Abstract

We demonstrate an optical technique, called laser-gain scanning microscopy (LGSM), to map dopant concentration profiles in engineered laser gain-media. The performance and application range of this technique are exampled on a Nd3+ concentration profile embedded in a YAG transparent ceramic sample. Concentration profiles measured by both LGSM and SIMS techniques are compared and agree to within 5% over three-orders of magnitude in Nd3+ doping level, from 0.001 at.% to 0.9 at.%. One of the unique advantages of LGSM over common physical methods such as SIMS, XPS and EMPA, is the ability to correlate optical defects with the final doping profile.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Wilhelm, M. Frede, and D. Kracht, “Power scaling of end-pumped Nd:YAG rod lasers into the kilowatt region” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper MB19.
  2. I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characterization of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77, 939–941 (2000).
    [CrossRef]
  3. D. Kracht, D. Freiburg, R. Wilhelm, M. Frede, and C. Fallnich, “Core-doped Ceramic Nd:YAG Laser,” Opt. Express 14(7), 2690–2694 (2006).
    [CrossRef] [PubMed]
  4. A. Sträßer and M. Ostermeyer, “Improving the brightness of side pumped power amplifiers by using core doped ceramic rods,” Opt. Express 14(15), 6687–6693 (2006).
    [CrossRef] [PubMed]
  5. M. Ostermeyer and I. Brandenburg, “Simulation of the extraction of near diffraction limited gaussian beams from side pumped core doped ceramic Nd:YAG and conventional laser rods,” Opt. Express 13(25), 10145–10156 (2005).
    [CrossRef] [PubMed]
  6. K. Yoshida, H Ishii, T Kumada, T Kamimura, A Ikesue, and T Okamoto, “All ceramic composite with layer by layer structure by advanced ceramic technology,” Proc. SPIE 5647, 247–254 (2005).
    [CrossRef]
  7. A. Le Claire, “The analysis of grain boundary diffusion measurements,” Br. J. Appl. Phys. 14(6), 351–356 (1963).
    [CrossRef]
  8. K. Otsuka, T. Narita, Y. Miyasaka, C. C. Lin, J.-Y. Ko, and S.-C. Chu, “Non-linear dynamics in thin-slice Nd:YAG ceramic lasers: coupled local-mode laser model,” Appl. Phys. Lett. 89(8), 081117 (2006).
    [CrossRef]
  9. R. Kawai, Y. Miyasaka, K. Otsuka, T. Ohtomo, T. Narita, J.-Y. Ko, I. Shoji, and T. Taira, “Oscillation spectra and dynamic effects in a highly-doped microchip Nd:YAG ceramic laser,” Opt. Express 12(10), 2293–2302 (2004).
    [CrossRef] [PubMed]
  10. H. Haneda, “Role of diffusion phenomena in the processing of ceramics,” J. Ceram. Soc. Jpn. 111(1295), 439–447 (2003).
    [CrossRef]
  11. S. H. Chakmakjian, K. K. S. Papademitriou, and C. R. Stroud, “Effects of pump modulation on a four-level laser amplifier,” J. Opt. Soc. Am. B 6(9), 1746–1751 (1989).
    [CrossRef]
  12. V. Lupei, A. Lupei, S. Georgescu, T. Taira, Y. Sato, and I. Ikesue, “The effect of Nd concentration on the spectroscopic and emission decay properties of highly doped Nd:YAG ceramics,” Phys. Rev. B 64(9), 092102 (2001).
    [CrossRef]
  13. E. Desurvire, “Erbium-Doped Fiber Amplifiers”, John Wiley and Sons, Inc., (New York, 1993), pp 115–126.
  14. K. Shimoda, H. Takahasi, and C. H. Townes, “Fluctuation in amplification of quanta with application to maser amplifiers,” J. Phys. Soc. Jpn. 12(6), 686–700 (1957).
    [CrossRef]

2006 (3)

2005 (2)

M. Ostermeyer and I. Brandenburg, “Simulation of the extraction of near diffraction limited gaussian beams from side pumped core doped ceramic Nd:YAG and conventional laser rods,” Opt. Express 13(25), 10145–10156 (2005).
[CrossRef] [PubMed]

