Abstract

Boron co-doped germanosilicate fibers are investigated via the Brillouin light scattering technique using two wavelengths, 1534nm and 1064nm. Several fibers are investigated, including four drawn from the same preform but at different draw temperatures. The Stokes’ shifts and the Brillouin spectral widths are found to increase with increasing fiber draw temperature. A frequency-squared law has adequately described the wavelength dependence of the Brillouin spectral width of conventional Ge-doped fibers. However, it is found that unlike conventional Ge-doped fibers these fibers do not follow the frequency-squared law. This is explained through a frequency-dependent dynamic viscosity that modifies this law.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Culverhouse, F. Farahi, C. N. Pannell, and D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25(14), 913–915 (1989).
    [CrossRef]
  2. K. Shimizu, T. Horiguchi, and Y. Koyamada, “Measurement of distributed strain and temperature in a branched optical fiber network by using Brillouin OTDR,” Proc. SPIE 2360, 142–145 (1994).
    [CrossRef]
  3. D. Pohl, M. Maier, and W. Kaiser, “Transient and steady-state gain in stimulated Brillouin amplifiers,” IEEE J. Quantum Electron. 4(5), 320–321 (1968).
    [CrossRef]
  4. Z. Zhu, M. D. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “Broadband SBS slow light in an optical fiber,” J. Lightwave Technol. 25(1), 201–206 (2007).
    [CrossRef]
  5. A. Debut, S. Randoux, and J. Zemmouri, “Linewidth narrowing in Brillouin lasers: theoretical analysis,” Phys. Rev. A 62(2), 023803 (2000).
    [CrossRef]
  6. P. D. Dragic, C.-H. Liu, G. C. Papen, and A. Galvanauskas, “Optical fiber with an acoustic guiding layer for stimulated Brillouin scattering suppression,” in Conference on Lasers and Electro-Optics/Quantum Electronics and laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CTHZ3.
  7. M.-J. Li, X. Chen, J. Wang, A. B. Ruffin, D. T. Walton, S. Li, A. Nolan, S. Gray, and L. A. Zenteno, “Fiber designs for reducing stimulated Brillouin scattering,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OTuA4.
  8. P. D. Dragic, “Novel dual-Brillouin-frequency optical fiber for distributed temperature sensing,” Proc. SPIE 7197, 719710 (2009).
    [CrossRef]
  9. C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76(3), 712–716 (1993).
    [CrossRef]
  10. J. E. Masnik, J. Kieffer, and J. D. Bass, “Structural relaxations in alkali silicate systems by Brillouin light scattering,” J. Am. Ceram. Soc. 76(12), 3073–3080 (1993).
    [CrossRef]
  11. J. E. Masnik, J. Kieffer, and J. D. Bass, “The complex mechanical modulus as a structural probe: the case of alkali borate liquids and glasses,” J. Chem. Phys. 103(23), 9907–9917 (1995).
    [CrossRef]
  12. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and brillouin scattering,” Appl. Opt. 11(11), 2489–2494 (1972).
    [CrossRef] [PubMed]
  13. G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press, 1995).
  14. C. Krischer, “Optical measurements of ultrasonic attenuation and reflection losses in fused silica,” J. Acoust. Soc. Am. 48(5B), 1086–1092 (1970).
    [CrossRef]
  15. T. M. Gross and M. Tomozawa, “Fictive temperature of GeO2 glass: its determination by IR method and its effects on density and refractive index,” J. Non-Cryst. Solids 353(52-54), 4762–4766 (2007).
    [CrossRef]
  16. A. S. Pine, “Brillouin scattering study of acoustic attenuation in fused quartz,” Phys. Rev. 185(3), 1187–1193 (1969).
    [CrossRef]
  17. R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Spontaneous Brillouin scattering for single-mode fiber characterization,” Electron. Lett. 22, 1101–1113 (1986).
  18. P. D. Dragic, “Brillouin spectroscopy of Nd-Ge co-doped silica fibers,” J. Non-Cryst. Solids 355(7), 403–413 (2009).
    [CrossRef]
  19. R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
    [CrossRef] [PubMed]
  20. C. Headley, J. B. Clayton, W. A. Reed, L. Eskildsen, and P. B. Hansen, “Technique for obtaining a 2.5 dB increase in the stimulated Brillouin scattering threshold of Ge-doped fibers by varying fiber draw tension,” in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 1997) paper WL25.
  21. W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett. 19(18), 1389–1391 (2007).
    [CrossRef]
  22. A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84(1), 19–21 (2004).
    [CrossRef]
  23. N. Shibata, K. Okamoto, and Y. Azuma, “Longitudinal acoustic modes and Brillouin-gain spectra for GeO2-doped-core single-mode fibers,” J. Opt. Soc. Am. B 6(6), 1167–1174 (1989).
    [CrossRef]
  24. J. Kieffer, “Mechanical degradation and viscous dissipation in B2O3.,” Phys. Rev. B Condens. Matter 50(1), 17–29 (1994).
    [CrossRef] [PubMed]
  25. O. L. Anderson and H. E. Bömmel, “Ultrasonic absorption in fused silica at low temperatures and high frequencies,” J. Am. Ceram. Soc. 38(4), 125–131 (1955).
    [CrossRef]
  26. D. Tielbürger, R. Merz, R. Ehrenfels, and S. Hunklinger, “Thermally activated relaxation processes in vitreous silica: An investigation by Brillouin scattering at high pressures,” Phys. Rev. B Condens. Matter 45(6), 2750–2760 (1992).
    [CrossRef] [PubMed]
  27. J. Hertling, S. Baeßler, S. Rau, G. Kasper, and S. Hunklinger, “Internal friction and hypersonic velocity in vitreous germania under high pressure,” J. Non-Cryst. Solids 226(1-2), 129–137 (1998).
    [CrossRef]
  28. M. Niklès, L. Thévenaz, and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
    [CrossRef]
  29. S. Le Floch and P. Cambon, “Study of Brillouin gain spectrum in standard single-mode optical fiber at low temperatures (1.4-370K) and high hydrostatic pressures (1-250 bars),” Opt. Commun. 219(1-6), 395–410 (2003).
    [CrossRef]

