]

Park, I.-K.

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[CrossRef]

Park, S.-J.

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[CrossRef]

Park, T.-H.

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[CrossRef] [PubMed]

Peumans, P.

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[CrossRef]

Plessen, G.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A 205(12), 2844–2861 (2008).
[CrossRef]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Poortmans, J.

H. H. P. Gommans, D. Cheyns, T. Aernouts, C. Girotto, J. Poortmans, and P. Heremans, “Electro-optical study of subphthalocyanine in a bilayer organic solar cell,” Adv. Funct. Mater. 17(15), 2653–2658 (2007).
[CrossRef]

B. P. Rand, J. Genoe, P. Heremans, and J. Poortmans, “Solar cells utilizing small molecular weight organic semiconductors,” Prog. Photovolt. Res. Appl. 15(8), 659–676 (2007).
[CrossRef]

Rand, B. P.

B. P. Rand, J. Genoe, P. Heremans, and J. Poortmans, “Solar cells utilizing small molecular weight organic semiconductors,” Prog. Photovolt. Res. Appl. 15(8), 659–676 (2007).
[CrossRef]

K. L. Mutolo, E. I. Mayo, B. P. Rand, S. R. Forrest, and M. E. Thompson, “Enhanced open-circuit voltage in subphthalocyanine/C60 organic photovoltaic cells,” J. Am. Chem. Soc. 128(25), 8108–8109 (2006).
[CrossRef] [PubMed]

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[CrossRef]

Reilly, T. H.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[CrossRef]

Richards, D.

N. I. Cade, T. Ritman-Meer, and D. Richards, “Strong coupling of localized plasmons and molecular excitons in nanostructured silver films,” Phys. Rev. B 79(24), 241404 (2009).
[CrossRef]

Ritman-Meer, T.

N. I. Cade, T. Ritman-Meer, and D. Richards, “Strong coupling of localized plasmons and molecular excitons in nanostructured silver films,” Phys. Rev. B 79(24), 241404 (2009).
[CrossRef]

Rockstuhl, C.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A 205(12), 2844–2861 (2008).
[CrossRef]

Rogach, A. L.

T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater. 22(16), 1805–1825 (2010).
[CrossRef] [PubMed]

Romero, M. J.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[CrossRef]

Rowlen, K. L.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[CrossRef]

Royer, P.

P. Royer, J. L. Bijeon, J. P. Goudonnet, T. Inagaki, and E. T. Arakawa, “Optical absorbance of silver oblate particles - Substrate and shape effects,” Surf. Sci. 217(1-2), 384–402 (1989).
[CrossRef]

Sau, T. K.

T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater. 22(16), 1805–1825 (2010).
[CrossRef] [PubMed]

Schatz, G. C.

A A. J. Haes, S. Zou, J. Zhao, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy near molecular resonances,” J. Am. Chem. Soc. 128(33), 10905–10914 (2006).
[CrossRef] [PubMed]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Schlücker, S.

S. Schlücker, “SERS microscopy: nanoparticle probes and biomedical applications,” ChemPhysChem 10(9-10), 1344–1354 (2009).
[CrossRef] [PubMed]

Schmitz, B.

U. Kreibig, B. Schmitz, and H. D. Breuer, “Separation of plasmon-polariton modes of small metal particles,” Phys. Rev. B Condens. Matter 36(9), 5027–5030 (1987).
[CrossRef] [PubMed]

Schultz, S.

J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
[CrossRef]

Seifert, G.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A 205(12), 2844–2861 (2008).
[CrossRef]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

Shen, H.

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[CrossRef]

Shibata, D.

G. Gupta, D. Tanaka, Y. Ito, D. Shibata, M. Shimojo, K. Furuya, K. Mitsui, and K. Kajikawa, “Absorption spectroscopy of gold nanoisland films: optical and structural characterization,” Nanotechnology 20(2), 025703 (2009).
[CrossRef] [PubMed]

Shimojo, M.

G. Gupta, D. Tanaka, Y. Ito, D. Shibata, M. Shimojo, K. Furuya, K. Mitsui, and K. Kajikawa, “Absorption spectroscopy of gold nanoisland films: optical and structural characterization,” Nanotechnology 20(2), 025703 (2009).
[CrossRef] [PubMed]

Smith, D. R.

J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
[CrossRef]

Sun, G.

Tanabe, K.

K. Tanabe, “Field enhancement around metal nanoparticles and nanoshells: a systematic investigation,” J. Phys. Chem. C 112(40), 15721–15728 (2008).
[CrossRef]

Tanaka, D.

G. Gupta, D. Tanaka, Y. Ito, D. Shibata, M. Shimojo, K. Furuya, K. Mitsui, and K. Kajikawa, “Absorption spectroscopy of gold nanoisland films: optical and structural characterization,” Nanotechnology 20(2), 025703 (2009).
[CrossRef] [PubMed]

Thompson, B. C.

