Abstract

We report on the optical properties of ZnWO4 planar waveguides created by ion implantation, and the effect annealing has on these structures. Planar optical waveguides in ZnWO4 crystals are fabricated by 5.0 MeV carbon ion implantation with a fluence of 1 × 1015 ions/cm2 or 500 keV helium ion implantation with the a fluence of 1 × 1016 ions/cm2. The thermal stability was investigated by 60 minute annealing cycles at different temperatures ranging from 260°C to 550°C in air. The guided modes were measured by a model 2010 prism coupler at wavelengths of 633 nm and 1539 nm. The reflectivity calculation method (RCM) was applied to simulate the refractive index profile in these waveguides. The near-field light intensity profiles were measured using the end-face coupling method. The absorption spectra show that the implantation processes have almost no influence on the visible band absorption.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Wang, F. D. Medina, Y. D. Zhou, and Q. N. Zhang, “Temperature dependence of the polarized Raman spectra of ZnWO4 single crystals,” Phys. Rev. B Condens. Matter 45(18), 10356–10362 (1992).
    [CrossRef] [PubMed]
  2. T. Oi, K. Takagi, and T. Fukazawa, “Scintillation study of ZnWO4 single crystals,” Appl. Phys. Lett. 36(4), 278–279 (1980).
    [CrossRef]
  3. H. Grassmann, H. G. Moser, and E. Lorenz, “Scintillation properties of ZnWO4,” J. Lumin. 33(1), 109–113 (1985).
    [CrossRef]
  4. W. Kolbe, K. Petermann, and G. Huber, “Broadband emission and laser action of Cr3+ doped zinc tungstate at 1 μm wavelength,” IEEE J. Quantum Electron. 21(10), 1596–1599 (1985).
    [CrossRef]
  5. V. P. Yu, I. M. Silvestrova, and R. Voszka, “Elastic and acoustic properties of ZnWO4 single crystal,” Phys. Stat. Solidi A 107(1), 161–164 (1988).
    [CrossRef]
  6. G. Huang, C. Zhang, and Y. Zhu, “ZnWO4 photocatalyst with high activity for degradation of organic contaminants,” J. Alloy. Comp. 432(1-2), 269–276 (2007).
    [CrossRef]
  7. R. C. Pullar, S. Farrah, and N. M. Alford, “MgWO4, ZnWO4, NiWO4 and CoWO4 microwave dielectric ceramics,” J. Eur. Ceram. Soc. 27(2-3), 1059–1063 (2007).
    [CrossRef]
  8. M. J. Rodman, P. J. Chandler, and P. D. Townsend, “Ion-implanted optical waveguides in zinc tungstate,” Nucl. Instrum. Meth. B 80–81, 1182–1184 (1993).
    [CrossRef]
  9. A. R. Phani, M. Passacantando, L. Lozzi, and S. Santucci, “Structural characterization of bulk ZnWO4 prepared by solid state method,” J. Mater. Sci. 35(19), 4879–4883 (2000).
    [CrossRef]
  10. F. A. Kröger, Some Aspects of the Luminescence of Solids (Elsevier, New York 1948).
  11. F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
    [CrossRef]
  12. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical effects of ion implantation (Cambridge University Press, Cambridge, 1994).
  13. D. Jaque and F. Chen, “High resolution fluorescence imaging of damage regions in H+ ion implanted Nd:MgO:LiNbO3 channel waveguides,” Appl. Phys. Lett. 94(1), 011109 (2009).
    [CrossRef]
  14. D. Kip, S. Aulkemeyer, and P. Moretti, “Low-loss planar optical waveguides in strontium barium niobate crystals formed by ion-beam implantation,” Opt. Lett. 20(11), 1256–1258 (1995).
    [CrossRef] [PubMed]
  15. Y. Tan and F. Chen, “Optical ridge waveguides preserving the thermo-optic features in LiNbO3 crystals fabricated by combination of proton implantation and selective wet etching,” Opt. Express 18(11), 11444–11449 (2010), http://www.opticsinfobase.org/abstract.cfm?uri=oe-18-11-11444 .
    [CrossRef] [PubMed]
  16. L. Wang, K. M. Wang, F. Chen, X. L. Wang, L. L. Wang, H. Liu, and Q. M. Lu, “Optical waveguide in stoichiometric lithium niobate formed by 500 keV proton implantation,” Opt. Express 15(25), 16880–16885 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-25-16880 .
    [CrossRef] [PubMed]
  17. Y. Tan, F. Chen, and D. Kip, “Photorefractive properties of optical waveguides in Fe:LiNbO3 crystals produced by O3+ ion implantation,” Appl. Phys. B 94(3), 467–471 (2009).
    [CrossRef]
  18. X. L. Wang, K. M. Wang, F. Chen, G. Fu, S. L. Li, H. Liu, L. Gao, D. Y. Shen, H. J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low-dose oxygen ion implantation,” Appl. Phys. Lett. 86(4), 041103 (2005).
    [CrossRef]
  19. G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, “Damage effects produced in the near-surface region of x-cut LiNbO[sub 3] by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96(1), 242–247 (2004).
    [CrossRef]
  20. J. F. Ziegler, computer code, SRIM, http://www.srim.org .
  21. P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33, 127–143 (1986).
  22. F. Caccavale, F. Segato, I. Mansour, and M. Gianesin, “A finite differences method for the reconstruction of refractive index profiles from near-field measurements,” J. Lightwave Technol. 16(7), 1348–1353 (1998).
    [CrossRef]
  23. J. M. White and P. F. Heidrich, “Optical waveguide refractive index profiles determined from measurement of mode indices: a simple analysis,” Appl. Opt. 15(1), 151–155 (1976).
    [CrossRef] [PubMed]
  24. P. Hertel and H. P. Menzler, “Improved inverse WKB procedure to reconstruct refractive index profiles of dielectric planar waveguides,” Appl. Phys. B 44(2), 75–80 (1987).
    [CrossRef]
  25. H. Hu, F. Lu, F. Chen, B. R. Shi, K. M. Wang, and D. Y. Shen, “Extraordinary refractive-index increase in lithium niobate caused by low-dose ion implantation,” Appl. Opt. 40(22), 3759–3761 (2001).
    [CrossRef]
  26. Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75(19), 195101 (2007).
    [CrossRef]

