Abstract

We investigated of the output characteristics of a spectrally filtered stretched-pulse thulium fiber laser in dependence of cavity dispersion and pump power. The experimental results together with corresponding theoretical modeling allow for a deeper insight into the pulse shaping mechanisms.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. C. Hanna, R. M. Percival, R. G. Smart, and A. C. Tropper, “Efficient and tunable operation of a Tm-doped fibre laser,” Opt. Commun. 75(3-4), 283–286 (1990).
    [CrossRef]
  2. D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “High-power widely tunable Tm:fibre lasers pumped by an Er,Yb co-doped fibre laser at 1.6 mum,” Opt. Express 14(13), 6084–6090 (2006).
    [CrossRef] [PubMed]
  3. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [CrossRef]
  4. A. Khachatrian and P. J. Dagdigian, “Laser-induced breakdown spectroscopy with laser irradiation resonant with vibrational transitions,” Appl. Opt. 49(13), C1–C7 (2010).
    [CrossRef]
  5. L. E. Nelson, E. P. Ippen, and H. A. Haus, “Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser,” Appl. Phys. Lett. 67(1), 19–21 (1995).
    [CrossRef]
  6. R. C. Sharp, D. E. Spock, N. Pan, and J. Elliot, “190-fs passively mode-locked thulium fiber laser with a low threshold,” Opt. Lett. 21(12), 881–883 (1996).
    [CrossRef] [PubMed]
  7. M. Solodyankin, E. Obraztsova, A. Lobach, A. Chernov, A. Tausenev, V. Konov, and E. Dianov, “1.93 µm mode-locked thulium fiber laser with a carbon nanotube absorber,” Opt. Express 33, 1336–1338 (2008).
  8. L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
    [CrossRef]
  9. M. Engelbrecht, F. Haxsen, A. Ruehl, D. Wandt, and D. Kracht, “Ultrafast thulium-doped fiber-oscillator with pulse energy of 4.3 nJ,” Opt. Lett. 33(7), 690–692 (2008).
    [CrossRef] [PubMed]
  10. F. Haxsen, A. Ruehl, M. Engelbrecht, D. Wandt, U. Morgner, and D. Kracht, “Stretched-pulse operation of a thulium-doped fiber laser,” Opt. Express 16(25), 20471–20476 (2008).
    [CrossRef] [PubMed]
  11. K. Tamura, J. Jacobson, E. P. Ippen, H. A. Haus, and J. G. Fujimoto, “Unidirectional ring resonators for self-starting passively mode-locked lasers,” Opt. Lett. 18(3), 220–222 (1993).
    [CrossRef] [PubMed]
  12. http://www.fiberdesk.com/ .
  13. T. Pfeiffer and H. Bulow, “Analytical gain equation for erbium-doped fiber amplifiers including mode field profiles and dopant distribution,” IEEE Photon. Technol. Lett. 4(5), 449–451 (1992).
    [CrossRef]
  14. M. Engelbrecht, F. Haxsen, D. Wandt, and D. Kracht, “Wavelength resolved intracavity measurement of the cross sections of a Tm-doped fiber,” Opt. Express 16(3), 1610–1615 (2008).
    [CrossRef] [PubMed]
  15. D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1977).
  16. H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31(3), 591–598 (1995).
    [CrossRef]
  17. K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett. 64(2), 149–151 (1994).
    [CrossRef]
  18. D. Anderson, M. Desaix, M. Lisak, and M. L. Quiroga-Teixeiro, “Wave breaking in nonlinear-optical fibers,” J. Opt. Soc. Am. B 9(8), 1358–1361 (1992).
    [CrossRef]

2010 (1)

2008 (5)

2006 (1)

1997 (1)

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[CrossRef]

1996 (1)

1995 (2)

L. E. Nelson, E. P. Ippen, and H. A. Haus, “Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser,” Appl. Phys. Lett. 67(1), 19–21 (1995).
[CrossRef]

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31(3), 591–598 (1995).
[CrossRef]

1994 (1)

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett. 64(2), 149–151 (1994).
[CrossRef]

1993 (1)

1992 (2)

T. Pfeiffer and H. Bulow, “Analytical gain equation for erbium-doped fiber amplifiers including mode field profiles and dopant distribution,” IEEE Photon. Technol. Lett. 4(5), 449–451 (1992).
[CrossRef]

D. Anderson, M. Desaix, M. Lisak, and M. L. Quiroga-Teixeiro, “Wave breaking in nonlinear-optical fibers,” J. Opt. Soc. Am. B 9(8), 1358–1361 (1992).
[CrossRef]

1990 (1)

D. C. Hanna, R. M. Percival, R. G. Smart, and A. C. Tropper, “Efficient and tunable operation of a Tm-doped fibre laser,” Opt. Commun. 75(3-4), 283–286 (1990).
[CrossRef]

1977 (1)

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1977).