2009 (2)

P. D. Dragic, “Novel dual-Brillouin-frequency optical fiber for distributed temperature sensing,” Proc. SPIE 7197, 719710 (2009).
[CrossRef]

P. D. Dragic, “Brillouin spectroscopy of Nd-Ge co-doped silica fibers,” J. Non-Cryst. Solids 355(7), 403–413 (2009).
[CrossRef]

2007 (3)

W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett. 19(18), 1389–1391 (2007).
[CrossRef]

T. M. Gross and M. Tomozawa, “Fictive temperature of GeO2 glass: its determination by IR method and its effects on density and refractive index,” J. Non-Cryst. Solids 353(52-54), 4762–4766 (2007).
[CrossRef]

Z. Zhu, M. D. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “Broadband SBS slow light in an optical fiber,” J. Lightwave Technol. 25(1), 201–206 (2007).
[CrossRef]

2004 (1)

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84(1), 19–21 (2004).
[CrossRef]

2003 (1)

S. Le Floch and P. Cambon, “Study of Brillouin gain spectrum in standard single-mode optical fiber at low temperatures (1.4-370K) and high hydrostatic pressures (1-250 bars),” Opt. Commun. 219(1-6), 395–410 (2003).
[CrossRef]

2000 (1)

A. Debut, S. Randoux, and J. Zemmouri, “Linewidth narrowing in Brillouin lasers: theoretical analysis,” Phys. Rev. A 62(2), 023803 (2000).
[CrossRef]

1998 (1)

J. Hertling, S. Baeßler, S. Rau, G. Kasper, and S. Hunklinger, “Internal friction and hypersonic velocity in vitreous germania under high pressure,” J. Non-Cryst. Solids 226(1-2), 129–137 (1998).
[CrossRef]

1997 (1)

M. Niklès, L. Thévenaz, and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[CrossRef]

1995 (1)

J. E. Masnik, J. Kieffer, and J. D. Bass, “The complex mechanical modulus as a structural probe: the case of alkali borate liquids and glasses,” J. Chem. Phys. 103(23), 9907–9917 (1995).
[CrossRef]

