Abstract

The optical switching time of twisted-nematic liquid-crystal cells using the liquid crystals, 5CB (C5H11-Ph-Ph-CN), 5OCB(C5H11-O-Ph-Ph-CN) and PCH5 (C5H11-Cy-Ph-CN) have been characterized as a function of temperature, bias voltage and switching voltage, V. The transition time from 90% to 10% transmission scales as V-1.9 and is limited to 30 to 50 ns by the liquid-crystal breakdown electric field, ~100 V μm−1. The time from the initial switching voltage step to 90% transmission, delay time, decreases with increasing bias and switching voltage. For 5CB and 5OCB the delay time approaches a constant value at higher electric fields, >10 V μm−1. Both the transition and delay times decrease with increasing temperature. The minimum transition time at temperatures a few degrees below the nematic-isotropic temperature are 32, 32, and 44 ns and delay times are 44, 25 and 8 ns for 5CB, 5OCB, and PCH5 respectively.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. http://www.cordin.com/index.html
  2. R. K. Reich, D. D. Rathman, D. M. O'Mara, D. J. Young, A. H. Loomis, R. M. Osgood, R. A. Murphy, M. Rose, R. Berger, B. M. Tyrrell, S. A. Watson, M. D. Ulibarri, T. Perry, F. Weber, and H. Robey, “Lincoln Laboratory high-speed solid-state imager technology,” Proc. SPIE 6279, 62791K (2007).
    [CrossRef]
  3. M. W. Geis, R. J. Molnar, G. W. Turner, T. M. Lyszczarz, R. M. Osgood, and B. R. Kimball, “30 to 50 ns liquid-crystal optical switches,” Proc. SPIE 7618, 76180J (2010).
    [CrossRef]
  4. H. Takanashi, J. E. Maclennan, and N. A. Clark, “Sub 100 Nanosecond Pretilted Planar-to-Homeotropic Reorientation of Nematic Liquid Crystals under High Electric Field,” J. Appl. Phys. 37(5), 2587–2589 (1998).
    [CrossRef]
  5. H.-Y. Wu, C.-Y. Wang, C.-J. Lin, R.-P. Pan, S.-S. Lin, C.-D. Lee, and C.-S. Kou, “Mechanism in determining pretilt angle of liquid crystals aligned on fluorinated copolymer films,” J. Phys. D Appl. Phys. 42(15), 155303 (2009).
    [CrossRef]
  6. M. Lu, K. H. Yang, T. Nakasogi, and S. J. Chey, “Homeotropic Alignment by Single Oblique Evaporation of SiO2 and Its Application to High Resolution Microdisplays,” SID Int. Symp. Digest Tech. Papers 31(1), 446–449 (2000).
    [CrossRef]
  7. S. Lamarque-Forget, P. Martinot-Lagarde, and I. Dozov, “Technique for Local Pretilt Measurement in Nematic Liquid Crystals,” Jpn. J. Appl. Phys. 40(Part 2, No. 4A), L349–L351 (2001).
    [CrossRef]
  8. I.-K. Huh and Y.-B. Kim, “Electro-optical Properties of Liquid Crystal Mixtures Containing Fluoroisothiocyanated Compounds,” Jpn. J. Appl. Phys. 41(Pt.1, No. 11 A), 6484–6485 (2002).
    [CrossRef]
  9. M. D. Simões, S. M. Simeão, A. de Campos, and A. J. Palangana, “Corresponding states of nematic birefringence: an order parameter universality,” Philos. Mag. 87(33), 5237–5247 (2007).
    [CrossRef]
  10. M. D. Simões, S. M. Simeão, S. M. Domiciano, and A. de Campos, “Nematic universality,” Phys. Lett. A 372(32), 5346–5351 (2008).
    [CrossRef]
  11. F.-J. Bock, H. Kneppe, and F. Schneider, “Rotational viscosity of nematic liquid crystals and their shear viscosity under flow alignment,” Liq. Cryst. 1(3), 239–251 (1986).
    [CrossRef]
  12. S. Urban, B. Gestblom, W. Kuczyński, S. Pawlus, and A. Würflinger, “Nematic order parameter as determined from dielectric relaxation data and other methods,” Phys. Chem. Chem. Phys. 5(5), 924–928 (2003).
    [CrossRef]
  13. B. A. Belyaev, N. A. Drokin, V. F. Shabanov, and V. A. Baranova, “Dielectric Properties of Liquid Crystals of the Cyano Derivative Compounds with Different Fragments in the Molecular Core,” Phys. Solid State 46(3), 574–578 (2004).
    [CrossRef]
  14. M. Gu, Y. Yin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Effects of dielectric relaxation on the director dynamics of uniaxial nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(6 Pt 1), 061702 (2007).
    [CrossRef]
  15. Neal Clark, Liquid Crystal Group, Department of Physics, University of Colorado, Boulder, CO 80309–0390 (personal communication, 2009).
  16. N. A. Clark and S. T. Lagerwall, “Submicrosecond bistable electro-optic switching in liquid crystals,” Appl. Phys. Lett. 36(11), 899–901 (1980).
    [CrossRef]