Anderson, D.

Bulow, H.

T. Pfeiffer and H. Bulow, “Analytical gain equation for erbium-doped fiber amplifiers including mode field profiles and dopant distribution,” IEEE Photon. Technol. Lett. 4(5), 449–451 (1992).
[CrossRef]

Chernov, A.

M. Solodyankin, E. Obraztsova, A. Lobach, A. Chernov, A. Tausenev, V. Konov, and E. Dianov, “1.93 µm mode-locked thulium fiber laser with a carbon nanotube absorber,” Opt. Express 33, 1336–1338 (2008).

Clarkson, W. A.

Dagdigian, P. J.

Desaix, M.

Dianov, E.

M. Solodyankin, E. Obraztsova, A. Lobach, A. Chernov, A. Tausenev, V. Konov, and E. Dianov, “1.93 µm mode-locked thulium fiber laser with a carbon nanotube absorber,” Opt. Express 33, 1336–1338 (2008).

Elliot, J.

Engelbrecht, M.

Fujimoto, J. G.

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

Hanna, D. C.

D. C. Hanna, R. M. Percival, R. G. Smart, and A. C. Tropper, “Efficient and tunable operation of a Tm-doped fibre laser,” Opt. Commun. 75(3-4), 283–286 (1990).
[CrossRef]

Haus, H. A.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[CrossRef]

L. E. Nelson, E. P. Ippen, and H. A. Haus, “Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser,” Appl. Phys. Lett. 67(1), 19–21 (1995).
[CrossRef]

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31(3), 591–598 (1995).
[CrossRef]

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett. 64(2), 149–151 (1994).
[CrossRef]

K. Tamura, J. Jacobson, E. P. Ippen, H. A. Haus, and J. G. Fujimoto, “Unidirectional ring resonators for self-starting passively mode-locked lasers,” Opt. Lett. 18(3), 220–222 (1993).
[CrossRef] [PubMed]

Haxsen, F.

Ippen, E. P.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[CrossRef]

L. E. Nelson, E. P. Ippen, and H. A. Haus, “Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser,” Appl. Phys. Lett. 67(1), 19–21 (1995).
[CrossRef]

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31(3), 591–598 (1995).
[CrossRef]

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett. 64(2), 149–151 (1994).
[CrossRef]

K. Tamura, J. Jacobson, E. P. Ippen, H. A. Haus, and J. G. Fujimoto, “Unidirectional ring resonators for self-starting passively mode-locked lasers,” Opt. Lett. 18(3), 220–222 (1993).
[CrossRef] [PubMed]

Jacobson, J.

Jones, D. J.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[CrossRef]

Khachatrian, A.

Konov, V.

M. Solodyankin, E. Obraztsova, A. Lobach, A. Chernov, A. Tausenev, V. Konov, and E. Dianov, “1.93 µm mode-locked thulium fiber laser with a carbon nanotube absorber,” Opt. Express 33, 1336–1338 (2008).

Kracht, D.

Lisak, M.

Lobach, A.

M. Solodyankin, E. Obraztsova, A. Lobach, A. Chernov, A. Tausenev, V. Konov, and E. Dianov, “1.93 µm mode-locked thulium fiber laser with a carbon nanotube absorber,” Opt. Express 33, 1336–1338 (2008).

Marcuse, D.

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1977).

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

Morgner, U.

Nelson, L. E.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[CrossRef]

L. E. Nelson, E. P. Ippen, and H. A. Haus, “Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser,” Appl. Phys. Lett. 67(1), 19–21 (1995).
[CrossRef]

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31(3), 591–598 (1995).
[CrossRef]

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett. 64(2), 149–151 (1994).
[CrossRef]

Obraztsova, E.

M. Solodyankin, E. Obraztsova, A. Lobach, A. Chernov, A. Tausenev, V. Konov, and E. Dianov, “1.93 µm mode-locked thulium fiber laser with a carbon nanotube absorber,” Opt. Express 33, 1336–1338 (2008).

Pan, N.

Percival, R. M.

D. C. Hanna, R. M. Percival, R. G. Smart, and A. C. Tropper, “Efficient and tunable operation of a Tm-doped fibre laser,” Opt. Commun. 75(3-4), 283–286 (1990).
[CrossRef]

Pfeiffer, T.