2010

2009

D. Jaque and F. Chen, “High resolution fluorescence imaging of damage regions in H+ ion implanted Nd:MgO:LiNbO3 channel waveguides,” Appl. Phys. Lett. 94(1), 011109 (2009).
[CrossRef]

Y. Tan, F. Chen, and D. Kip, “Photorefractive properties of optical waveguides in Fe:LiNbO3 crystals produced by O3+ ion implantation,” Appl. Phys. B 94(3), 467–471 (2009).
[CrossRef]

2007

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
[CrossRef]

Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75(19), 195101 (2007).
[CrossRef]

G. Huang, C. Zhang, and Y. Zhu, “ZnWO4 photocatalyst with high activity for degradation of organic contaminants,” J. Alloy. Comp. 432(1-2), 269–276 (2007).
[CrossRef]

R. C. Pullar, S. Farrah, and N. M. Alford, “MgWO4, ZnWO4, NiWO4 and CoWO4 microwave dielectric ceramics,” J. Eur. Ceram. Soc. 27(2-3), 1059–1063 (2007).
[CrossRef]

L. Wang, K. M. Wang, F. Chen, X. L. Wang, L. L. Wang, H. Liu, and Q. M. Lu, “Optical waveguide in stoichiometric lithium niobate formed by 500 keV proton implantation,” Opt. Express 15(25), 16880–16885 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-25-16880 .
[CrossRef] [PubMed]

2005

X. L. Wang, K. M. Wang, F. Chen, G. Fu, S. L. Li, H. Liu, L. Gao, D. Y. Shen, H. J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low-dose oxygen ion implantation,” Appl. Phys. Lett. 86(4), 041103 (2005).
[CrossRef]

2004

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, “Damage effects produced in the near-surface region of x-cut LiNbO[sub 3] by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96(1), 242–247 (2004).
[CrossRef]

2001

2000

A. R. Phani, M. Passacantando, L. Lozzi, and S. Santucci, “Structural characterization of bulk ZnWO4 prepared by solid state method,” J. Mater. Sci. 35(19), 4879–4883 (2000).
[CrossRef]

1998

1995

1993

M. J. Rodman, P. J. Chandler, and P. D. Townsend, “Ion-implanted optical waveguides in zinc tungstate,” Nucl. Instrum. Meth. B 80–81, 1182–1184 (1993).
[CrossRef]