K. Yoshida, H Ishii, T Kumada, T Kamimura, A Ikesue, and T Okamoto, “All ceramic composite with layer by layer structure by advanced ceramic technology,” Proc. SPIE 5647, 247–254 (2005).
[CrossRef]

2004 (1)

2003 (1)

H. Haneda, “Role of diffusion phenomena in the processing of ceramics,” J. Ceram. Soc. Jpn. 111(1295), 439–447 (2003).
[CrossRef]

2001 (1)

V. Lupei, A. Lupei, S. Georgescu, T. Taira, Y. Sato, and I. Ikesue, “The effect of Nd concentration on the spectroscopic and emission decay properties of highly doped Nd:YAG ceramics,” Phys. Rev. B 64(9), 092102 (2001).
[CrossRef]

2000 (1)

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characterization of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77, 939–941 (2000).
[CrossRef]

1989 (1)

1963 (1)

A. Le Claire, “The analysis of grain boundary diffusion measurements,” Br. J. Appl. Phys. 14(6), 351–356 (1963).
[CrossRef]

1957 (1)

K. Shimoda, H. Takahasi, and C. H. Townes, “Fluctuation in amplification of quanta with application to maser amplifiers,” J. Phys. Soc. Jpn. 12(6), 686–700 (1957).
[CrossRef]

Brandenburg, I.

Chakmakjian, S. H.

Chu, S.-C.

K. Otsuka, T. Narita, Y. Miyasaka, C. C. Lin, J.-Y. Ko, and S.-C. Chu, “Non-linear dynamics in thin-slice Nd:YAG ceramic lasers: coupled local-mode laser model,” Appl. Phys. Lett. 89(8), 081117 (2006).
[CrossRef]

Fallnich, C.

Frede, M.

Freiburg, D.

Georgescu, S.

V. Lupei, A. Lupei, S. Georgescu, T. Taira, Y. Sato, and I. Ikesue, “The effect of Nd concentration on the spectroscopic and emission decay properties of highly doped Nd:YAG ceramics,” Phys. Rev. B 64(9), 092102 (2001).
[CrossRef]

Haneda, H.

H. Haneda, “Role of diffusion phenomena in the processing of ceramics,” J. Ceram. Soc. Jpn. 111(1295), 439–447 (2003).
[CrossRef]

Ikesue, A

K. Yoshida, H Ishii, T Kumada, T Kamimura, A Ikesue, and T Okamoto, “All ceramic composite with layer by layer structure by advanced ceramic technology,” Proc. SPIE 5647, 247–254 (2005).
[CrossRef]

Ikesue, A.

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characterization of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77, 939–941 (2000).
[CrossRef]

Ikesue, I.

V. Lupei, A. Lupei, S. Georgescu, T. Taira, Y. Sato, and I. Ikesue, “The effect of Nd concentration on the spectroscopic and emission decay properties of highly doped Nd:YAG ceramics,” Phys. Rev. B 64(9), 092102 (2001).
[CrossRef]

Ishii, H

K. Yoshida, H Ishii, T Kumada, T Kamimura, A Ikesue, and T Okamoto, “All ceramic composite with layer by layer structure by advanced ceramic technology,” Proc. SPIE 5647, 247–254 (2005).
[CrossRef]

Kamimura, T

K. Yoshida, H Ishii, T Kumada, T Kamimura, A Ikesue, and T Okamoto, “All ceramic composite with layer by layer structure by advanced ceramic technology,” Proc. SPIE 5647, 247–254 (2005).
[CrossRef]

Kawai, R.

Ko, J.-Y.

K. Otsuka, T. Narita, Y. Miyasaka, C. C. Lin, J.-Y. Ko, and S.-C. Chu, “Non-linear dynamics in thin-slice Nd:YAG ceramic lasers: coupled local-mode laser model,” Appl. Phys. Lett. 89(8), 081117 (2006).
[CrossRef]

R. Kawai, Y. Miyasaka, K. Otsuka, T. Ohtomo, T. Narita, J.-Y. Ko, I. Shoji, and T. Taira, “Oscillation spectra and dynamic effects in a highly-doped microchip Nd:YAG ceramic laser,” Opt. Express 12(10), 2293–2302 (2004).
[CrossRef] [PubMed]

Kracht, D.