1994 (2)

K. Shimizu, T. Horiguchi, and Y. Koyamada, “Measurement of distributed strain and temperature in a branched optical fiber network by using Brillouin OTDR,” Proc. SPIE 2360, 142–145 (1994).
[CrossRef]

J. Kieffer, “Mechanical degradation and viscous dissipation in B2O3.,” Phys. Rev. B Condens. Matter 50(1), 17–29 (1994).
[CrossRef] [PubMed]

1993 (2)

C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76(3), 712–716 (1993).
[CrossRef]

J. E. Masnik, J. Kieffer, and J. D. Bass, “Structural relaxations in alkali silicate systems by Brillouin light scattering,” J. Am. Ceram. Soc. 76(12), 3073–3080 (1993).
[CrossRef]

1992 (1)

D. Tielbürger, R. Merz, R. Ehrenfels, and S. Hunklinger, “Thermally activated relaxation processes in vitreous silica: An investigation by Brillouin scattering at high pressures,” Phys. Rev. B Condens. Matter 45(6), 2750–2760 (1992).
[CrossRef] [PubMed]

1990 (1)

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[CrossRef] [PubMed]

1989 (2)

N. Shibata, K. Okamoto, and Y. Azuma, “Longitudinal acoustic modes and Brillouin-gain spectra for GeO2-doped-core single-mode fibers,” J. Opt. Soc. Am. B 6(6), 1167–1174 (1989).
[CrossRef]

D. Culverhouse, F. Farahi, C. N. Pannell, and D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25(14), 913–915 (1989).
[CrossRef]

1986 (1)

R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Spontaneous Brillouin scattering for single-mode fiber characterization,” Electron. Lett. 22, 1101–1113 (1986).

1972 (1)

1970 (1)

C. Krischer, “Optical measurements of ultrasonic attenuation and reflection losses in fused silica,” J. Acoust. Soc. Am. 48(5B), 1086–1092 (1970).
[CrossRef]

1969 (1)

A. S. Pine, “Brillouin scattering study of acoustic attenuation in fused quartz,” Phys. Rev. 185(3), 1187–1193 (1969).
[CrossRef]

1968 (1)

D. Pohl, M. Maier, and W. Kaiser, “Transient and steady-state gain in stimulated Brillouin amplifiers,” IEEE J. Quantum Electron. 4(5), 320–321 (1968).
[CrossRef]

1955 (1)

O. L. Anderson and H. E. Bömmel, “Ultrasonic absorption in fused silica at low temperatures and high frequencies,” J. Am. Ceram. Soc. 38(4), 125–131 (1955).
[CrossRef]

Abe, K.

C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76(3), 712–716 (1993).
[CrossRef]

Anderson, O. L.

O. L. Anderson and H. E. Bömmel, “Ultrasonic absorption in fused silica at low temperatures and high frequencies,” J. Am. Ceram. Soc. 38(4), 125–131 (1955).
[CrossRef]

Azuma, Y.

Baeßler, S.

J. Hertling, S. Baeßler, S. Rau, G. Kasper, and S. Hunklinger, “Internal friction and hypersonic velocity in vitreous germania under high pressure,” J. Non-Cryst. Solids 226(1-2), 129–137 (1998).
[CrossRef]

Bass, J. D.

J. E. Masnik, J. Kieffer, and J. D. Bass, “The complex mechanical modulus as a structural probe: the case of alkali borate liquids and glasses,” J. Chem. Phys. 103(23), 9907–9917 (1995).
[CrossRef]

J. E. Masnik, J. Kieffer, and J. D. Bass, “Structural relaxations in alkali silicate systems by Brillouin light scattering,” J. Am. Ceram. Soc. 76(12), 3073–3080 (1993).
[CrossRef]

Bömmel, H. E.

O. L. Anderson and H. E. Bömmel, “Ultrasonic absorption in fused silica at low temperatures and high frequencies,” J. Am. Ceram. Soc. 38(4), 125–131 (1955).
[CrossRef]

Bonnell, L.

C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76(3), 712–716 (1993).
[CrossRef]

Boyd, R. W.

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[CrossRef] [PubMed]

Cambon, P.