T. Pfeiffer and H. Bulow, “Analytical gain equation for erbium-doped fiber amplifiers including mode field profiles and dopant distribution,” IEEE Photon. Technol. Lett. 4(5), 449–451 (1992).
[CrossRef]

Quiroga-Teixeiro, M. L.

Ruehl, A.

Sahu, J. K.

Sharp, R. C.

Shen, D. Y.

Smart, R. G.

D. C. Hanna, R. M. Percival, R. G. Smart, and A. C. Tropper, “Efficient and tunable operation of a Tm-doped fibre laser,” Opt. Commun. 75(3-4), 283–286 (1990).
[CrossRef]

Solodyankin, M.

M. Solodyankin, E. Obraztsova, A. Lobach, A. Chernov, A. Tausenev, V. Konov, and E. Dianov, “1.93 µm mode-locked thulium fiber laser with a carbon nanotube absorber,” Opt. Express 33, 1336–1338 (2008).

Spock, D. E.

Tamura, K.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[CrossRef]

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31(3), 591–598 (1995).
[CrossRef]

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett. 64(2), 149–151 (1994).
[CrossRef]

K. Tamura, J. Jacobson, E. P. Ippen, H. A. Haus, and J. G. Fujimoto, “Unidirectional ring resonators for self-starting passively mode-locked lasers,” Opt. Lett. 18(3), 220–222 (1993).
[CrossRef] [PubMed]

Tausenev, A.

M. Solodyankin, E. Obraztsova, A. Lobach, A. Chernov, A. Tausenev, V. Konov, and E. Dianov, “1.93 µm mode-locked thulium fiber laser with a carbon nanotube absorber,” Opt. Express 33, 1336–1338 (2008).

Tropper, A. C.

D. C. Hanna, R. M. Percival, R. G. Smart, and A. C. Tropper, “Efficient and tunable operation of a Tm-doped fibre laser,” Opt. Commun. 75(3-4), 283–286 (1990).
[CrossRef]

Wandt, D.

Appl. Opt. (1)

Appl. Phys. B (1)

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[CrossRef]

Appl. Phys. Lett. (2)

L. E. Nelson, E. P. Ippen, and H. A. Haus, “Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser,” Appl. Phys. Lett. 67(1), 19–21 (1995).
[CrossRef]

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett. 64(2), 149–151 (1994).
[CrossRef]

Bell Syst. Tech. J. (1)

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56, 703–718 (1977).

IEEE J. Quantum Electron. (1)

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31(3), 591–598 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. Pfeiffer and H. Bulow, “Analytical gain equation for erbium-doped fiber amplifiers including mode field profiles and dopant distribution,” IEEE Photon. Technol. Lett. 4(5), 449–451 (1992).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

Opt. Commun. (1)

D. C. Hanna, R. M. Percival, R. G. Smart, and A. C. Tropper, “Efficient and tunable operation of a Tm-doped fibre laser,” Opt. Commun. 75(3-4), 283–286 (1990).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Other (1)

http://www.fiberdesk.com/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup. DC: dichroic mirror (HR 1980 nm/HT 793 nm); TFP: thin-film polarizer; HWP/QWP: half-/quarter-waveplate; FR: Faraday rotator; SF: spectral filter; TDF: thulium-doped fiber. The dotted arrow indicates a monitor port for measurements of the intracavity spectrum and power.

Fig. 2
Fig. 2

Simulation model. SAM: fast saturable absorber mirror, disp comp: dispersion compensation

Fig. 3
Fig. 3

(a) Energy and autocorrelation FWHM of the measured/simulated pulses versus cavity dispersion. (b) Spectral FWHM and bandwidth-limited pulse duration of the measured/simulated pulses. (c) Gain and reflection coefficient and output coupling ratio in simulation and experiment.

Fig. 4
Fig. 4

(a) Spectra with negative and around zero cavity dispersion, (b) spectra with positive cavity dispersion, each normalized regarding pulse energy and (c) corresponding autocorrelation traces.

Fig. 5
Fig. 5

(a) Simulated spectral and temporal evolution versus propagation distance with a cavity dispersion of −0.0275 ps2, FS: free space section. (b) Measured and simulated Spectrum and (c) Autocorrelation trace after the fiber section.

Fig. 6
Fig. 6

(a) Spectrum, (b) pulse energy and duration and (c) AC traces with varying pump power at + 0.0385 ps2 cavity dispersion. Insets: AC traces of the compressed pulses.

Metrics