Abstract

Brillouin grating in optical fibers is of considerable interest due to its applications in optical fiber communication and distributed sensing. However, the intrinsic Brillouin grating spectrum is still unknown and several kinds of spectra were reported. In this paper, we experimentally investigate the characteristics of the Brillouin grating spectra in a polarization-maintaining fiber, and the results show that it agrees with the theory of fiber Bragg grating but not determined by the natural Brillouin gain bandwidth as thought previously, and in the case of weak grating, the bandwidth is only length-limited, i.e., inversely proportional to the length of the Brillouin grating. In addition, the apodization of the Brillouin grating induced by the acoustic wave decay, a unique feature that is different from the Bragg grating, is observed for the first time to the best of our knowledge.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318(5857), 1748–1750 (2007).
    [CrossRef] [PubMed]
  2. Y. Cao, P. Lu, Z. Yang, and W. Chen, “An efficient method of all-optical buffering with ultra-small core photonic crystal fibers,” Opt. Express 16(18), 14142–14150 (2008).
    [CrossRef] [PubMed]
  3. V. P. Kalosha, W. Li, F. Wang, L. Chen, and X. Bao, “Frequency-shifted light storage via stimulated Brillouin scattering in optical fibers,” Opt. Lett. 33(23), 2848–2850 (2008).
    [CrossRef] [PubMed]
  4. W. Zou, Z. He, and K. Hotate, “Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber,” Opt. Express 17(3), 1248–1255 (2009).
    [CrossRef] [PubMed]
  5. W. Zou, Z. He, K. Y. Song, and K. Hotate, “Correlation-based distributed measurement of a dynamic grating spectrum generated in stimulated Brillouin scattering in a polarization-maintaining optical fiber,” Opt. Lett. 34(7), 1126–1128 (2009).
    [CrossRef] [PubMed]
  6. Y. Dong, X. Bao, and L. Chen, “Distributed temperature sensing based on birefringence effect on transient Brillouin grating in a polarization-maintaining photonic crystal fiber,” Opt. Lett. 34(17), 2590–2592 (2009).
    [CrossRef] [PubMed]
  7. K. Y. Song and H. J. Yoon, “High-resolution Brillouin optical time domain analysis based on Brillouin dynamic grating,” Opt. Lett. 35(1), 52–54 (2010).
    [CrossRef] [PubMed]
  8. K. Y. Song, W. Zou, Z. He, and K. Hotate, “Optical time-domain measurement of Brillouin dynamic grating spectrum in a polarization-maintaining fiber,” Opt. Lett. 34(9), 1381–1383 (2009).
    [CrossRef] [PubMed]
  9. W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin distributed discrimination of strain and temperature using polarization-maintaining optical fiber,” IEEE Photon. Technol. Lett. 22(8), 526–528 (2010).
    [CrossRef]
  10. K. Y. Song, K. Lee, and S. B. Lee, “Tunable optical delays based on Brillouin dynamic grating in optical fibers,” Opt. Express 17(12), 10344–10349 (2009).
    [CrossRef] [PubMed]
  11. Y. Dong, L. Chen, and X. Bao, “Truly distributed birefringence measurement of polarization-maintaining fibers based on transient Brillouin grating,” Opt. Lett. 35(2), 193–195 (2010).
    [CrossRef] [PubMed]
  12. K. Y. Song, W. Zou, Z. He, and K. Hotate, “All-optical dynamic grating generation based on Brillouin scattering in polarization-maintaining fiber,” Opt. Lett. 33(9), 926–928 (2008).
    [CrossRef] [PubMed]
  13. A. A. Fotiadi, R. V. Kiyan, and E. A. Kuzin, “SBS induced hypersound dynamic grating in multimode optical fibers: Phase conjugation specific features,” in Proceedings of IEEE Conference on Laser and Electro-Optics society Annual Meeting (IEEE, 1997), pp. 44–45.
  14. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
    [CrossRef]
  15. R. W. Boyd, Nonlinear Optics, (Academic Press) 3rd edition, Chap. 9.
  16. A. Melloni, M. Frasca, A. Garavaglia, A. Tonini, and M. Martinelli, “Direct measurement of electrostriction in optical fibers,” Opt. Lett. 23(9), 691–693 (1998).
    [CrossRef]
  17. A. A. Fotiadi, R. Kiyan, O. Deparis, P. Mégret, and M. Blondel, “Statistical properties of stimulated Brillouin scattering in single-mode optical fibers above threshold,” Opt. Lett. 27(2), 83–85 (2002).
    [CrossRef]

2010 (3)

2009 (5)

2008 (3)

2007 (1)

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318(5857), 1748–1750 (2007).
[CrossRef] [PubMed]

2002 (1)

1998 (1)

1997 (1)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[CrossRef]

Bao, X.

Blondel, M.

Boyd, R. W.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318(5857), 1748–1750 (2007).
[CrossRef] [PubMed]

Cao, Y.

Chen, L.

Chen, W.

Deparis, O.

Dong, Y.

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[CrossRef]

Fotiadi, A. A.

Frasca, M.

Garavaglia, A.