S. Le Floch and P. Cambon, “Study of Brillouin gain spectrum in standard single-mode optical fiber at low temperatures (1.4-370K) and high hydrostatic pressures (1-250 bars),” Opt. Commun. 219(1-6), 395–410 (2003).
[CrossRef]

Chraplyvy, A. R.

R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Spontaneous Brillouin scattering for single-mode fiber characterization,” Electron. Lett. 22, 1101–1113 (1986).

Culverhouse, D.

D. Culverhouse, F. Farahi, C. N. Pannell, and D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25(14), 913–915 (1989).
[CrossRef]

Dawes, M. D.

Debut, A.

A. Debut, S. Randoux, and J. Zemmouri, “Linewidth narrowing in Brillouin lasers: theoretical analysis,” Phys. Rev. A 62(2), 023803 (2000).
[CrossRef]

Derosier, R. M.

R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Spontaneous Brillouin scattering for single-mode fiber characterization,” Electron. Lett. 22, 1101–1113 (1986).

DiGiovanni, D. J.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84(1), 19–21 (2004).
[CrossRef]

DiMarcello, F. V.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84(1), 19–21 (2004).
[CrossRef]

Dragic, P. D.

P. D. Dragic, “Brillouin spectroscopy of Nd-Ge co-doped silica fibers,” J. Non-Cryst. Solids 355(7), 403–413 (2009).
[CrossRef]

P. D. Dragic, “Novel dual-Brillouin-frequency optical fiber for distributed temperature sensing,” Proc. SPIE 7197, 719710 (2009).
[CrossRef]

Ehrenfels, R.

D. Tielbürger, R. Merz, R. Ehrenfels, and S. Hunklinger, “Thermally activated relaxation processes in vitreous silica: An investigation by Brillouin scattering at high pressures,” Phys. Rev. B Condens. Matter 45(6), 2750–2760 (1992).
[CrossRef] [PubMed]

Farahi, F.

D. Culverhouse, F. Farahi, C. N. Pannell, and D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25(14), 913–915 (1989).
[CrossRef]

Fleming, J. W.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84(1), 19–21 (2004).
[CrossRef]

Gauthier, D. J.

Gross, T. M.

T. M. Gross and M. Tomozawa, “Fictive temperature of GeO2 glass: its determination by IR method and its effects on density and refractive index,” J. Non-Cryst. Solids 353(52-54), 4762–4766 (2007).
[CrossRef]

He, Z.

W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett. 19(18), 1389–1391 (2007).
[CrossRef]

Hertling, J.

J. Hertling, S. Baeßler, S. Rau, G. Kasper, and S. Hunklinger, “Internal friction and hypersonic velocity in vitreous germania under high pressure,” J. Non-Cryst. Solids 226(1-2), 129–137 (1998).
[CrossRef]

Horiguchi, T.

K. Shimizu, T. Horiguchi, and Y. Koyamada, “Measurement of distributed strain and temperature in a branched optical fiber network by using Brillouin OTDR,” Proc. SPIE 2360, 142–145 (1994).
[CrossRef]

Hotate, K.

W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett. 19(18), 1389–1391 (2007).
[CrossRef]

Hunklinger, S.

J. Hertling, S. Baeßler, S. Rau, G. Kasper, and S. Hunklinger, “Internal friction and hypersonic velocity in vitreous germania under high pressure,” J. Non-Cryst. Solids 226(1-2), 129–137 (1998).
[CrossRef]

D. Tielbürger, R. Merz, R. Ehrenfels, and S. Hunklinger, “Thermally activated relaxation processes in vitreous silica: An investigation by Brillouin scattering at high pressures,” Phys. Rev. B Condens. Matter 45(6), 2750–2760 (1992).
[CrossRef] [PubMed]

Jackson, D. A.

D. Culverhouse, F. Farahi, C. N. Pannell, and D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25(14), 913–915 (1989).
[CrossRef]

Jasapara, J.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84(1), 19–21 (2004).
[CrossRef]

Jen, C.-K.

C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76(3), 712–716 (1993).
[CrossRef]

Kaiser, W.

