Abstract

We report an endlessly single mode, fiber-optic confocal microscope, based on a large mode area photonic crystal fiber. The microscope confines a very broad spectral range of excitation and emission wavelengths to a single spatial mode in the fiber. Single-mode operation over an optical octave is feasible. At a magnification of 10 and λ = 900 nm, its resolution was measured to be 1.0 μm (lateral) and 2.5 μm (axial). The microscope’s use is demonstrated by imaging single photons emitted by individual InAs quantum dots in a pillar microcavity.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pawley, Handbook of Biological Confocal Microscopy, Third Edition, (Springer, New York 2005).
  2. C. W. Hoheisel, W. Jacobsen, B. Lüttge, and W. Weiner, “Confocal microscopy: applications in materials science,” Macromol. Mater. Eng. 286(11), 663–668 (2001).
    [CrossRef]
  3. A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics 1(4), 215–223 (2007).
    [CrossRef]
  4. M. Oxborrow and A. G. Sinclair, “Single-photon sources,” Contemp. Phys. 46(3), 173–206 (2005).
    [CrossRef]
  5. C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86(8), 1502–1505 (2001).
    [CrossRef] [PubMed]
  6. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85(2), 290–293 (2000).
    [CrossRef] [PubMed]
  7. M. Minsky, “Microscopy Apparatus”, U.S. patent 3,013,467 (1961).
  8. M. R. Harris, “Scanning confocal microscope including a single fiber for transmitting light to and receiving light from an object”, U.S. patent 5,120,953 (1992).
  9. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [CrossRef] [PubMed]
  10. K. Shi, P. Li, S. Yin, and Z. Liu, “Chromatic confocal microscopy using supercontinuum light,” Opt. Express 12(10), 2096–2101 (2004).
    [CrossRef] [PubMed]
  11. A. R. Rouse and A. F. Gmitro, “Multispectral imaging with a confocal microendoscope,” Opt. Lett. 25(23), 1708–1710 (2000).
    [CrossRef]
  12. N. Uzunbajakava and C. Otto, “Combined Raman and continuous-wave-excited two-photon fluorescence cell imaging,” Opt. Lett. 28(21), 2073–2075 (2003).
    [CrossRef] [PubMed]
  13. A. M. Gigler, A. J. Huber, M. Bauer, A. Ziegler, R. Hillenbrand, and R. W. Stark, “Nanoscale residual stress-field mapping around nanoindents in SiC by IR s-SNOM and confocal Raman microscopy,” Opt Express 17(25), 22351–22357 (2009).
    [CrossRef]
  14. T. Gaebel, I. Popa, A. Gruber, M. Domhan, F. Jelezko, and J. Wrachtrup, “Stable single-photon source in the near infrared,” N. J. Phys. 6, 98 (2004).
    [CrossRef]
  15. C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Single-photon generation with InAs quantum dots,” N. J. Phys. 6, 89 (2004).
    [CrossRef]
  16. A. J. Bennett, D. C. Unitt, P. Atkinson, D. A. Ritchie, and A. J. Shields, “High performance single photon sources from photolithographically defined pillar microcavities,” Opt. Express 13(1), 50–55 (2005).
    [CrossRef] [PubMed]
  17. T. Aichele, V. Zwiller, and O. Benson, “Visible single-photon generation from semiconductor quantum dots,” N. J. Phys. 6, 90 (2004).
    [CrossRef]
  18. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997).
    [CrossRef] [PubMed]
  19. N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg, A. Petersson, and H. R. Simonsen, “Improved large-mode-area endlessly single-mode photonic crystal fibers,” Opt. Lett. 28(6), 393–395 (2003).
    [CrossRef] [PubMed]
  20. W. Denk, D. W. Piston, and W. W. Webb, “Multi-photon molecular excitation in laser-scanning microscopy,” in Handbook of Biological Confocal Microscopy, Third Edition, J.B. Pawley, ed. (Springer, New York 2005).
  21. F. Helmchen, D. W. Tank, and W. Denk, “Enhanced two-photon excitation through optical fiber by single-mode propagation in a large core,” Appl. Opt. 41(15), 2930–2934 (2002).
    [CrossRef] [PubMed]
  22. D. G. Ouzounov, K. D. Moll, M. A. Foster, W. R. Zipfel, W. W. Webb, and A. L. Gaeta, “Delivery of nanojoule femtosecond pulses through large-core microstructured fibers,” Opt. Lett. 27(17), 1513–1515 (2002).
    [CrossRef]
  23. K. Carlson Maitland, H.-J. Shin, H. Ra, D. Lee, O. Solgaard, and R. Richards-Kortum, “Single fiber confocal microscope with a two-axis gimbaled MEMS scanner for cellular imaging,” Opt. Exp. 14, 8604–8612 (2006).
  24. J. C. Baggett, T. M. Monro, K. Furusawa, V. Finazzi, and D. J. Richardson, “Understanding bending losses in holey optical fibers,” Opt. Commun. 227, 317–335 (2003).
    [CrossRef]
  25. A. Högele, S. Seidl, M. Kroner, K. Karrai, C. Schulhauser, O. Sqalli, J. Scrimgeour, and R. J. Warburton, “Fiber-based confocal microscope for cryogenic spectroscopy,” Rev. Sci. Instrum. 79(2), 023709 (2008).
    [CrossRef] [PubMed]
  26. M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
    [CrossRef] [PubMed]
  27. P. Stavrinou, Department of Physics, Imperial College London, London SW7 2AZ (personal communication, 2008).
  28. R. P. Mirin, “Photon antibunching at high temperature from a single InGaAs/GaAs quantum dot,” Appl. Phys. Lett. 84(8), 1260–1262 (2004).
    [CrossRef]
  29. J. J. Finley, A. D. Ashmore, A. Lemaître, D. J. Mowbray, M. S. Skolnick, I. E. Itskevich, P. A. Maksym, M. Hopkinson, and T. F. Krauss, “Charged and neutral exciton complexes in individual self-assembled In(Ga)As quantum dots,” Phys. Rev. B 63(7), 073307 (2001).
    [CrossRef]
  30. C. Becher, A. Kiraz, P. Michler, A. Imamoglu, W. V. Schoenfeld, P. M. Petroff, L. D. Zhang, and E. Hu, “Nonclassical radiation from a single self-assembled InAs quantum dot,” Phys. Rev. B 63(12), 121312 (2001).
    [CrossRef]