1992

H. Wang, F. D. Medina, Y. D. Zhou, and Q. N. Zhang, “Temperature dependence of the polarized Raman spectra of ZnWO4 single crystals,” Phys. Rev. B Condens. Matter 45(18), 10356–10362 (1992).
[CrossRef] [PubMed]

1988

V. P. Yu, I. M. Silvestrova, and R. Voszka, “Elastic and acoustic properties of ZnWO4 single crystal,” Phys. Stat. Solidi A 107(1), 161–164 (1988).
[CrossRef]

1987

P. Hertel and H. P. Menzler, “Improved inverse WKB procedure to reconstruct refractive index profiles of dielectric planar waveguides,” Appl. Phys. B 44(2), 75–80 (1987).
[CrossRef]

1986

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33, 127–143 (1986).

1985

H. Grassmann, H. G. Moser, and E. Lorenz, “Scintillation properties of ZnWO4,” J. Lumin. 33(1), 109–113 (1985).
[CrossRef]

W. Kolbe, K. Petermann, and G. Huber, “Broadband emission and laser action of Cr3+ doped zinc tungstate at 1 μm wavelength,” IEEE J. Quantum Electron. 21(10), 1596–1599 (1985).
[CrossRef]

1980

T. Oi, K. Takagi, and T. Fukazawa, “Scintillation study of ZnWO4 single crystals,” Appl. Phys. Lett. 36(4), 278–279 (1980).
[CrossRef]

1976

Alford, N. M.

R. C. Pullar, S. Farrah, and N. M. Alford, “MgWO4, ZnWO4, NiWO4 and CoWO4 microwave dielectric ceramics,” J. Eur. Ceram. Soc. 27(2-3), 1059–1063 (2007).
[CrossRef]

Argiolas, N.

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, “Damage effects produced in the near-surface region of x-cut LiNbO[sub 3] by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96(1), 242–247 (2004).
[CrossRef]

Aulkemeyer, S.

Bazzan, M.

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, “Damage effects produced in the near-surface region of x-cut LiNbO[sub 3] by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96(1), 242–247 (2004).
[CrossRef]

Bentini, G. G.

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, “Damage effects produced in the near-surface region of x-cut LiNbO[sub 3] by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96(1), 242–247 (2004).
[CrossRef]

Bianconi, M.

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, “Damage effects produced in the near-surface region of x-cut LiNbO[sub 3] by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96(1), 242–247 (2004).
[CrossRef]

Caccavale, F.

Chandler, P. J.

M. J. Rodman, P. J. Chandler, and P. D. Townsend, “Ion-implanted optical waveguides in zinc tungstate,” Nucl. Instrum. Meth. B 80–81, 1182–1184 (1993).
[CrossRef]

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33, 127–143 (1986).

Chen, F.

Y. Tan and F. Chen, “Optical ridge waveguides preserving the thermo-optic features in LiNbO3 crystals fabricated by combination of proton implantation and selective wet etching,” Opt. Express 18(11), 11444–11449 (2010), http://www.opticsinfobase.org/abstract.cfm?uri=oe-18-11-11444 .
[CrossRef] [PubMed]

D. Jaque and F. Chen, “High resolution fluorescence imaging of damage regions in H+ ion implanted Nd:MgO:LiNbO3 channel waveguides,” Appl. Phys. Lett. 94(1), 011109 (2009).
[CrossRef]

Y. Tan, F. Chen, and D. Kip, “Photorefractive properties of optical waveguides in Fe:LiNbO3 crystals produced by O3+ ion implantation,” Appl. Phys. B 94(3), 467–471 (2009).
[CrossRef]

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
[CrossRef]

Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75(19), 195101 (2007).
[CrossRef]

L. Wang, K. M. Wang, F. Chen, X. L. Wang, L. L. Wang, H. Liu, and Q. M. Lu, “Optical waveguide in stoichiometric lithium niobate formed by 500 keV proton implantation,” Opt. Express 15(25), 16880–16885 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-25-16880 .
[CrossRef] [PubMed]

X. L. Wang, K. M. Wang, F. Chen, G. Fu, S. L. Li, H. Liu, L. Gao, D. Y. Shen, H. J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low-dose oxygen ion implantation,” Appl. Phys. Lett. 86(4), 041103 (2005).
[CrossRef]

H. Hu, F. Lu, F. Chen, B. R. Shi, K. M. Wang, and D. Y. Shen, “Extraordinary refractive-index increase in lithium niobate caused by low-dose ion implantation,” Appl. Opt. 40(22), 3759–3761 (2001).
[CrossRef]

Chiarini, M.