Kumada, T

K. Yoshida, H Ishii, T Kumada, T Kamimura, A Ikesue, and T Okamoto, “All ceramic composite with layer by layer structure by advanced ceramic technology,” Proc. SPIE 5647, 247–254 (2005).
[CrossRef]

Kurimura, S.

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characterization of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77, 939–941 (2000).
[CrossRef]

Le Claire, A.

A. Le Claire, “The analysis of grain boundary diffusion measurements,” Br. J. Appl. Phys. 14(6), 351–356 (1963).
[CrossRef]

Lin, C. C.

K. Otsuka, T. Narita, Y. Miyasaka, C. C. Lin, J.-Y. Ko, and S.-C. Chu, “Non-linear dynamics in thin-slice Nd:YAG ceramic lasers: coupled local-mode laser model,” Appl. Phys. Lett. 89(8), 081117 (2006).
[CrossRef]

Lupei, A.

V. Lupei, A. Lupei, S. Georgescu, T. Taira, Y. Sato, and I. Ikesue, “The effect of Nd concentration on the spectroscopic and emission decay properties of highly doped Nd:YAG ceramics,” Phys. Rev. B 64(9), 092102 (2001).
[CrossRef]

Lupei, V.

V. Lupei, A. Lupei, S. Georgescu, T. Taira, Y. Sato, and I. Ikesue, “The effect of Nd concentration on the spectroscopic and emission decay properties of highly doped Nd:YAG ceramics,” Phys. Rev. B 64(9), 092102 (2001).
[CrossRef]

Miyasaka, Y.

K. Otsuka, T. Narita, Y. Miyasaka, C. C. Lin, J.-Y. Ko, and S.-C. Chu, “Non-linear dynamics in thin-slice Nd:YAG ceramic lasers: coupled local-mode laser model,” Appl. Phys. Lett. 89(8), 081117 (2006).
[CrossRef]

R. Kawai, Y. Miyasaka, K. Otsuka, T. Ohtomo, T. Narita, J.-Y. Ko, I. Shoji, and T. Taira, “Oscillation spectra and dynamic effects in a highly-doped microchip Nd:YAG ceramic laser,” Opt. Express 12(10), 2293–2302 (2004).
[CrossRef] [PubMed]

Narita, T.

K. Otsuka, T. Narita, Y. Miyasaka, C. C. Lin, J.-Y. Ko, and S.-C. Chu, “Non-linear dynamics in thin-slice Nd:YAG ceramic lasers: coupled local-mode laser model,” Appl. Phys. Lett. 89(8), 081117 (2006).
[CrossRef]

R. Kawai, Y. Miyasaka, K. Otsuka, T. Ohtomo, T. Narita, J.-Y. Ko, I. Shoji, and T. Taira, “Oscillation spectra and dynamic effects in a highly-doped microchip Nd:YAG ceramic laser,” Opt. Express 12(10), 2293–2302 (2004).
[CrossRef] [PubMed]

Ohtomo, T.

Okamoto, T

K. Yoshida, H Ishii, T Kumada, T Kamimura, A Ikesue, and T Okamoto, “All ceramic composite with layer by layer structure by advanced ceramic technology,” Proc. SPIE 5647, 247–254 (2005).
[CrossRef]

Ostermeyer, M.

Otsuka, K.

K. Otsuka, T. Narita, Y. Miyasaka, C. C. Lin, J.-Y. Ko, and S.-C. Chu, “Non-linear dynamics in thin-slice Nd:YAG ceramic lasers: coupled local-mode laser model,” Appl. Phys. Lett. 89(8), 081117 (2006).
[CrossRef]

R. Kawai, Y. Miyasaka, K. Otsuka, T. Ohtomo, T. Narita, J.-Y. Ko, I. Shoji, and T. Taira, “Oscillation spectra and dynamic effects in a highly-doped microchip Nd:YAG ceramic laser,” Opt. Express 12(10), 2293–2302 (2004).
[CrossRef] [PubMed]

Papademitriou, K. K. S.