D. Pohl, M. Maier, and W. Kaiser, “Transient and steady-state gain in stimulated Brillouin amplifiers,” IEEE J. Quantum Electron. 4(5), 320–321 (1968).
[CrossRef]

Kasper, G.

J. Hertling, S. Baeßler, S. Rau, G. Kasper, and S. Hunklinger, “Internal friction and hypersonic velocity in vitreous germania under high pressure,” J. Non-Cryst. Solids 226(1-2), 129–137 (1998).
[CrossRef]

Kieffer, J.

J. E. Masnik, J. Kieffer, and J. D. Bass, “The complex mechanical modulus as a structural probe: the case of alkali borate liquids and glasses,” J. Chem. Phys. 103(23), 9907–9917 (1995).
[CrossRef]

J. Kieffer, “Mechanical degradation and viscous dissipation in B2O3.,” Phys. Rev. B Condens. Matter 50(1), 17–29 (1994).
[CrossRef] [PubMed]

J. E. Masnik, J. Kieffer, and J. D. Bass, “Structural relaxations in alkali silicate systems by Brillouin light scattering,” J. Am. Ceram. Soc. 76(12), 3073–3080 (1993).
[CrossRef]

Koyamada, Y.

K. Shimizu, T. Horiguchi, and Y. Koyamada, “Measurement of distributed strain and temperature in a branched optical fiber network by using Brillouin OTDR,” Proc. SPIE 2360, 142–145 (1994).
[CrossRef]

Krischer, C.

C. Krischer, “Optical measurements of ultrasonic attenuation and reflection losses in fused silica,” J. Acoust. Soc. Am. 48(5B), 1086–1092 (1970).
[CrossRef]

Kushibiki, J.

C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76(3), 712–716 (1993).
[CrossRef]

Le Floch, S.

S. Le Floch and P. Cambon, “Study of Brillouin gain spectrum in standard single-mode optical fiber at low temperatures (1.4-370K) and high hydrostatic pressures (1-250 bars),” Opt. Commun. 219(1-6), 395–410 (2003).
[CrossRef]

Lines, M. E.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84(1), 19–21 (2004).
[CrossRef]

Maier, M.

D. Pohl, M. Maier, and W. Kaiser, “Transient and steady-state gain in stimulated Brillouin amplifiers,” IEEE J. Quantum Electron. 4(5), 320–321 (1968).
[CrossRef]

Masnik, J. E.

J. E. Masnik, J. Kieffer, and J. D. Bass, “The complex mechanical modulus as a structural probe: the case of alkali borate liquids and glasses,” J. Chem. Phys. 103(23), 9907–9917 (1995).
[CrossRef]

J. E. Masnik, J. Kieffer, and J. D. Bass, “Structural relaxations in alkali silicate systems by Brillouin light scattering,” J. Am. Ceram. Soc. 76(12), 3073–3080 (1993).
[CrossRef]

Merz, R.

D. Tielbürger, R. Merz, R. Ehrenfels, and S. Hunklinger, “Thermally activated relaxation processes in vitreous silica: An investigation by Brillouin scattering at high pressures,” Phys. Rev. B Condens. Matter 45(6), 2750–2760 (1992).
[CrossRef] [PubMed]

Monberg, E. M.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84(1), 19–21 (2004).
[CrossRef]

Narum, P.

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[CrossRef] [PubMed]

Neron, C.

C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76(3), 712–716 (1993).
[CrossRef]

Niklès, M.

M. Niklès, L. Thévenaz, and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[CrossRef]

Okamoto, K.

Pannell, C. N.

D. Culverhouse, F. Farahi, C. N. Pannell, and D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25(14), 913–915 (1989).
[CrossRef]

Pine, A. S.

A. S. Pine, “Brillouin scattering study of acoustic attenuation in fused quartz,” Phys. Rev. 185(3), 1187–1193 (1969).
[CrossRef]

Pohl, D.

D. Pohl, M. Maier, and W. Kaiser, “Transient and steady-state gain in stimulated Brillouin amplifiers,” IEEE J. Quantum Electron. 4(5), 320–321 (1968).
[CrossRef]

Randoux, S.