2010

M. W. Geis, R. J. Molnar, G. W. Turner, T. M. Lyszczarz, R. M. Osgood, and B. R. Kimball, “30 to 50 ns liquid-crystal optical switches,” Proc. SPIE 7618, 76180J (2010).
[CrossRef]

2009

H.-Y. Wu, C.-Y. Wang, C.-J. Lin, R.-P. Pan, S.-S. Lin, C.-D. Lee, and C.-S. Kou, “Mechanism in determining pretilt angle of liquid crystals aligned on fluorinated copolymer films,” J. Phys. D Appl. Phys. 42(15), 155303 (2009).
[CrossRef]

2008

M. D. Simões, S. M. Simeão, S. M. Domiciano, and A. de Campos, “Nematic universality,” Phys. Lett. A 372(32), 5346–5351 (2008).
[CrossRef]

2007

M. Gu, Y. Yin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Effects of dielectric relaxation on the director dynamics of uniaxial nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(6 Pt 1), 061702 (2007).
[CrossRef]

R. K. Reich, D. D. Rathman, D. M. O'Mara, D. J. Young, A. H. Loomis, R. M. Osgood, R. A. Murphy, M. Rose, R. Berger, B. M. Tyrrell, S. A. Watson, M. D. Ulibarri, T. Perry, F. Weber, and H. Robey, “Lincoln Laboratory high-speed solid-state imager technology,” Proc. SPIE 6279, 62791K (2007).
[CrossRef]

M. D. Simões, S. M. Simeão, A. de Campos, and A. J. Palangana, “Corresponding states of nematic birefringence: an order parameter universality,” Philos. Mag. 87(33), 5237–5247 (2007).
[CrossRef]

2004

B. A. Belyaev, N. A. Drokin, V. F. Shabanov, and V. A. Baranova, “Dielectric Properties of Liquid Crystals of the Cyano Derivative Compounds with Different Fragments in the Molecular Core,” Phys. Solid State 46(3), 574–578 (2004).
[CrossRef]

2003

S. Urban, B. Gestblom, W. Kuczyński, S. Pawlus, and A. Würflinger, “Nematic order parameter as determined from dielectric relaxation data and other methods,” Phys. Chem. Chem. Phys. 5(5), 924–928 (2003).
[CrossRef]

2002

I.-K. Huh and Y.-B. Kim, “Electro-optical Properties of Liquid Crystal Mixtures Containing Fluoroisothiocyanated Compounds,” Jpn. J. Appl. Phys. 41(Pt.1, No. 11 A), 6484–6485 (2002).
[CrossRef]

2001

S. Lamarque-Forget, P. Martinot-Lagarde, and I. Dozov, “Technique for Local Pretilt Measurement in Nematic Liquid Crystals,” Jpn. J. Appl. Phys. 40(Part 2, No. 4A), L349–L351 (2001).
[CrossRef]

2000

M. Lu, K. H. Yang, T. Nakasogi, and S. J. Chey, “Homeotropic Alignment by Single Oblique Evaporation of SiO2 and Its Application to High Resolution Microdisplays,” SID Int. Symp. Digest Tech. Papers 31(1), 446–449 (2000).
[CrossRef]

1998

H. Takanashi, J. E. Maclennan, and N. A. Clark, “Sub 100 Nanosecond Pretilted Planar-to-Homeotropic Reorientation of Nematic Liquid Crystals under High Electric Field,” J. Appl. Phys. 37(5), 2587–2589 (1998).
[CrossRef]

1986

F.-J. Bock, H. Kneppe, and F. Schneider, “Rotational viscosity of nematic liquid crystals and their shear viscosity under flow alignment,” Liq. Cryst. 1(3), 239–251 (1986).
[CrossRef]

1980

N. A. Clark and S. T. Lagerwall, “Submicrosecond bistable electro-optic switching in liquid crystals,” Appl. Phys. Lett. 36(11), 899–901 (1980).
[CrossRef]

Baranova, V. A.

B. A. Belyaev, N. A. Drokin, V. F. Shabanov, and V. A. Baranova, “Dielectric Properties of Liquid Crystals of the Cyano Derivative Compounds with Different Fragments in the Molecular Core,” Phys. Solid State 46(3), 574–578 (2004).
[CrossRef]

Belyaev, B. A.