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, “Damage effects produced in the near-surface region of x-cut LiNbO[sub 3] by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96(1), 242–247 (2004).
[CrossRef]

Correra, L.

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, “Damage effects produced in the near-surface region of x-cut LiNbO[sub 3] by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96(1), 242–247 (2004).
[CrossRef]

Farrah, S.

R. C. Pullar, S. Farrah, and N. M. Alford, “MgWO4, ZnWO4, NiWO4 and CoWO4 microwave dielectric ceramics,” J. Eur. Ceram. Soc. 27(2-3), 1059–1063 (2007).
[CrossRef]

Fu, G.

X. L. Wang, K. M. Wang, F. Chen, G. Fu, S. L. Li, H. Liu, L. Gao, D. Y. Shen, H. J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low-dose oxygen ion implantation,” Appl. Phys. Lett. 86(4), 041103 (2005).
[CrossRef]

Fukazawa, T.

T. Oi, K. Takagi, and T. Fukazawa, “Scintillation study of ZnWO4 single crystals,” Appl. Phys. Lett. 36(4), 278–279 (1980).
[CrossRef]

Gao, L.

X. L. Wang, K. M. Wang, F. Chen, G. Fu, S. L. Li, H. Liu, L. Gao, D. Y. Shen, H. J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low-dose oxygen ion implantation,” Appl. Phys. Lett. 86(4), 041103 (2005).
[CrossRef]

Gianesin, M.

Grassmann, H.

H. Grassmann, H. G. Moser, and E. Lorenz, “Scintillation properties of ZnWO4,” J. Lumin. 33(1), 109–113 (1985).
[CrossRef]

Guzzi, R.

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, “Damage effects produced in the near-surface region of x-cut LiNbO[sub 3] by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96(1), 242–247 (2004).
[CrossRef]

Heidrich, P. F.

Hertel, P.

P. Hertel and H. P. Menzler, “Improved inverse WKB procedure to reconstruct refractive index profiles of dielectric planar waveguides,” Appl. Phys. B 44(2), 75–80 (1987).
[CrossRef]

Hu, H.

Huang, G.

G. Huang, C. Zhang, and Y. Zhu, “ZnWO4 photocatalyst with high activity for degradation of organic contaminants,” J. Alloy. Comp. 432(1-2), 269–276 (2007).
[CrossRef]

Huber, G.

W. Kolbe, K. Petermann, and G. Huber, “Broadband emission and laser action of Cr3+ doped zinc tungstate at 1 μm wavelength,” IEEE J. Quantum Electron. 21(10), 1596–1599 (1985).
[CrossRef]

Jaque, D.

D. Jaque and F. Chen, “High resolution fluorescence imaging of damage regions in H+ ion implanted Nd:MgO:LiNbO3 channel waveguides,” Appl. Phys. Lett. 94(1), 011109 (2009).
[CrossRef]

Jia, C. L.

Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75(19), 195101 (2007).
[CrossRef]

Jiang, Y.

Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75(19), 195101 (2007).
[CrossRef]

Jiao, Y.

Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75(19), 195101 (2007).
[CrossRef]

Kip, D.

Y. Tan, F. Chen, and D. Kip, “Photorefractive properties of optical waveguides in Fe:LiNbO3 crystals produced by O3+ ion implantation,” Appl. Phys. B 94(3), 467–471 (2009).
[CrossRef]

D. Kip, S. Aulkemeyer, and P. Moretti, “Low-loss planar optical waveguides in strontium barium niobate crystals formed by ion-beam implantation,” Opt. Lett. 20(11), 1256–1258 (1995).
[CrossRef] [PubMed]

Kolbe, W.

W. Kolbe, K. Petermann, and G. Huber, “Broadband emission and laser action of Cr3+ doped zinc tungstate at 1 μm wavelength,” IEEE J. Quantum Electron. 21(10), 1596–1599 (1985).
[CrossRef]

Lama, F. L.