A. Debut, S. Randoux, and J. Zemmouri, “Linewidth narrowing in Brillouin lasers: theoretical analysis,” Phys. Rev. A 62(2), 023803 (2000).
[CrossRef]

Rau, S.

J. Hertling, S. Baeßler, S. Rau, G. Kasper, and S. Hunklinger, “Internal friction and hypersonic velocity in vitreous germania under high pressure,” J. Non-Cryst. Solids 226(1-2), 129–137 (1998).
[CrossRef]

Reed, W. A.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84(1), 19–21 (2004).
[CrossRef]

Robert, P.

M. Niklès, L. Thévenaz, and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[CrossRef]

Rzaewski, K.

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[CrossRef] [PubMed]

Shang, A.

C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76(3), 712–716 (1993).
[CrossRef]

Shibata, N.

Shimizu, K.

K. Shimizu, T. Horiguchi, and Y. Koyamada, “Measurement of distributed strain and temperature in a branched optical fiber network by using Brillouin OTDR,” Proc. SPIE 2360, 142–145 (1994).
[CrossRef]

Smith, R. G.

Thévenaz, L.

M. Niklès, L. Thévenaz, and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[CrossRef]

Tielbürger, D.

D. Tielbürger, R. Merz, R. Ehrenfels, and S. Hunklinger, “Thermally activated relaxation processes in vitreous silica: An investigation by Brillouin scattering at high pressures,” Phys. Rev. B Condens. Matter 45(6), 2750–2760 (1992).
[CrossRef] [PubMed]

Tkach, R. W.

R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Spontaneous Brillouin scattering for single-mode fiber characterization,” Electron. Lett. 22, 1101–1113 (1986).

Tomozawa, M.

T. M. Gross and M. Tomozawa, “Fictive temperature of GeO2 glass: its determination by IR method and its effects on density and refractive index,” J. Non-Cryst. Solids 353(52-54), 4762–4766 (2007).
[CrossRef]

Willner, A. E.

Wisk, P.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84(1), 19–21 (2004).
[CrossRef]

Yablon, A. D.

W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett. 19(18), 1389–1391 (2007).
[CrossRef]

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84(1), 19–21 (2004).
[CrossRef]

Yan, M. F.

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84(1), 19–21 (2004).
[CrossRef]

Zemmouri, J.

A. Debut, S. Randoux, and J. Zemmouri, “Linewidth narrowing in Brillouin lasers: theoretical analysis,” Phys. Rev. A 62(2), 023803 (2000).
[CrossRef]

Zhang, L.

Zhu, Z.

Zou, W.

W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett. 19(18), 1389–1391 (2007).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. D. Yablon, M. F. Yan, P. Wisk, F. V. DiMarcello, J. W. Fleming, W. A. Reed, E. M. Monberg, D. J. DiGiovanni, J. Jasapara, and M. E. Lines, “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett. 84(1), 19–21 (2004).
[CrossRef]

Electron. Lett. (2)

R. W. Tkach, A. R. Chraplyvy, and R. M. Derosier, “Spontaneous Brillouin scattering for single-mode fiber characterization,” Electron. Lett. 22, 1101–1113 (1986).

D. Culverhouse, F. Farahi, C. N. Pannell, and D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electron. Lett. 25(14), 913–915 (1989).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Pohl, M. Maier, and W. Kaiser, “Transient and steady-state gain in stimulated Brillouin amplifiers,” IEEE J. Quantum Electron. 4(5), 320–321 (1968).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

W. Zou, Z. He, A. D. Yablon, and K. Hotate, “Dependence of Brillouin frequency shift in optical fibers on draw-induced residual elastic and inelastic strains,” IEEE Photon. Technol. Lett. 19(18), 1389–1391 (2007).
[CrossRef]

J. Acoust. Soc. Am. (1)

C. Krischer, “Optical measurements of ultrasonic attenuation and reflection losses in fused silica,” J. Acoust. Soc. Am. 48(5B), 1086–1092 (1970).
[CrossRef]

J. Am. Ceram. Soc. (3)

C.-K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, “Acoustic characterization of silica glasses,” J. Am. Ceram. Soc. 76(3), 712–716 (1993).
[CrossRef]