B. A. Belyaev, N. A. Drokin, V. F. Shabanov, and V. A. Baranova, “Dielectric Properties of Liquid Crystals of the Cyano Derivative Compounds with Different Fragments in the Molecular Core,” Phys. Solid State 46(3), 574–578 (2004).
[CrossRef]

Berger, R.

R. K. Reich, D. D. Rathman, D. M. O'Mara, D. J. Young, A. H. Loomis, R. M. Osgood, R. A. Murphy, M. Rose, R. Berger, B. M. Tyrrell, S. A. Watson, M. D. Ulibarri, T. Perry, F. Weber, and H. Robey, “Lincoln Laboratory high-speed solid-state imager technology,” Proc. SPIE 6279, 62791K (2007).
[CrossRef]

Bock, F.-J.

F.-J. Bock, H. Kneppe, and F. Schneider, “Rotational viscosity of nematic liquid crystals and their shear viscosity under flow alignment,” Liq. Cryst. 1(3), 239–251 (1986).
[CrossRef]

Chey, S. J.

M. Lu, K. H. Yang, T. Nakasogi, and S. J. Chey, “Homeotropic Alignment by Single Oblique Evaporation of SiO2 and Its Application to High Resolution Microdisplays,” SID Int. Symp. Digest Tech. Papers 31(1), 446–449 (2000).
[CrossRef]

Clark, N. A.

H. Takanashi, J. E. Maclennan, and N. A. Clark, “Sub 100 Nanosecond Pretilted Planar-to-Homeotropic Reorientation of Nematic Liquid Crystals under High Electric Field,” J. Appl. Phys. 37(5), 2587–2589 (1998).
[CrossRef]

N. A. Clark and S. T. Lagerwall, “Submicrosecond bistable electro-optic switching in liquid crystals,” Appl. Phys. Lett. 36(11), 899–901 (1980).
[CrossRef]

de Campos, A.

M. D. Simões, S. M. Simeão, S. M. Domiciano, and A. de Campos, “Nematic universality,” Phys. Lett. A 372(32), 5346–5351 (2008).
[CrossRef]

M. D. Simões, S. M. Simeão, A. de Campos, and A. J. Palangana, “Corresponding states of nematic birefringence: an order parameter universality,” Philos. Mag. 87(33), 5237–5247 (2007).
[CrossRef]

Domiciano, S. M.

M. D. Simões, S. M. Simeão, S. M. Domiciano, and A. de Campos, “Nematic universality,” Phys. Lett. A 372(32), 5346–5351 (2008).
[CrossRef]

Dozov, I.

S. Lamarque-Forget, P. Martinot-Lagarde, and I. Dozov, “Technique for Local Pretilt Measurement in Nematic Liquid Crystals,” Jpn. J. Appl. Phys. 40(Part 2, No. 4A), L349–L351 (2001).
[CrossRef]

Drokin, N. A.

B. A. Belyaev, N. A. Drokin, V. F. Shabanov, and V. A. Baranova, “Dielectric Properties of Liquid Crystals of the Cyano Derivative Compounds with Different Fragments in the Molecular Core,” Phys. Solid State 46(3), 574–578 (2004).
[CrossRef]

Geis, M. W.

M. W. Geis, R. J. Molnar, G. W. Turner, T. M. Lyszczarz, R. M. Osgood, and B. R. Kimball, “30 to 50 ns liquid-crystal optical switches,” Proc. SPIE 7618, 76180J (2010).
[CrossRef]

Gestblom, B.

S. Urban, B. Gestblom, W. Kuczyński, S. Pawlus, and A. Würflinger, “Nematic order parameter as determined from dielectric relaxation data and other methods,” Phys. Chem. Chem. Phys. 5(5), 924–928 (2003).
[CrossRef]

Gu, M.

M. Gu, Y. Yin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Effects of dielectric relaxation on the director dynamics of uniaxial nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(6 Pt 1), 061702 (2007).
[CrossRef]

Huh, I.-K.

I.-K. Huh and Y.-B. Kim, “Electro-optical Properties of Liquid Crystal Mixtures Containing Fluoroisothiocyanated Compounds,” Jpn. J. Appl. Phys. 41(Pt.1, No. 11 A), 6484–6485 (2002).
[CrossRef]

Kim, Y.-B.

I.-K. Huh and Y.-B. Kim, “Electro-optical Properties of Liquid Crystal Mixtures Containing Fluoroisothiocyanated Compounds,” Jpn. J. Appl. Phys. 41(Pt.1, No. 11 A), 6484–6485 (2002).
[CrossRef]

Kimball, B. R.

M. W. Geis, R. J. Molnar, G. W. Turner, T. M. Lyszczarz, R. M. Osgood, and B. R. Kimball, “30 to 50 ns liquid-crystal optical switches,” Proc. SPIE 7618, 76180J (2010).
[CrossRef]

Kneppe, H.