2009 (1)

A. M. Gigler, A. J. Huber, M. Bauer, A. Ziegler, R. Hillenbrand, and R. W. Stark, “Nanoscale residual stress-field mapping around nanoindents in SiC by IR s-SNOM and confocal Raman microscopy,” Opt Express 17(25), 22351–22357 (2009).
[CrossRef]

2008 (1)

A. Högele, S. Seidl, M. Kroner, K. Karrai, C. Schulhauser, O. Sqalli, J. Scrimgeour, and R. J. Warburton, “Fiber-based confocal microscope for cryogenic spectroscopy,” Rev. Sci. Instrum. 79(2), 023709 (2008).
[CrossRef] [PubMed]

2007 (1)

A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics 1(4), 215–223 (2007).
[CrossRef]

2005 (2)

2004 (5)

K. Shi, P. Li, S. Yin, and Z. Liu, “Chromatic confocal microscopy using supercontinuum light,” Opt. Express 12(10), 2096–2101 (2004).
[CrossRef] [PubMed]

T. Gaebel, I. Popa, A. Gruber, M. Domhan, F. Jelezko, and J. Wrachtrup, “Stable single-photon source in the near infrared,” N. J. Phys. 6, 98 (2004).
[CrossRef]

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Single-photon generation with InAs quantum dots,” N. J. Phys. 6, 89 (2004).
[CrossRef]