J. E. Masnik, J. Kieffer, and J. D. Bass, “Structural relaxations in alkali silicate systems by Brillouin light scattering,” J. Am. Ceram. Soc. 76(12), 3073–3080 (1993).
[CrossRef]

O. L. Anderson and H. E. Bömmel, “Ultrasonic absorption in fused silica at low temperatures and high frequencies,” J. Am. Ceram. Soc. 38(4), 125–131 (1955).
[CrossRef]

J. Chem. Phys. (1)

J. E. Masnik, J. Kieffer, and J. D. Bass, “The complex mechanical modulus as a structural probe: the case of alkali borate liquids and glasses,” J. Chem. Phys. 103(23), 9907–9917 (1995).
[CrossRef]

J. Lightwave Technol. (2)

Z. Zhu, M. D. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “Broadband SBS slow light in an optical fiber,” J. Lightwave Technol. 25(1), 201–206 (2007).
[CrossRef]

M. Niklès, L. Thévenaz, and P. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[CrossRef]

J. Non-Cryst. Solids (3)

J. Hertling, S. Baeßler, S. Rau, G. Kasper, and S. Hunklinger, “Internal friction and hypersonic velocity in vitreous germania under high pressure,” J. Non-Cryst. Solids 226(1-2), 129–137 (1998).
[CrossRef]

T. M. Gross and M. Tomozawa, “Fictive temperature of GeO2 glass: its determination by IR method and its effects on density and refractive index,” J. Non-Cryst. Solids 353(52-54), 4762–4766 (2007).
[CrossRef]

P. D. Dragic, “Brillouin spectroscopy of Nd-Ge co-doped silica fibers,” J. Non-Cryst. Solids 355(7), 403–413 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

S. Le Floch and P. Cambon, “Study of Brillouin gain spectrum in standard single-mode optical fiber at low temperatures (1.4-370K) and high hydrostatic pressures (1-250 bars),” Opt. Commun. 219(1-6), 395–410 (2003).
[CrossRef]

Phys. Rev. (1)

A. S. Pine, “Brillouin scattering study of acoustic attenuation in fused quartz,” Phys. Rev. 185(3), 1187–1193 (1969).
[CrossRef]

Phys. Rev. A (2)

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[CrossRef] [PubMed]

A. Debut, S. Randoux, and J. Zemmouri, “Linewidth narrowing in Brillouin lasers: theoretical analysis,” Phys. Rev. A 62(2), 023803 (2000).
[CrossRef]

Phys. Rev. B Condens. Matter (2)

D. Tielbürger, R. Merz, R. Ehrenfels, and S. Hunklinger, “Thermally activated relaxation processes in vitreous silica: An investigation by Brillouin scattering at high pressures,” Phys. Rev. B Condens. Matter 45(6), 2750–2760 (1992).
[CrossRef] [PubMed]

J. Kieffer, “Mechanical degradation and viscous dissipation in B2O3.,” Phys. Rev. B Condens. Matter 50(1), 17–29 (1994).
[CrossRef] [PubMed]

Proc. SPIE (2)

P. D. Dragic, “Novel dual-Brillouin-frequency optical fiber for distributed temperature sensing,” Proc. SPIE 7197, 719710 (2009).
[CrossRef]

K. Shimizu, T. Horiguchi, and Y. Koyamada, “Measurement of distributed strain and temperature in a branched optical fiber network by using Brillouin OTDR,” Proc. SPIE 2360, 142–145 (1994).
[CrossRef]

Other (4)

P. D. Dragic, C.-H. Liu, G. C. Papen, and A. Galvanauskas, “Optical fiber with an acoustic guiding layer for stimulated Brillouin scattering suppression,” in Conference on Lasers and Electro-Optics/Quantum Electronics and laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper CTHZ3.

M.-J. Li, X. Chen, J. Wang, A. B. Ruffin, D. T. Walton, S. Li, A. Nolan, S. Gray, and L. A. Zenteno, “Fiber designs for reducing stimulated Brillouin scattering,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OTuA4.

C. Headley, J. B. Clayton, W. A. Reed, L. Eskildsen, and P. B. Hansen, “Technique for obtaining a 2.5 dB increase in the stimulated Brillouin scattering threshold of Ge-doped fibers by varying fiber draw tension,” in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 1997) paper WL25.