F.-J. Bock, H. Kneppe, and F. Schneider, “Rotational viscosity of nematic liquid crystals and their shear viscosity under flow alignment,” Liq. Cryst. 1(3), 239–251 (1986).
[CrossRef]

Kou, C.-S.

H.-Y. Wu, C.-Y. Wang, C.-J. Lin, R.-P. Pan, S.-S. Lin, C.-D. Lee, and C.-S. Kou, “Mechanism in determining pretilt angle of liquid crystals aligned on fluorinated copolymer films,” J. Phys. D Appl. Phys. 42(15), 155303 (2009).
[CrossRef]

Kuczynski, W.

S. Urban, B. Gestblom, W. Kuczyński, S. Pawlus, and A. Würflinger, “Nematic order parameter as determined from dielectric relaxation data and other methods,” Phys. Chem. Chem. Phys. 5(5), 924–928 (2003).
[CrossRef]

Lagerwall, S. T.

N. A. Clark and S. T. Lagerwall, “Submicrosecond bistable electro-optic switching in liquid crystals,” Appl. Phys. Lett. 36(11), 899–901 (1980).
[CrossRef]

Lamarque-Forget, S.

S. Lamarque-Forget, P. Martinot-Lagarde, and I. Dozov, “Technique for Local Pretilt Measurement in Nematic Liquid Crystals,” Jpn. J. Appl. Phys. 40(Part 2, No. 4A), L349–L351 (2001).
[CrossRef]

Lavrentovich, O. D.

M. Gu, Y. Yin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Effects of dielectric relaxation on the director dynamics of uniaxial nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(6 Pt 1), 061702 (2007).
[CrossRef]

Lee, C.-D.

H.-Y. Wu, C.-Y. Wang, C.-J. Lin, R.-P. Pan, S.-S. Lin, C.-D. Lee, and C.-S. Kou, “Mechanism in determining pretilt angle of liquid crystals aligned on fluorinated copolymer films,” J. Phys. D Appl. Phys. 42(15), 155303 (2009).
[CrossRef]

Lin, C.-J.

H.-Y. Wu, C.-Y. Wang, C.-J. Lin, R.-P. Pan, S.-S. Lin, C.-D. Lee, and C.-S. Kou, “Mechanism in determining pretilt angle of liquid crystals aligned on fluorinated copolymer films,” J. Phys. D Appl. Phys. 42(15), 155303 (2009).
[CrossRef]

Lin, S.-S.

H.-Y. Wu, C.-Y. Wang, C.-J. Lin, R.-P. Pan, S.-S. Lin, C.-D. Lee, and C.-S. Kou, “Mechanism in determining pretilt angle of liquid crystals aligned on fluorinated copolymer films,” J. Phys. D Appl. Phys. 42(15), 155303 (2009).
[CrossRef]

Loomis, A. H.

R. K. Reich, D. D. Rathman, D. M. O'Mara, D. J. Young, A. H. Loomis, R. M. Osgood, R. A. Murphy, M. Rose, R. Berger, B. M. Tyrrell, S. A. Watson, M. D. Ulibarri, T. Perry, F. Weber, and H. Robey, “Lincoln Laboratory high-speed solid-state imager technology,” Proc. SPIE 6279, 62791K (2007).
[CrossRef]

Lu, M.

M. Lu, K. H. Yang, T. Nakasogi, and S. J. Chey, “Homeotropic Alignment by Single Oblique Evaporation of SiO2 and Its Application to High Resolution Microdisplays,” SID Int. Symp. Digest Tech. Papers 31(1), 446–449 (2000).
[CrossRef]

Lyszczarz, T. M.

M. W. Geis, R. J. Molnar, G. W. Turner, T. M. Lyszczarz, R. M. Osgood, and B. R. Kimball, “30 to 50 ns liquid-crystal optical switches,” Proc. SPIE 7618, 76180J (2010).
[CrossRef]

Maclennan, J. E.

H. Takanashi, J. E. Maclennan, and N. A. Clark, “Sub 100 Nanosecond Pretilted Planar-to-Homeotropic Reorientation of Nematic Liquid Crystals under High Electric Field,” J. Appl. Phys. 37(5), 2587–2589 (1998).
[CrossRef]

Martinot-Lagarde, P.

S. Lamarque-Forget, P. Martinot-Lagarde, and I. Dozov, “Technique for Local Pretilt Measurement in Nematic Liquid Crystals,” Jpn. J. Appl. Phys. 40(Part 2, No. 4A), L349–L351 (2001).
[CrossRef]

Molnar, R. J.

M. W. Geis, R. J. Molnar, G. W. Turner, T. M. Lyszczarz, R. M. Osgood, and B. R. Kimball, “30 to 50 ns liquid-crystal optical switches,” Proc. SPIE 7618, 76180J (2010).
[CrossRef]

Murphy, R. A.