Gauthier, D. J.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318(5857), 1748–1750 (2007).
[CrossRef] [PubMed]

He, Z.

Hotate, K.

Kalosha, V. P.

Kiyan, R.

Lee, K.

Lee, S. B.

Li, W.

Lu, P.

Martinelli, M.

Mégret, P.

Melloni, A.

Song, K. Y.

Tonini, A.

Wang, F.

Yang, Z.

Yoon, H. J.

Zhu, Z.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318(5857), 1748–1750 (2007).
[CrossRef] [PubMed]

Zou, W.

IEEE Photon. Technol. Lett. (1)

W. Zou, Z. He, and K. Hotate, “Demonstration of Brillouin distributed discrimination of strain and temperature using polarization-maintaining optical fiber,” IEEE Photon. Technol. Lett. 22(8), 526–528 (2010).
[CrossRef]

J. Lightwave Technol. (1)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[CrossRef]

Opt. Express (3)

Opt. Lett. (9)

W. Zou, Z. He, K. Y. Song, and K. Hotate, “Correlation-based distributed measurement of a dynamic grating spectrum generated in stimulated Brillouin scattering in a polarization-maintaining optical fiber,” Opt. Lett. 34(7), 1126–1128 (2009).
[CrossRef] [PubMed]

Y. Dong, X. Bao, and L. Chen, “Distributed temperature sensing based on birefringence effect on transient Brillouin grating in a polarization-maintaining photonic crystal fiber,” Opt. Lett. 34(17), 2590–2592 (2009).
[CrossRef] [PubMed]

K. Y. Song and H. J. Yoon, “High-resolution Brillouin optical time domain analysis based on Brillouin dynamic grating,” Opt. Lett. 35(1), 52–54 (2010).
[CrossRef] [PubMed]

K. Y. Song, W. Zou, Z. He, and K. Hotate, “Optical time-domain measurement of Brillouin dynamic grating spectrum in a polarization-maintaining fiber,” Opt. Lett. 34(9), 1381–1383 (2009).
[CrossRef] [PubMed]

Y. Dong, L. Chen, and X. Bao, “Truly distributed birefringence measurement of polarization-maintaining fibers based on transient Brillouin grating,” Opt. Lett. 35(2), 193–195 (2010).
[CrossRef] [PubMed]

K. Y. Song, W. Zou, Z. He, and K. Hotate, “All-optical dynamic grating generation based on Brillouin scattering in polarization-maintaining fiber,” Opt. Lett. 33(9), 926–928 (2008).
[CrossRef] [PubMed]

V. P. Kalosha, W. Li, F. Wang, L. Chen, and X. Bao, “Frequency-shifted light storage via stimulated Brillouin scattering in optical fibers,” Opt. Lett. 33(23), 2848–2850 (2008).
[CrossRef] [PubMed]

A. Melloni, M. Frasca, A. Garavaglia, A. Tonini, and M. Martinelli, “Direct measurement of electrostriction in optical fibers,” Opt. Lett. 23(9), 691–693 (1998).
[CrossRef]

A. A. Fotiadi, R. Kiyan, O. Deparis, P. Mégret, and M. Blondel, “Statistical properties of stimulated Brillouin scattering in single-mode optical fibers above threshold,” Opt. Lett. 27(2), 83–85 (2002).
[CrossRef]

Science (1)

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318(5857), 1748–1750 (2007).
[CrossRef] [PubMed]

Other (2)

R. W. Boyd, Nonlinear Optics, (Academic Press) 3rd edition, Chap. 9.

A. A. Fotiadi, R. V. Kiyan, and E. A. Kuzin, “SBS induced hypersound dynamic grating in multimode optical fibers: Phase conjugation specific features,” in Proceedings of IEEE Conference on Laser and Electro-Optics society Annual Meeting (IEEE, 1997), pp. 44–45.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of Brillouin grating generation and reading.

Fig. 2
Fig. 2

Experimental setup. PC: polarization controller, EOM: electro-optic modulator, PBS: polarization beam splitter, C: circulator, PD: photo-detector, EDFA: Erbium-doped fiber amplifier, ESA: electrical spectrum analyzer, FBG: fiber Bragg grating.

Fig. 3
Fig. 3

Measured Brillouin grating spectra with different ER (45 dB and 15 dB) of pump 1 pulse.

Fig. 4
Fig. 4

Measured Brillouin grating spectra with 6 ns and 8 ns probe pulse with different pump 1 pulse width (a) 2 ns, (b) 3 ns, (c) 4 ns, (d) 6 ns. Pump 2 pulse width is constant at 2 ns.

Fig. 5
Fig. 5

The intrinsic Brillouin grating spectral width as a function of length.

Fig. 6
Fig. 6

Measured Brillouin grating spectrum with 2 ns pump 1 pulse, 10 ns pump 2 pulse and 6 ns probe pulse.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

δ n = δ n ¯ [ 1 + v cos ( Ω B t ± 2 π Λ z ) ]
Δ χ = ε 0 C T γ e 2 E P E S
v δ n ¯ = ε 0 C T γ e 2 E P E S 2 n
Δ ν = c 2 n L ;       ( v δ n ¯ λ L )

Metrics