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33, 127–143 (1986).

Li, S. L.

X. L. Wang, K. M. Wang, F. Chen, G. Fu, S. L. Li, H. Liu, L. Gao, D. Y. Shen, H. J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low-dose oxygen ion implantation,” Appl. Phys. Lett. 86(4), 041103 (2005).
[CrossRef]

Liu, H.

L. Wang, K. M. Wang, F. Chen, X. L. Wang, L. L. Wang, H. Liu, and Q. M. Lu, “Optical waveguide in stoichiometric lithium niobate formed by 500 keV proton implantation,” Opt. Express 15(25), 16880–16885 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-25-16880 .
[CrossRef] [PubMed]

X. L. Wang, K. M. Wang, F. Chen, G. Fu, S. L. Li, H. Liu, L. Gao, D. Y. Shen, H. J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low-dose oxygen ion implantation,” Appl. Phys. Lett. 86(4), 041103 (2005).
[CrossRef]

Lorenz, E.

H. Grassmann, H. G. Moser, and E. Lorenz, “Scintillation properties of ZnWO4,” J. Lumin. 33(1), 109–113 (1985).
[CrossRef]

Lozzi, L.

A. R. Phani, M. Passacantando, L. Lozzi, and S. Santucci, “Structural characterization of bulk ZnWO4 prepared by solid state method,” J. Mater. Sci. 35(19), 4879–4883 (2000).
[CrossRef]

Lu, F.

Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75(19), 195101 (2007).
[CrossRef]

H. Hu, F. Lu, F. Chen, B. R. Shi, K. M. Wang, and D. Y. Shen, “Extraordinary refractive-index increase in lithium niobate caused by low-dose ion implantation,” Appl. Opt. 40(22), 3759–3761 (2001).
[CrossRef]

Lu, Q. M.

Ma, H. J.

X. L. Wang, K. M. Wang, F. Chen, G. Fu, S. L. Li, H. Liu, L. Gao, D. Y. Shen, H. J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low-dose oxygen ion implantation,” Appl. Phys. Lett. 86(4), 041103 (2005).
[CrossRef]

Mansour, I.

Mazzoldi, P.

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, “Damage effects produced in the near-surface region of x-cut LiNbO[sub 3] by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96(1), 242–247 (2004).
[CrossRef]

Medina, F. D.

H. Wang, F. D. Medina, Y. D. Zhou, and Q. N. Zhang, “Temperature dependence of the polarized Raman spectra of ZnWO4 single crystals,” Phys. Rev. B Condens. Matter 45(18), 10356–10362 (1992).
[CrossRef] [PubMed]

Menzler, H. P.

P. Hertel and H. P. Menzler, “Improved inverse WKB procedure to reconstruct refractive index profiles of dielectric planar waveguides,” Appl. Phys. B 44(2), 75–80 (1987).
[CrossRef]

Moretti, P.

Moser, H. G.

H. Grassmann, H. G. Moser, and E. Lorenz, “Scintillation properties of ZnWO4,” J. Lumin. 33(1), 109–113 (1985).
[CrossRef]

Nie, R.

X. L. Wang, K. M. Wang, F. Chen, G. Fu, S. L. Li, H. Liu, L. Gao, D. Y. Shen, H. J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low-dose oxygen ion implantation,” Appl. Phys. Lett. 86(4), 041103 (2005).
[CrossRef]

Oi, T.

T. Oi, K. Takagi, and T. Fukazawa, “Scintillation study of ZnWO4 single crystals,” Appl. Phys. Lett. 36(4), 278–279 (1980).
[CrossRef]

Passacantando, M.

A. R. Phani, M. Passacantando, L. Lozzi, and S. Santucci, “Structural characterization of bulk ZnWO4 prepared by solid state method,” J. Mater. Sci. 35(19), 4879–4883 (2000).
[CrossRef]

Petermann, K.

W. Kolbe, K. Petermann, and G. Huber, “Broadband emission and laser action of Cr3+ doped zinc tungstate at 1 μm wavelength,” IEEE J. Quantum Electron. 21(10), 1596–1599 (1985).
[CrossRef]

Phani, A. R.

A. R. Phani, M. Passacantando, L. Lozzi, and S. Santucci, “Structural characterization of bulk ZnWO4 prepared by solid state method,” J. Mater. Sci. 35(19), 4879–4883 (2000).
[CrossRef]

Pullar, R. C.