R. K. Reich, D. D. Rathman, D. M. O'Mara, D. J. Young, A. H. Loomis, R. M. Osgood, R. A. Murphy, M. Rose, R. Berger, B. M. Tyrrell, S. A. Watson, M. D. Ulibarri, T. Perry, F. Weber, and H. Robey, “Lincoln Laboratory high-speed solid-state imager technology,” Proc. SPIE 6279, 62791K (2007).
[CrossRef]

Nakasogi, T.

M. Lu, K. H. Yang, T. Nakasogi, and S. J. Chey, “Homeotropic Alignment by Single Oblique Evaporation of SiO2 and Its Application to High Resolution Microdisplays,” SID Int. Symp. Digest Tech. Papers 31(1), 446–449 (2000).
[CrossRef]

O'Mara, D. M.

R. K. Reich, D. D. Rathman, D. M. O'Mara, D. J. Young, A. H. Loomis, R. M. Osgood, R. A. Murphy, M. Rose, R. Berger, B. M. Tyrrell, S. A. Watson, M. D. Ulibarri, T. Perry, F. Weber, and H. Robey, “Lincoln Laboratory high-speed solid-state imager technology,” Proc. SPIE 6279, 62791K (2007).
[CrossRef]

Osgood, R. M.

M. W. Geis, R. J. Molnar, G. W. Turner, T. M. Lyszczarz, R. M. Osgood, and B. R. Kimball, “30 to 50 ns liquid-crystal optical switches,” Proc. SPIE 7618, 76180J (2010).
[CrossRef]

R. K. Reich, D. D. Rathman, D. M. O'Mara, D. J. Young, A. H. Loomis, R. M. Osgood, R. A. Murphy, M. Rose, R. Berger, B. M. Tyrrell, S. A. Watson, M. D. Ulibarri, T. Perry, F. Weber, and H. Robey, “Lincoln Laboratory high-speed solid-state imager technology,” Proc. SPIE 6279, 62791K (2007).
[CrossRef]

Palangana, A. J.

M. D. Simões, S. M. Simeão, A. de Campos, and A. J. Palangana, “Corresponding states of nematic birefringence: an order parameter universality,” Philos. Mag. 87(33), 5237–5247 (2007).
[CrossRef]

Pan, R.-P.

H.-Y. Wu, C.-Y. Wang, C.-J. Lin, R.-P. Pan, S.-S. Lin, C.-D. Lee, and C.-S. Kou, “Mechanism in determining pretilt angle of liquid crystals aligned on fluorinated copolymer films,” J. Phys. D Appl. Phys. 42(15), 155303 (2009).
[CrossRef]

Pawlus, S.

S. Urban, B. Gestblom, W. Kuczyński, S. Pawlus, and A. Würflinger, “Nematic order parameter as determined from dielectric relaxation data and other methods,” Phys. Chem. Chem. Phys. 5(5), 924–928 (2003).
[CrossRef]

Perry, T.

R. K. Reich, D. D. Rathman, D. M. O'Mara, D. J. Young, A. H. Loomis, R. M. Osgood, R. A. Murphy, M. Rose, R. Berger, B. M. Tyrrell, S. A. Watson, M. D. Ulibarri, T. Perry, F. Weber, and H. Robey, “Lincoln Laboratory high-speed solid-state imager technology,” Proc. SPIE 6279, 62791K (2007).
[CrossRef]

Rathman, D. D.

R. K. Reich, D. D. Rathman, D. M. O'Mara, D. J. Young, A. H. Loomis, R. M. Osgood, R. A. Murphy, M. Rose, R. Berger, B. M. Tyrrell, S. A. Watson, M. D. Ulibarri, T. Perry, F. Weber, and H. Robey, “Lincoln Laboratory high-speed solid-state imager technology,” Proc. SPIE 6279, 62791K (2007).
[CrossRef]

Reich, R. K.

R. K. Reich, D. D. Rathman, D. M. O'Mara, D. J. Young, A. H. Loomis, R. M. Osgood, R. A. Murphy, M. Rose, R. Berger, B. M. Tyrrell, S. A. Watson, M. D. Ulibarri, T. Perry, F. Weber, and H. Robey, “Lincoln Laboratory high-speed solid-state imager technology,” Proc. SPIE 6279, 62791K (2007).
[CrossRef]

Robey, H.

R. K. Reich, D. D. Rathman, D. M. O'Mara, D. J. Young, A. H. Loomis, R. M. Osgood, R. A. Murphy, M. Rose, R. Berger, B. M. Tyrrell, S. A. Watson, M. D. Ulibarri, T. Perry, F. Weber, and H. Robey, “Lincoln Laboratory high-speed solid-state imager technology,” Proc. SPIE 6279, 62791K (2007).
[CrossRef]

Rose, M.