B. C. Thompson and J. M. J. Fréchet, “Polymer-fullerene composite solar cells,” Angew. Chem. Int. Ed. Engl. 47(1), 58–77 (2008).
[CrossRef]

Thompson, M. E.

K. L. Mutolo, E. I. Mayo, B. P. Rand, S. R. Forrest, and M. E. Thompson, “Enhanced open-circuit voltage in subphthalocyanine/C60 organic photovoltaic cells,” J. Am. Chem. Soc. 128(25), 8108–8109 (2006).
[CrossRef] [PubMed]

van de Lagemaat, J.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[CrossRef]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

A A. J. Haes, S. Zou, J. Zhao, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy near molecular resonances,” J. Am. Chem. Soc. 128(33), 10905–10914 (2006).
[CrossRef] [PubMed]

Wackerow, S.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A 205(12), 2844–2861 (2008).
[CrossRef]

White, R. L.

D. D. Evanoff, R. L. White, and G. Chumanov, “Measuring the distance dependence of the local electromagnetic field from silver nanoparticles,” J. Phys. Chem. B 108(5), 1522–1524 (2004).
[CrossRef]

Zhao, B.

X. X. Han, B. Zhao, and Y. Ozaki, “Surface-enhanced Raman scattering for protein detection,” Anal. Bioanal. Chem. 394(7), 1719–1727 (2009).
[CrossRef] [PubMed]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

A A. J. Haes, S. Zou, J. Zhao, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy near molecular resonances,” J. Am. Chem. Soc. 128(33), 10905–10914 (2006).
[CrossRef] [PubMed]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Zou, S.

A A. J. Haes, S. Zou, J. Zhao, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy near molecular resonances,” J. Am. Chem. Soc. 128(33), 10905–10914 (2006).
[CrossRef] [PubMed]

Adv. Funct. Mater.

H. H. P. Gommans, D. Cheyns, T. Aernouts, C. Girotto, J. Poortmans, and P. Heremans, “Electro-optical study of subphthalocyanine in a bilayer organic solar cell,” Adv. Funct. Mater. 17(15), 2653–2658 (2007).
[CrossRef]

Adv. Mater.

T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater. 22(16), 1805–1825 (2010).
[CrossRef] [PubMed]

M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C. C. Byeon, and S.-J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[CrossRef]

Anal. Bioanal. Chem.

X. X. Han, B. Zhao, and Y. Ozaki, “Surface-enhanced Raman scattering for protein detection,” Anal. Bioanal. Chem. 394(7), 1719–1727 (2009).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. Engl.

B. C. Thompson and J. M. J. Fréchet, “Polymer-fullerene composite solar cells,” Angew. Chem. Int. Ed. Engl. 47(1), 58–77 (2008).
[CrossRef]

Appl. Phys. Lett.

S. A. Choulis, M. K. Mathai, and V.-E. Choong, “Influence of metallic nanoparticles on the performance of organic electrophosphorescence devices,” Appl. Phys. Lett. 88(21), 213503 (2006).
[CrossRef]

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92(1), 013504 (2008).
[CrossRef]

Chem. Rev.

M.-C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104(1), 293–346 (2004).
[CrossRef] [PubMed]

ChemPhysChem

S. Schlücker, “SERS microscopy: nanoparticle probes and biomedical applications,” ChemPhysChem 10(9-10), 1344–1354 (2009).
[CrossRef] [PubMed]

J. Am. Chem. Soc.

K. L. Mutolo, E. I. Mayo, B. P. Rand, S. R. Forrest, and M. E. Thompson, “Enhanced open-circuit voltage in subphthalocyanine/C60 organic photovoltaic cells,” J. Am. Chem. Soc. 128(25), 8108–8109 (2006).
[CrossRef] [PubMed]

A A. J. Haes, S. Zou, J. Zhao, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy near molecular resonances,” J. Am. Chem. Soc. 128(33), 10905–10914 (2006).
[CrossRef] [PubMed]

J. Appl. Phys.

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009).
[CrossRef]

B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96(12), 7519–7526 (2004).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. B

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

D. D. Evanoff, R. L. White, and G. Chumanov, “Measuring the distance dependence of the local electromagnetic field from silver nanoparticles,” J. Phys. Chem. B 108(5), 1522–1524 (2004).
[CrossRef]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. C

C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C 111(10), 3806–3819 (2007).
[CrossRef]

K. Tanabe, “Field enhancement around metal nanoparticles and nanoshells: a systematic investigation,” J. Phys. Chem. C 112(40), 15721–15728 (2008).
[CrossRef]

J. Phys. D Appl. Phys.

H. Haick, “Chemical sensors based on molecularly modified metallic nanoparticles,” J. Phys. D Appl. Phys. 40(23), 7173–7186 (2007).
[CrossRef]

Nano Lett.