R. C. Pullar, S. Farrah, and N. M. Alford, “MgWO4, ZnWO4, NiWO4 and CoWO4 microwave dielectric ceramics,” J. Eur. Ceram. Soc. 27(2-3), 1059–1063 (2007).
[CrossRef]

Rodman, M. J.

M. J. Rodman, P. J. Chandler, and P. D. Townsend, “Ion-implanted optical waveguides in zinc tungstate,” Nucl. Instrum. Meth. B 80–81, 1182–1184 (1993).
[CrossRef]

Sada, C.

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, “Damage effects produced in the near-surface region of x-cut LiNbO[sub 3] by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96(1), 242–247 (2004).
[CrossRef]

Santucci, S.

A. R. Phani, M. Passacantando, L. Lozzi, and S. Santucci, “Structural characterization of bulk ZnWO4 prepared by solid state method,” J. Mater. Sci. 35(19), 4879–4883 (2000).
[CrossRef]

Segato, F.

Shen, D. Y.

X. L. Wang, K. M. Wang, F. Chen, G. Fu, S. L. Li, H. Liu, L. Gao, D. Y. Shen, H. J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low-dose oxygen ion implantation,” Appl. Phys. Lett. 86(4), 041103 (2005).
[CrossRef]

H. Hu, F. Lu, F. Chen, B. R. Shi, K. M. Wang, and D. Y. Shen, “Extraordinary refractive-index increase in lithium niobate caused by low-dose ion implantation,” Appl. Opt. 40(22), 3759–3761 (2001).
[CrossRef]

Shi, B. R.

Silvestrova, I. M.

V. P. Yu, I. M. Silvestrova, and R. Voszka, “Elastic and acoustic properties of ZnWO4 single crystal,” Phys. Stat. Solidi A 107(1), 161–164 (1988).
[CrossRef]

Takagi, K.

T. Oi, K. Takagi, and T. Fukazawa, “Scintillation study of ZnWO4 single crystals,” Appl. Phys. Lett. 36(4), 278–279 (1980).
[CrossRef]

Tan, Y.

Townsend, P. D.

M. J. Rodman, P. J. Chandler, and P. D. Townsend, “Ion-implanted optical waveguides in zinc tungstate,” Nucl. Instrum. Meth. B 80–81, 1182–1184 (1993).
[CrossRef]

Voszka, R.

V. P. Yu, I. M. Silvestrova, and R. Voszka, “Elastic and acoustic properties of ZnWO4 single crystal,” Phys. Stat. Solidi A 107(1), 161–164 (1988).
[CrossRef]

Wang, H.

H. Wang, F. D. Medina, Y. D. Zhou, and Q. N. Zhang, “Temperature dependence of the polarized Raman spectra of ZnWO4 single crystals,” Phys. Rev. B Condens. Matter 45(18), 10356–10362 (1992).
[CrossRef] [PubMed]

Wang, K. M.

Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75(19), 195101 (2007).
[CrossRef]

L. Wang, K. M. Wang, F. Chen, X. L. Wang, L. L. Wang, H. Liu, and Q. M. Lu, “Optical waveguide in stoichiometric lithium niobate formed by 500 keV proton implantation,” Opt. Express 15(25), 16880–16885 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-25-16880 .
[CrossRef] [PubMed]

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
[CrossRef]

X. L. Wang, K. M. Wang, F. Chen, G. Fu, S. L. Li, H. Liu, L. Gao, D. Y. Shen, H. J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low-dose oxygen ion implantation,” Appl. Phys. Lett. 86(4), 041103 (2005).
[CrossRef]

H. Hu, F. Lu, F. Chen, B. R. Shi, K. M. Wang, and D. Y. Shen, “Extraordinary refractive-index increase in lithium niobate caused by low-dose ion implantation,” Appl. Opt. 40(22), 3759–3761 (2001).
[CrossRef]

Wang, L.

L. Wang, K. M. Wang, F. Chen, X. L. Wang, L. L. Wang, H. Liu, and Q. M. Lu, “Optical waveguide in stoichiometric lithium niobate formed by 500 keV proton implantation,” Opt. Express 15(25), 16880–16885 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-25-16880 .
[CrossRef] [PubMed]

Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75(19), 195101 (2007).
[CrossRef]

Wang, L. L.