T. Aichele, V. Zwiller, and O. Benson, “Visible single-photon generation from semiconductor quantum dots,” N. J. Phys. 6, 90 (2004).
[CrossRef]

R. P. Mirin, “Photon antibunching at high temperature from a single InGaAs/GaAs quantum dot,” Appl. Phys. Lett. 84(8), 1260–1262 (2004).
[CrossRef]

2003 (3)

2002 (3)

2001 (4)

C. W. Hoheisel, W. Jacobsen, B. Lüttge, and W. Weiner, “Confocal microscopy: applications in materials science,” Macromol. Mater. Eng. 286(11), 663–668 (2001).
[CrossRef]

J. J. Finley, A. D. Ashmore, A. Lemaître, D. J. Mowbray, M. S. Skolnick, I. E. Itskevich, P. A. Maksym, M. Hopkinson, and T. F. Krauss, “Charged and neutral exciton complexes in individual self-assembled In(Ga)As quantum dots,” Phys. Rev. B 63(7), 073307 (2001).
[CrossRef]

C. Becher, A. Kiraz, P. Michler, A. Imamoglu, W. V. Schoenfeld, P. M. Petroff, L. D. Zhang, and E. Hu, “Nonclassical radiation from a single self-assembled InAs quantum dot,” Phys. Rev. B 63(12), 121312 (2001).
[CrossRef]

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86(8), 1502–1505 (2001).
[CrossRef] [PubMed]

2000 (2)

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85(2), 290–293 (2000).
[CrossRef] [PubMed]

A. R. Rouse and A. F. Gmitro, “Multispectral imaging with a confocal microendoscope,” Opt. Lett. 25(23), 1708–1710 (2000).
[CrossRef]

1997 (1)

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Aichele, T.

T. Aichele, V. Zwiller, and O. Benson, “Visible single-photon generation from semiconductor quantum dots,” N. J. Phys. 6, 90 (2004).
[CrossRef]

Ashmore, A. D.

J. J. Finley, A. D. Ashmore, A. Lemaître, D. J. Mowbray, M. S. Skolnick, I. E. Itskevich, P. A. Maksym, M. Hopkinson, and T. F. Krauss, “Charged and neutral exciton complexes in individual self-assembled In(Ga)As quantum dots,” Phys. Rev. B 63(7), 073307 (2001).
[CrossRef]

Atkinson, P.

Baggett, J. C.

J. C. Baggett, T. M. Monro, K. Furusawa, V. Finazzi, and D. J. Richardson, “Understanding bending losses in holey optical fibers,” Opt. Commun. 227, 317–335 (2003).
[CrossRef]

Bauer, M.

A. M. Gigler, A. J. Huber, M. Bauer, A. Ziegler, R. Hillenbrand, and R. W. Stark, “Nanoscale residual stress-field mapping around nanoindents in SiC by IR s-SNOM and confocal Raman microscopy,” Opt Express 17(25), 22351–22357 (2009).
[CrossRef]

Becher, C.

C. Becher, A. Kiraz, P. Michler, A. Imamoglu, W. V. Schoenfeld, P. M. Petroff, L. D. Zhang, and E. Hu, “Nonclassical radiation from a single self-assembled InAs quantum dot,” Phys. Rev. B 63(12), 121312 (2001).
[CrossRef]

Bennett, A. J.

Benson, O.

T. Aichele, V. Zwiller, and O. Benson, “Visible single-photon generation from semiconductor quantum dots,” N. J. Phys. 6, 90 (2004).
[CrossRef]

Birks, T. A.

Carlson Maitland, K.

K. Carlson Maitland, H.-J. Shin, H. Ra, D. Lee, O. Solgaard, and R. Richards-Kortum, “Single fiber confocal microscope with a two-axis gimbaled MEMS scanner for cellular imaging,” Opt. Exp. 14, 8604–8612 (2006).

Dale, Y.

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86(8), 1502–1505 (2001).
[CrossRef] [PubMed]

Denk, W.