R. K. Reich, D. D. Rathman, D. M. O'Mara, D. J. Young, A. H. Loomis, R. M. Osgood, R. A. Murphy, M. Rose, R. Berger, B. M. Tyrrell, S. A. Watson, M. D. Ulibarri, T. Perry, F. Weber, and H. Robey, “Lincoln Laboratory high-speed solid-state imager technology,” Proc. SPIE 6279, 62791K (2007).
[CrossRef]

Schneider, F.

F.-J. Bock, H. Kneppe, and F. Schneider, “Rotational viscosity of nematic liquid crystals and their shear viscosity under flow alignment,” Liq. Cryst. 1(3), 239–251 (1986).
[CrossRef]

Shabanov, V. F.

B. A. Belyaev, N. A. Drokin, V. F. Shabanov, and V. A. Baranova, “Dielectric Properties of Liquid Crystals of the Cyano Derivative Compounds with Different Fragments in the Molecular Core,” Phys. Solid State 46(3), 574–578 (2004).
[CrossRef]

Shiyanovskii, S. V.

M. Gu, Y. Yin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Effects of dielectric relaxation on the director dynamics of uniaxial nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(6 Pt 1), 061702 (2007).
[CrossRef]

Simeão, S. M.

M. D. Simões, S. M. Simeão, S. M. Domiciano, and A. de Campos, “Nematic universality,” Phys. Lett. A 372(32), 5346–5351 (2008).
[CrossRef]

M. D. Simões, S. M. Simeão, A. de Campos, and A. J. Palangana, “Corresponding states of nematic birefringence: an order parameter universality,” Philos. Mag. 87(33), 5237–5247 (2007).
[CrossRef]

Simões, M. D.

M. D. Simões, S. M. Simeão, S. M. Domiciano, and A. de Campos, “Nematic universality,” Phys. Lett. A 372(32), 5346–5351 (2008).
[CrossRef]

M. D. Simões, S. M. Simeão, A. de Campos, and A. J. Palangana, “Corresponding states of nematic birefringence: an order parameter universality,” Philos. Mag. 87(33), 5237–5247 (2007).
[CrossRef]

Takanashi, H.

H. Takanashi, J. E. Maclennan, and N. A. Clark, “Sub 100 Nanosecond Pretilted Planar-to-Homeotropic Reorientation of Nematic Liquid Crystals under High Electric Field,” J. Appl. Phys. 37(5), 2587–2589 (1998).
[CrossRef]

Turner, G. W.

M. W. Geis, R. J. Molnar, G. W. Turner, T. M. Lyszczarz, R. M. Osgood, and B. R. Kimball, “30 to 50 ns liquid-crystal optical switches,” Proc. SPIE 7618, 76180J (2010).
[CrossRef]

Tyrrell, B. M.

R. K. Reich, D. D. Rathman, D. M. O'Mara, D. J. Young, A. H. Loomis, R. M. Osgood, R. A. Murphy, M. Rose, R. Berger, B. M. Tyrrell, S. A. Watson, M. D. Ulibarri, T. Perry, F. Weber, and H. Robey, “Lincoln Laboratory high-speed solid-state imager technology,” Proc. SPIE 6279, 62791K (2007).
[CrossRef]

Ulibarri, M. D.

R. K. Reich, D. D. Rathman, D. M. O'Mara, D. J. Young, A. H. Loomis, R. M. Osgood, R. A. Murphy, M. Rose, R. Berger, B. M. Tyrrell, S. A. Watson, M. D. Ulibarri, T. Perry, F. Weber, and H. Robey, “Lincoln Laboratory high-speed solid-state imager technology,” Proc. SPIE 6279, 62791K (2007).
[CrossRef]

Urban, S.

S. Urban, B. Gestblom, W. Kuczyński, S. Pawlus, and A. Würflinger, “Nematic order parameter as determined from dielectric relaxation data and other methods,” Phys. Chem. Chem. Phys. 5(5), 924–928 (2003).
[CrossRef]

Wang, C.-Y.

H.-Y. Wu, C.-Y. Wang, C.-J. Lin, R.-P. Pan, S.-S. Lin, C.-D. Lee, and C.-S. Kou, “Mechanism in determining pretilt angle of liquid crystals aligned on fluorinated copolymer films,” J. Phys. D Appl. Phys. 42(15), 155303 (2009).
[CrossRef]

Watson, S. A.