G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Experimental apparatus for measurement of the Brillouin spectrum at 1064 nm. A narrow linewidth YAG laser operating at 1064 nm is boosted and passed through a circulator to the test fiber. The Stokes’ signal and local oscillator signal are then preamplified before being heterodyned with a fast detector.

Fig. 2
Fig. 2

a) Available YDFA#2 power for the Brillouin gain measurements and b) Gain vs. signal power for the heterodyne optical preamplifier showing the region of small signal gain.

Fig. 3
Fig. 3

A plot of the measured RIPs of SMF-28TM (dashed line) and Fiber 4 (solid line). Both fibers have a similar central dip. Also shown is a plot of the L01 acoustic mode (Fiber 4) at 1534 nm (slightly wider in the central region) and 1064 nm. Their amplitudes were adjusted for visual clarity with respect to the RIPs.

Fig. 4
Fig. 4

Typical spectrum obtained at 1534 nm and 1064 nm (Fiber 4). Several acoustic modes are observed including peaks due to the measurement apparatus (circulator). The best fit to the fundamental mode is also shown (dashed line) to make the HOAMs more obvious.

Fig. 5
Fig. 5

Spectra of SMF-28TM obtained at 1534 nm and 1064 nm. Some HOAMs are visible. The best fit to the fundamental mode is also shown (dashed line).

Fig. 6
Fig. 6

A plot of the ratio of ΔνB at 1064 nm to ΔνB at 1534 nm versus the draw temperatures of Fibers 1, 2, 3, and 4.

Fig. 7
Fig. 7

The reproduced curve from [11] of the loss modulus M” vs. Temperature at 514.5 nm in pure B2O3. There are three dissipation mechanisms affecting the resulting aggregate curve (orange): non-planar BO3 distortions (blue), impurity diffusion (green), and network disintegration (red).

Fig. 8
Fig. 8

Extrapolated loss modulus vs. temperature at 1534 nm (solid line) and at 1064 nm (dashed line) including the three relaxation mechanisms.

Fig. 9
Fig. 9

Calculated Brillouin spectral width vs. temperature for pure bulk boric oxide at three wavelengths.

Fig. 10
Fig. 10

Brillouin spectral width vs. fiber temperature for Fiber 4 at 1534 nm. We see that the spectral width increases with increasing temperature at higher temperatures.

Fig. 11
Fig. 11

The ratio of the spectral width at 1064nm to 1534nm for pure B2O3.

Fig. 12
Fig. 12

(a) The ratio of the spectral width at 1064nm to 1534nm and (b) the spectral width of 1064nm for the pure silica simulation.

Tables (1)

Tables Icon

Table 1 Fitted spectral widths and measured Stokes’ shifts for the various fibers at 1534 nm and 1064 nm.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

q = 2 n λ o sin ( θ / 2 ) = 2 n λ o = 1 λ a = ω V a .
Δ ω B = q 2 η ( ω ) ρ o = ( 2 n λ o ) 2 η ( ω ) ρ o .
η ( ω ) = M ω = M 2 τ 1 + ( ω τ ) 2 .
τ = τ o e E A k T .
ν ( ω ) = η ( ω ) ρ o .
ν ( ω ) = η ( ω ) ρ o = M ρ o ω = M 2 ρ o τ 1 + ( ω τ ) 2
ξ = ν ( ω ) ω = η ( ω ) ω ρ o = M ρ o = M 2 ρ o ω τ 1 + ( ω τ ) 2 = M 2 ρ o ω τ 0 e E A k T 1 + ( ω τ o e E A k T ) 2 .
ξ = ν ( ω ) ω = η ( ω ) ω ρ o = M ρ o = n = 1 3 g n M 2 ρ o ω τ 0 , n e E A , n k T 1 + ( ω τ o , n e E A , n k T ) 2 .
Δ ω B = ( 2 n λ o ) 2 η ( ω ) ρ o = ( ω V a ) 2 n = 1 3 V 0 , n ρ o τ 0 , n e E A , n k T 1 + ( ω τ o , n e E A , n k T ) 2 .

Metrics