Sato, Y.

V. Lupei, A. Lupei, S. Georgescu, T. Taira, Y. Sato, and I. Ikesue, “The effect of Nd concentration on the spectroscopic and emission decay properties of highly doped Nd:YAG ceramics,” Phys. Rev. B 64(9), 092102 (2001).
[CrossRef]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characterization of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77, 939–941 (2000).
[CrossRef]

Shimoda, K.

K. Shimoda, H. Takahasi, and C. H. Townes, “Fluctuation in amplification of quanta with application to maser amplifiers,” J. Phys. Soc. Jpn. 12(6), 686–700 (1957).
[CrossRef]

Shoji, I.

R. Kawai, Y. Miyasaka, K. Otsuka, T. Ohtomo, T. Narita, J.-Y. Ko, I. Shoji, and T. Taira, “Oscillation spectra and dynamic effects in a highly-doped microchip Nd:YAG ceramic laser,” Opt. Express 12(10), 2293–2302 (2004).
[CrossRef] [PubMed]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characterization of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77, 939–941 (2000).
[CrossRef]

Sträßer, A.

Stroud, C. R.

Taira, T.

R. Kawai, Y. Miyasaka, K. Otsuka, T. Ohtomo, T. Narita, J.-Y. Ko, I. Shoji, and T. Taira, “Oscillation spectra and dynamic effects in a highly-doped microchip Nd:YAG ceramic laser,” Opt. Express 12(10), 2293–2302 (2004).
[CrossRef] [PubMed]

V. Lupei, A. Lupei, S. Georgescu, T. Taira, Y. Sato, and I. Ikesue, “The effect of Nd concentration on the spectroscopic and emission decay properties of highly doped Nd:YAG ceramics,” Phys. Rev. B 64(9), 092102 (2001).
[CrossRef]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characterization of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77, 939–941 (2000).
[CrossRef]

Takahasi, H.

K. Shimoda, H. Takahasi, and C. H. Townes, “Fluctuation in amplification of quanta with application to maser amplifiers,” J. Phys. Soc. Jpn. 12(6), 686–700 (1957).
[CrossRef]

Townes, C. H.

K. Shimoda, H. Takahasi, and C. H. Townes, “Fluctuation in amplification of quanta with application to maser amplifiers,” J. Phys. Soc. Jpn. 12(6), 686–700 (1957).
[CrossRef]

Wilhelm, R.

Yoshida, K.

K. Yoshida, H Ishii, T Kumada, T Kamimura, A Ikesue, and T Okamoto, “All ceramic composite with layer by layer structure by advanced ceramic technology,” Proc. SPIE 5647, 247–254 (2005).
[CrossRef]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characterization of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77, 939–941 (2000).
[CrossRef]

Appl. Phys. Lett. (2)

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characterization of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77, 939–941 (2000).
[CrossRef]

K. Otsuka, T. Narita, Y. Miyasaka, C. C. Lin, J.-Y. Ko, and S.-C. Chu, “Non-linear dynamics in thin-slice Nd:YAG ceramic lasers: coupled local-mode laser model,” Appl. Phys. Lett. 89(8), 081117 (2006).
[CrossRef]

Br. J. Appl. Phys. (1)

A. Le Claire, “The analysis of grain boundary diffusion measurements,” Br. J. Appl. Phys. 14(6), 351–356 (1963).
[CrossRef]

J. Ceram. Soc. Jpn. (1)

H. Haneda, “Role of diffusion phenomena in the processing of ceramics,” J. Ceram. Soc. Jpn. 111(1295), 439–447 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Soc. Jpn. (1)

K. Shimoda, H. Takahasi, and C. H. Townes, “Fluctuation in amplification of quanta with application to maser amplifiers,” J. Phys. Soc. Jpn. 12(6), 686–700 (1957).
[CrossRef]

Opt. Express (4)

Phys. Rev. B (1)