Domhan, M.

T. Gaebel, I. Popa, A. Gruber, M. Domhan, F. Jelezko, and J. Wrachtrup, “Stable single-photon source in the near infrared,” N. J. Phys. 6, 98 (2004).
[CrossRef]

Fattal, D.

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Single-photon generation with InAs quantum dots,” N. J. Phys. 6, 89 (2004).
[CrossRef]

Finazzi, V.

J. C. Baggett, T. M. Monro, K. Furusawa, V. Finazzi, and D. J. Richardson, “Understanding bending losses in holey optical fibers,” Opt. Commun. 227, 317–335 (2003).
[CrossRef]

Finley, J. J.

J. J. Finley, A. D. Ashmore, A. Lemaître, D. J. Mowbray, M. S. Skolnick, I. E. Itskevich, P. A. Maksym, M. Hopkinson, and T. F. Krauss, “Charged and neutral exciton complexes in individual self-assembled In(Ga)As quantum dots,” Phys. Rev. B 63(7), 073307 (2001).
[CrossRef]

Folkenberg, J. R.

Foster, M. A.

Furusawa, K.

J. C. Baggett, T. M. Monro, K. Furusawa, V. Finazzi, and D. J. Richardson, “Understanding bending losses in holey optical fibers,” Opt. Commun. 227, 317–335 (2003).
[CrossRef]

Gaebel, T.

T. Gaebel, I. Popa, A. Gruber, M. Domhan, F. Jelezko, and J. Wrachtrup, “Stable single-photon source in the near infrared,” N. J. Phys. 6, 98 (2004).
[CrossRef]

Gaeta, A. L.

Gigler, A. M.

A. M. Gigler, A. J. Huber, M. Bauer, A. Ziegler, R. Hillenbrand, and R. W. Stark, “Nanoscale residual stress-field mapping around nanoindents in SiC by IR s-SNOM and confocal Raman microscopy,” Opt Express 17(25), 22351–22357 (2009).
[CrossRef]

Gmitro, A. F.

Gruber, A.

T. Gaebel, I. Popa, A. Gruber, M. Domhan, F. Jelezko, and J. Wrachtrup, “Stable single-photon source in the near infrared,” N. J. Phys. 6, 98 (2004).
[CrossRef]

Helmchen, F.

Hillenbrand, R.

A. M. Gigler, A. J. Huber, M. Bauer, A. Ziegler, R. Hillenbrand, and R. W. Stark, “Nanoscale residual stress-field mapping around nanoindents in SiC by IR s-SNOM and confocal Raman microscopy,” Opt Express 17(25), 22351–22357 (2009).
[CrossRef]

Högele, A.

A. Högele, S. Seidl, M. Kroner, K. Karrai, C. Schulhauser, O. Sqalli, J. Scrimgeour, and R. J. Warburton, “Fiber-based confocal microscope for cryogenic spectroscopy,” Rev. Sci. Instrum. 79(2), 023709 (2008).
[CrossRef] [PubMed]

Hoheisel, C. W.

C. W. Hoheisel, W. Jacobsen, B. Lüttge, and W. Weiner, “Confocal microscopy: applications in materials science,” Macromol. Mater. Eng. 286(11), 663–668 (2001).
[CrossRef]

Hopkinson, M.

J. J. Finley, A. D. Ashmore, A. Lemaître, D. J. Mowbray, M. S. Skolnick, I. E. Itskevich, P. A. Maksym, M. Hopkinson, and T. F. Krauss, “Charged and neutral exciton complexes in individual self-assembled In(Ga)As quantum dots,” Phys. Rev. B 63(7), 073307 (2001).
[CrossRef]

Hu, E.

C. Becher, A. Kiraz, P. Michler, A. Imamoglu, W. V. Schoenfeld, P. M. Petroff, L. D. Zhang, and E. Hu, “Nonclassical radiation from a single self-assembled InAs quantum dot,” Phys. Rev. B 63(12), 121312 (2001).
[CrossRef]

Huber, A. J.