Wang, X. L.

L. Wang, K. M. Wang, F. Chen, X. L. Wang, L. L. Wang, H. Liu, and Q. M. Lu, “Optical waveguide in stoichiometric lithium niobate formed by 500 keV proton implantation,” Opt. Express 15(25), 16880–16885 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-25-16880 .
[CrossRef] [PubMed]

Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75(19), 195101 (2007).
[CrossRef]

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
[CrossRef]

X. L. Wang, K. M. Wang, F. Chen, G. Fu, S. L. Li, H. Liu, L. Gao, D. Y. Shen, H. J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low-dose oxygen ion implantation,” Appl. Phys. Lett. 86(4), 041103 (2005).
[CrossRef]

White, J. M.

Yu, V. P.

V. P. Yu, I. M. Silvestrova, and R. Voszka, “Elastic and acoustic properties of ZnWO4 single crystal,” Phys. Stat. Solidi A 107(1), 161–164 (1988).
[CrossRef]

Zhang, C.

G. Huang, C. Zhang, and Y. Zhu, “ZnWO4 photocatalyst with high activity for degradation of organic contaminants,” J. Alloy. Comp. 432(1-2), 269–276 (2007).
[CrossRef]

Zhang, Q. N.

H. Wang, F. D. Medina, Y. D. Zhou, and Q. N. Zhang, “Temperature dependence of the polarized Raman spectra of ZnWO4 single crystals,” Phys. Rev. B Condens. Matter 45(18), 10356–10362 (1992).
[CrossRef] [PubMed]

Zhou, Y. D.

H. Wang, F. D. Medina, Y. D. Zhou, and Q. N. Zhang, “Temperature dependence of the polarized Raman spectra of ZnWO4 single crystals,” Phys. Rev. B Condens. Matter 45(18), 10356–10362 (1992).
[CrossRef] [PubMed]

Zhu, Y.

G. Huang, C. Zhang, and Y. Zhu, “ZnWO4 photocatalyst with high activity for degradation of organic contaminants,” J. Alloy. Comp. 432(1-2), 269–276 (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. B

P. Hertel and H. P. Menzler, “Improved inverse WKB procedure to reconstruct refractive index profiles of dielectric planar waveguides,” Appl. Phys. B 44(2), 75–80 (1987).
[CrossRef]

Y. Tan, F. Chen, and D. Kip, “Photorefractive properties of optical waveguides in Fe:LiNbO3 crystals produced by O3+ ion implantation,” Appl. Phys. B 94(3), 467–471 (2009).
[CrossRef]

Appl. Phys. Lett.

X. L. Wang, K. M. Wang, F. Chen, G. Fu, S. L. Li, H. Liu, L. Gao, D. Y. Shen, H. J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low-dose oxygen ion implantation,” Appl. Phys. Lett. 86(4), 041103 (2005).
[CrossRef]

D. Jaque and F. Chen, “High resolution fluorescence imaging of damage regions in H+ ion implanted Nd:MgO:LiNbO3 channel waveguides,” Appl. Phys. Lett. 94(1), 011109 (2009).
[CrossRef]

T. Oi, K. Takagi, and T. Fukazawa, “Scintillation study of ZnWO4 single crystals,” Appl. Phys. Lett. 36(4), 278–279 (1980).
[CrossRef]

IEEE J. Quantum Electron.

W. Kolbe, K. Petermann, and G. Huber, “Broadband emission and laser action of Cr3+ doped zinc tungstate at 1 μm wavelength,” IEEE J. Quantum Electron. 21(10), 1596–1599 (1985).
[CrossRef]

J. Alloy. Comp.

G. Huang, C. Zhang, and Y. Zhu, “ZnWO4 photocatalyst with high activity for degradation of organic contaminants,” J. Alloy. Comp. 432(1-2), 269–276 (2007).
[CrossRef]

J. Appl. Phys.

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, “Damage effects produced in the near-surface region of x-cut LiNbO[sub 3] by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96(1), 242–247 (2004).
[CrossRef]

J. Eur. Ceram. Soc.

R. C. Pullar, S. Farrah, and N. M. Alford, “MgWO4, ZnWO4, NiWO4 and CoWO4 microwave dielectric ceramics,” J. Eur. Ceram. Soc. 27(2-3), 1059–1063 (2007).
[CrossRef]