J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
[CrossRef]

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[CrossRef] [PubMed]

Nanotechnology

G. Gupta, D. Tanaka, Y. Ito, D. Shibata, M. Shimojo, K. Furuya, K. Mitsui, and K. Kajikawa, “Absorption spectroscopy of gold nanoisland films: optical and structural characterization,” Nanotechnology 20(2), 025703 (2009).
[CrossRef] [PubMed]

Nat. Mater.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[CrossRef] [PubMed]

Phys. Rev. B

N. I. Cade, T. Ritman-Meer, and D. Richards, “Strong coupling of localized plasmons and molecular excitons in nanostructured silver films,” Phys. Rev. B 79(24), 241404 (2009).
[CrossRef]

Phys. Rev. B Condens. Matter

U. Kreibig, B. Schmitz, and H. D. Breuer, “Separation of plasmon-polariton modes of small metal particles,” Phys. Rev. B Condens. Matter 36(9), 5027–5030 (1987).
[CrossRef] [PubMed]

Phys. Status Solidi A

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A 205(12), 2844–2861 (2008).
[CrossRef]

Prog. Photovolt. Res. Appl.

B. P. Rand, J. Genoe, P. Heremans, and J. Poortmans, “Solar cells utilizing small molecular weight organic semiconductors,” Prog. Photovolt. Res. Appl. 15(8), 659–676 (2007).
[CrossRef]

Surf. Sci.

P. Royer, J. L. Bijeon, J. P. Goudonnet, T. Inagaki, and E. T. Arakawa, “Optical absorbance of silver oblate particles - Substrate and shape effects,” Surf. Sci. 217(1-2), 384–402 (1989).
[CrossRef]

Other

U. Kreibig, and M. Vollmer, Optical properties of metal clusters, Springer Series in Materials Science (Springer-Verlag, 1995).

C. F. Bohren, and D. R. Huffman, Absorption and scattering of light by small particles (Wiley-Interscience, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Scanning electron micrograph of Ag NPs obtained by depositing 1 nm of Ag on a Si/SiO2 substrate by thermal evaporation. From above, the particles have a circular shape with an average diameter and inter-particle spacing of 7 nm. (b) Atomic force micrograph (top) of the Ag NPs on a glass substrate, with a height-profile (bottom) taken along the dashed line indicated by the arrow. An average NP height of 5 nm was determined from this micrograph. The lateral size of the NPs is overestimated due to convolution of the atomic force microscope tip and the sample features.

Fig. 2
Fig. 2

(a) Absorption spectra of uncoated Ag NPs on glass (dashed curve) and Ag NPs covered by SubPc with a layer thickness of 6, 10, 14, 18, 22, and 30 nm (solid curves). (b) Absorption spectra of SubPc layers on glass, with the same thicknesses as in (a). (c) Difference between the absorption spectra of thin-films containing SubPc and Ag NPs shown in (a) and those of pure SubPc layers shown in (b) for each SubPc layer thickness. (d,e) Real (ε 1, solid curve) and imaginary part (ε 2, dashed curve) of the relative permittivity of (d) Ag and (e) SubPc. (f) The imaginary part of the dimensionless fraction of the polarizability, Im [ α / ( 4 π ε 0 R 3 ) ] , for a spherical Ag NP in vacuum (ε m = 1, dashed curve) and embedded in SubPc (solid curve). For comparison, the absorption difference between a thin-film consisting of the Ag NP layer covered by 10 nm of SubPc and a pure SubPc layer with a thickness of 10 nm is shown (open circles).

Fig. 3
Fig. 3

Results of three-dimensional numerical simulations performed using a geometry with a cross-section as shown in the inset in (b). Periodic boundaries in both lateral dimensions result in an infinite two-dimensional array of truncated Ag spheroids with center-to-center spacing of 14 nm. The light wave is incident through the glass substrate with the propagation vector (k) and electric field vector E as indicated by arrows. (a) Difference between the absorption in the SubPc layers with thicknesses of 10, 14, 18, 22, and 30 nm covering the truncated Ag spheroids and the absorption in pure SubPc layers (excluding the volume corresponding to the truncated Ag spheroids) with the same thicknesses (solid curves). The absorption of a pure SubPc layer with a thickness of 10 nm is shown as a dashed curve. (b) Absorption in the uncovered truncated Ag spheroids (dashed curve) and in the truncated Ag spheroids covered by SubPc layers with the same thicknesses as in (a) (solid curves). (c) Surface plots of the x and y components of the electric field at λ = 446 and 632 nm for a SubPc thickness of 10 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α ( ω ) = 4 π ε 0 R 3 ε NP ( ω ) ε m ( ω ) ε NP ( ω ) + 2 ε m ( ω ) ,

Metrics