R. K. Reich, D. D. Rathman, D. M. O'Mara, D. J. Young, A. H. Loomis, R. M. Osgood, R. A. Murphy, M. Rose, R. Berger, B. M. Tyrrell, S. A. Watson, M. D. Ulibarri, T. Perry, F. Weber, and H. Robey, “Lincoln Laboratory high-speed solid-state imager technology,” Proc. SPIE 6279, 62791K (2007).
[CrossRef]

Weber, F.

R. K. Reich, D. D. Rathman, D. M. O'Mara, D. J. Young, A. H. Loomis, R. M. Osgood, R. A. Murphy, M. Rose, R. Berger, B. M. Tyrrell, S. A. Watson, M. D. Ulibarri, T. Perry, F. Weber, and H. Robey, “Lincoln Laboratory high-speed solid-state imager technology,” Proc. SPIE 6279, 62791K (2007).
[CrossRef]

Wu, H.-Y.

H.-Y. Wu, C.-Y. Wang, C.-J. Lin, R.-P. Pan, S.-S. Lin, C.-D. Lee, and C.-S. Kou, “Mechanism in determining pretilt angle of liquid crystals aligned on fluorinated copolymer films,” J. Phys. D Appl. Phys. 42(15), 155303 (2009).
[CrossRef]

Würflinger, A.

S. Urban, B. Gestblom, W. Kuczyński, S. Pawlus, and A. Würflinger, “Nematic order parameter as determined from dielectric relaxation data and other methods,” Phys. Chem. Chem. Phys. 5(5), 924–928 (2003).
[CrossRef]

Yang, K. H.

M. Lu, K. H. Yang, T. Nakasogi, and S. J. Chey, “Homeotropic Alignment by Single Oblique Evaporation of SiO2 and Its Application to High Resolution Microdisplays,” SID Int. Symp. Digest Tech. Papers 31(1), 446–449 (2000).
[CrossRef]

Yin, Y.

M. Gu, Y. Yin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Effects of dielectric relaxation on the director dynamics of uniaxial nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(6 Pt 1), 061702 (2007).
[CrossRef]

Young, D. J.

R. K. Reich, D. D. Rathman, D. M. O'Mara, D. J. Young, A. H. Loomis, R. M. Osgood, R. A. Murphy, M. Rose, R. Berger, B. M. Tyrrell, S. A. Watson, M. D. Ulibarri, T. Perry, F. Weber, and H. Robey, “Lincoln Laboratory high-speed solid-state imager technology,” Proc. SPIE 6279, 62791K (2007).
[CrossRef]

Appl. Phys. Lett.

N. A. Clark and S. T. Lagerwall, “Submicrosecond bistable electro-optic switching in liquid crystals,” Appl. Phys. Lett. 36(11), 899–901 (1980).
[CrossRef]

J. Appl. Phys.

H. Takanashi, J. E. Maclennan, and N. A. Clark, “Sub 100 Nanosecond Pretilted Planar-to-Homeotropic Reorientation of Nematic Liquid Crystals under High Electric Field,” J. Appl. Phys. 37(5), 2587–2589 (1998).
[CrossRef]

J. Phys. D Appl. Phys.

H.-Y. Wu, C.-Y. Wang, C.-J. Lin, R.-P. Pan, S.-S. Lin, C.-D. Lee, and C.-S. Kou, “Mechanism in determining pretilt angle of liquid crystals aligned on fluorinated copolymer films,” J. Phys. D Appl. Phys. 42(15), 155303 (2009).
[CrossRef]

Jpn. J. Appl. Phys.

S. Lamarque-Forget, P. Martinot-Lagarde, and I. Dozov, “Technique for Local Pretilt Measurement in Nematic Liquid Crystals,” Jpn. J. Appl. Phys. 40(Part 2, No. 4A), L349–L351 (2001).
[CrossRef]

I.-K. Huh and Y.-B. Kim, “Electro-optical Properties of Liquid Crystal Mixtures Containing Fluoroisothiocyanated Compounds,” Jpn. J. Appl. Phys. 41(Pt.1, No. 11 A), 6484–6485 (2002).
[CrossRef]

Liq. Cryst.

F.-J. Bock, H. Kneppe, and F. Schneider, “Rotational viscosity of nematic liquid crystals and their shear viscosity under flow alignment,” Liq. Cryst. 1(3), 239–251 (1986).
[CrossRef]

Philos. Mag.

M. D. Simões, S. M. Simeão, A. de Campos, and A. J. Palangana, “Corresponding states of nematic birefringence: an order parameter universality,” Philos. Mag. 87(33), 5237–5247 (2007).
[CrossRef]

Phys. Chem. Chem. Phys.