J. Lightwave Technol.

J. Lumin.

H. Grassmann, H. G. Moser, and E. Lorenz, “Scintillation properties of ZnWO4,” J. Lumin. 33(1), 109–113 (1985).
[CrossRef]

J. Mater. Sci.

A. R. Phani, M. Passacantando, L. Lozzi, and S. Santucci, “Structural characterization of bulk ZnWO4 prepared by solid state method,” J. Mater. Sci. 35(19), 4879–4883 (2000).
[CrossRef]

Nucl. Instrum. Meth. B

M. J. Rodman, P. J. Chandler, and P. D. Townsend, “Ion-implanted optical waveguides in zinc tungstate,” Nucl. Instrum. Meth. B 80–81, 1182–1184 (1993).
[CrossRef]

Opt. Acta (Lond.)

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33, 127–143 (1986).

Opt. Express

Opt. Lett.

Opt. Mater.

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
[CrossRef]

Phys. Rev. B

Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75(19), 195101 (2007).
[CrossRef]

Phys. Rev. B Condens. Matter

H. Wang, F. D. Medina, Y. D. Zhou, and Q. N. Zhang, “Temperature dependence of the polarized Raman spectra of ZnWO4 single crystals,” Phys. Rev. B Condens. Matter 45(18), 10356–10362 (1992).
[CrossRef] [PubMed]

Phys. Stat. Solidi A

V. P. Yu, I. M. Silvestrova, and R. Voszka, “Elastic and acoustic properties of ZnWO4 single crystal,” Phys. Stat. Solidi A 107(1), 161–164 (1988).
[CrossRef]

Other

F. A. Kröger, Some Aspects of the Luminescence of Solids (Elsevier, New York 1948).

P. D. Townsend, P. J. Chandler, and L. Zhang, Optical effects of ion implantation (Cambridge University Press, Cambridge, 1994).

J. F. Ziegler, computer code, SRIM, http://www.srim.org .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Measured relative intensity of the light (TM polarized) reflected from a prism formed by the ZnWO4 planar waveguides at a wavelength of 633 nm after S3 annealing treatment: (a) 500 keV He ions implanted with a fluence of 1×1016 ions/cm2, (b) 5MeV C ions implanted with a fluence of 1×1015 ions/cm2.

Fig. 2
Fig. 2

Evolution of neff (TM0 mode) versus annealing temperature for the ZnWO4 planar waveguides formed by C or He ion implantation.

Fig. 3
Fig. 3

Reconstructed RIPs of nα at a wavelength of 633 nm after S5 annealing treatment

Fig. 4
Fig. 4

Normalized nuclear and electronic energy losses as a function of the penetration depth for 500 keV He ions and 5 MeV C ions implanted into ZnWO4 based on the SRIM 2006 simulation.

Fig. 5
Fig. 5

The near field light intensity profile of the ZnWO4 planar waveguide formed by 500 keV He ions implanted with a fluence of 1×1016 ions/cm2: (a) Intensity profile of TM0 mode collected by CCD camera. (b) Mode intensity profile simulated by the beam propagation method.

Fig. 6
Fig. 6

The near-field light intensity profile of the ZnWO4 planar waveguide formed by 5 MeV C ions implanted with a fluence of 1×1015 ions/cm2: (a) Intensity profile of TM0 mode collected by CCD camera. (b) Mode intensity profile simulated by the beam propagation method.

Fig. 7
Fig. 7

Absorption spectra of the sample: (a) He ion implantation, (b) C ion implantation. The dark solid line represents the substrate, the blue dashed line represents S1 and the red dot-dash line represents S5. (I0 and It is original incidence and transmitted intensity of light respectively.)

Tables (3)

Tables Icon

Table 1 The continuous annealing treatment conditions of the He and C implanted samples. All the annealing treatments were performed in an atmosphere of air.

Tables Icon

Table 2 The measured nef f of TM guided modes of He and C implanted waveguides at a wavelength of 633 nm after different annealing treatments. Measurements performed by the prism-coupling method.

Tables Icon

Table 3 The measured neff of TM guided modes in C implanted waveguides at a wavelength of 1539 nm after different annealing treatments. Measurements performed by the prism-coupling method.

Metrics