V. Lupei, A. Lupei, S. Georgescu, T. Taira, Y. Sato, and I. Ikesue, “The effect of Nd concentration on the spectroscopic and emission decay properties of highly doped Nd:YAG ceramics,” Phys. Rev. B 64(9), 092102 (2001).
[CrossRef]

Proc. SPIE (1)

K. Yoshida, H Ishii, T Kumada, T Kamimura, A Ikesue, and T Okamoto, “All ceramic composite with layer by layer structure by advanced ceramic technology,” Proc. SPIE 5647, 247–254 (2005).
[CrossRef]

Other (2)

R. Wilhelm, M. Frede, and D. Kracht, “Power scaling of end-pumped Nd:YAG rod lasers into the kilowatt region” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper MB19.

E. Desurvire, “Erbium-Doped Fiber Amplifiers”, John Wiley and Sons, Inc., (New York, 1993), pp 115–126.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

885 nm fluorescence of a Nd3+ doped YAG ceramic imaged by confocal microscopy. Brighter regions indicate higher Nd3+ concentration. There is a reduction of about 4% in the collected power at the grain boundary.

Fig. 2
Fig. 2

Experimental setup of the Laser-Gain Scanning Microscope for the measurement of doping profiles in transparent YAG ceramics. The sample was translated along the x direction to draw out the profile. The inset shows the orientation of the sample relative to the coordinate axis of the laboratory frame. The position of the laser beams is parameterized by the distance a, relative to the edge of the slab. The laser beams propagate in the z direction, and the profile varies exclusively along the x direction. AOM: Acousto-optic modulator, PD: Photodiode

Fig. 3
Fig. 3

Measured in-phase lock-in amplifier signal versus normalized pump intensity for different probe intensities.

Fig. 4
Fig. 4

Evolution of the in-phase signal response versus pump modulation frequency for different concentrations of Nd3+ in transparent YAG ceramics.

Fig. 5
Fig. 5

In-phase measurement of the concentration profile by the pump-probe LGSM technique compared to measurements made by secondary ions mass spectroscopy (SIMS). The dashed lines represent the initial core region of the ceramic.

Fig. 6
Fig. 6

Concentration profile of a ceramic compared to the transmission at 1064-nm. The initial doping of Nd3+ resulted in defects within the core layer. The initially undoped claddings show however high optical quality.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

d ln N 0 ( x ) d x 6 / 5 = [ D g b ( T ) δ 0.66 ( 4 D v ( T ) t ) 1 / 2 ] 3 / 5 ln ( N 0 ( 0 ) )
d ln N 0 ( x ) d x 6 / 5 = Λ ( T ) t 3 / 10
Δ N = I p u m p I p u m p , s a t N g
I p u m p , s a t = ω p u m p σ p u m p γ u l
Δ P ( a ) = η L γ u l σ p r o b e σ p u m p ω p r o b e P p r o b e π w p r o b e P p u m p w p u m p exp ( x 2 w r e s 2 ) N 0 ( x a ) d x
1 w r e s 2 = 1 w p u m p 2 + 1 w p r o b e 2
Δ P ( a ) = η L γ u l A N ¯ ( a )
Δ P ( a , φ ) = η L γ u l A N ¯ ( a ) 1 + ( 2 π f γ u l ) 2 [ cos ( φ ) + 2 π f γ u l sin ( φ ) ]
γ u l ( N 0 ) = γ u l , 0 [ 1 + ( N 0 N 0 ' ) 2 ]
S N R = Δ P P n o i s e
A = σ p r o b e σ p u m p ω p r o b e P p u m p I s i g n a l
N min = P n o i s e γ u l η π ω p r o b e σ p r o b e σ p u m p S N R P p u m p I p r o b e λ p u m p w p u m p 2 [ 1 + ( 2 π f γ u l ) 2 ]
Δ n ( L ) σ
η π γ u l σ p r o b e σ p u m p ω p r o b e P p u m p I p r o b e 1 + ( 2 π f γ u l ) 2 n h o s t w p u m p 2 λ p u m p N min > ( 2 ω p r o b e f P p r o b e ) 1 / 2

Metrics