S. Urban, B. Gestblom, W. Kuczyński, S. Pawlus, and A. Würflinger, “Nematic order parameter as determined from dielectric relaxation data and other methods,” Phys. Chem. Chem. Phys. 5(5), 924–928 (2003).
[CrossRef]

Phys. Lett. A

M. D. Simões, S. M. Simeão, S. M. Domiciano, and A. de Campos, “Nematic universality,” Phys. Lett. A 372(32), 5346–5351 (2008).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

M. Gu, Y. Yin, S. V. Shiyanovskii, and O. D. Lavrentovich, “Effects of dielectric relaxation on the director dynamics of uniaxial nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(6 Pt 1), 061702 (2007).
[CrossRef]

Phys. Solid State

B. A. Belyaev, N. A. Drokin, V. F. Shabanov, and V. A. Baranova, “Dielectric Properties of Liquid Crystals of the Cyano Derivative Compounds with Different Fragments in the Molecular Core,” Phys. Solid State 46(3), 574–578 (2004).
[CrossRef]

Proc. SPIE

R. K. Reich, D. D. Rathman, D. M. O'Mara, D. J. Young, A. H. Loomis, R. M. Osgood, R. A. Murphy, M. Rose, R. Berger, B. M. Tyrrell, S. A. Watson, M. D. Ulibarri, T. Perry, F. Weber, and H. Robey, “Lincoln Laboratory high-speed solid-state imager technology,” Proc. SPIE 6279, 62791K (2007).
[CrossRef]

M. W. Geis, R. J. Molnar, G. W. Turner, T. M. Lyszczarz, R. M. Osgood, and B. R. Kimball, “30 to 50 ns liquid-crystal optical switches,” Proc. SPIE 7618, 76180J (2010).
[CrossRef]

SID Int. Symp. Digest Tech. Papers

M. Lu, K. H. Yang, T. Nakasogi, and S. J. Chey, “Homeotropic Alignment by Single Oblique Evaporation of SiO2 and Its Application to High Resolution Microdisplays,” SID Int. Symp. Digest Tech. Papers 31(1), 446–449 (2000).
[CrossRef]

Other

Neal Clark, Liquid Crystal Group, Department of Physics, University of Colorado, Boulder, CO 80309–0390 (personal communication, 2009).

http://www.cordin.com/index.html

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Experimental setup, HeNe laser, liquid-crystal cell, polarizing beam splitter, and two silicon photodiodes. On the left is the equivalent circuit for a 5-μm-gap cell. Below that, is the graph of the normalized output as a function of time from Si photodiode (A). The graph defines the delay, τD , and the transition, τT , times. The graph on the right shows waveform of the voltage step applied to the liquid-crystal cell. Below that graph is the normalized signal from Si photodiode (B) as a function of time.

Fig. 2
Fig. 2

Normalized transmission as a function of time for several bias RMS AC voltages. The cell gap is 5 μm and is filled with 5CB at 30 °C. The switching voltage was 40 V.

Fig. 3
Fig. 3

τD , τT and normalized optical transmission as a function of bias voltage for the same cell used in Fig. 2.

Fig. 5
Fig. 5

Normalized light transmission with the application of a 800 V step on a cell similar to that used for Fig. 4.

Fig. 11
Fig. 11

The same data as shown in Fig. 10 with the addition of the fastest switching time known to us in the literature [4]. The incomplete switching, from 0% to 80% for 5CB*, shown in ref 4, is not understood [15].

Fig. 4
Fig. 4

Normalized transmission and bias current as function of voltage for a 10-μm-thick 3-mm-diameter 5CB cell at 32.9 °C. The dotted line indicates negative current.

Fig. 6
Fig. 6

Normalized transmission through a 10-μm-thick 5CB cell as a function of time for several temperatures. A 900 V step was applied to the cell at Time = 0. 5CB was super cooled to 5 °C, 19 ° C below its crystallizing temperature, 24°C.

fig. 7
fig. 7

Comparison of the measured τT for 5CB and 5OCB with Eq. (1) times a scalar constant of 0.8 as a function of temperature. TN-I is 35.3 °C for 5CB and 68 °C for 5OCB. The parameters used in Eq. (1) were obtained from references 9 to 11. εο = 8.85x108 F μm−1.

Fig. 8
Fig. 8

Measured τD as a function of switching voltage. The liquid crystals were few degrees below their TN-I. The curves are a visual fit to the data using a power law and a constant. E is in V μm−1 and τD in ns for the equations in the figure .

Fig. 10
Fig. 10

The best switching times for the liquid crystals tested. The electric fields were between 80 and 90 V μm−1 . The delay times and transition times are noted on the graph. The cell gap was 10 μm for 5CB and 5OCB and 5 μm for PCH5.

Fig. 9
Fig. 9

Measured τT as a function of switching voltage. The liquid crystals were few degrees below their TN-I. The curves are a least square fit power law. E is in V μm−1 and τD in ns for the equations in the figure .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

τ T = γ ε 0 Δ ε E 2 ,

Metrics