A. M. Gigler, A. J. Huber, M. Bauer, A. Ziegler, R. Hillenbrand, and R. W. Stark, “Nanoscale residual stress-field mapping around nanoindents in SiC by IR s-SNOM and confocal Raman microscopy,” Opt Express 17(25), 22351–22357 (2009).
[CrossRef]

Imamoglu, A.

C. Becher, A. Kiraz, P. Michler, A. Imamoglu, W. V. Schoenfeld, P. M. Petroff, L. D. Zhang, and E. Hu, “Nonclassical radiation from a single self-assembled InAs quantum dot,” Phys. Rev. B 63(12), 121312 (2001).
[CrossRef]

Itskevich, I. E.

J. J. Finley, A. D. Ashmore, A. Lemaître, D. J. Mowbray, M. S. Skolnick, I. E. Itskevich, P. A. Maksym, M. Hopkinson, and T. F. Krauss, “Charged and neutral exciton complexes in individual self-assembled In(Ga)As quantum dots,” Phys. Rev. B 63(7), 073307 (2001).
[CrossRef]

Jacobsen, W.

C. W. Hoheisel, W. Jacobsen, B. Lüttge, and W. Weiner, “Confocal microscopy: applications in materials science,” Macromol. Mater. Eng. 286(11), 663–668 (2001).
[CrossRef]

Jelezko, F.

T. Gaebel, I. Popa, A. Gruber, M. Domhan, F. Jelezko, and J. Wrachtrup, “Stable single-photon source in the near infrared,” N. J. Phys. 6, 98 (2004).
[CrossRef]

Karrai, K.

A. Högele, S. Seidl, M. Kroner, K. Karrai, C. Schulhauser, O. Sqalli, J. Scrimgeour, and R. J. Warburton, “Fiber-based confocal microscope for cryogenic spectroscopy,” Rev. Sci. Instrum. 79(2), 023709 (2008).
[CrossRef] [PubMed]

Kiraz, A.

C. Becher, A. Kiraz, P. Michler, A. Imamoglu, W. V. Schoenfeld, P. M. Petroff, L. D. Zhang, and E. Hu, “Nonclassical radiation from a single self-assembled InAs quantum dot,” Phys. Rev. B 63(12), 121312 (2001).
[CrossRef]

Knight, J. C.

Krauss, T. F.

J. J. Finley, A. D. Ashmore, A. Lemaître, D. J. Mowbray, M. S. Skolnick, I. E. Itskevich, P. A. Maksym, M. Hopkinson, and T. F. Krauss, “Charged and neutral exciton complexes in individual self-assembled In(Ga)As quantum dots,” Phys. Rev. B 63(7), 073307 (2001).
[CrossRef]

Kroner, M.

A. Högele, S. Seidl, M. Kroner, K. Karrai, C. Schulhauser, O. Sqalli, J. Scrimgeour, and R. J. Warburton, “Fiber-based confocal microscope for cryogenic spectroscopy,” Rev. Sci. Instrum. 79(2), 023709 (2008).
[CrossRef] [PubMed]

Kurtsiefer, C.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85(2), 290–293 (2000).
[CrossRef] [PubMed]

Lee, D.

K. Carlson Maitland, H.-J. Shin, H. Ra, D. Lee, O. Solgaard, and R. Richards-Kortum, “Single fiber confocal microscope with a two-axis gimbaled MEMS scanner for cellular imaging,” Opt. Exp. 14, 8604–8612 (2006).

Lemaître, A.

J. J. Finley, A. D. Ashmore, A. Lemaître, D. J. Mowbray, M. S. Skolnick, I. E. Itskevich, P. A. Maksym, M. Hopkinson, and T. F. Krauss, “Charged and neutral exciton complexes in individual self-assembled In(Ga)As quantum dots,” Phys. Rev. B 63(7), 073307 (2001).
[CrossRef]

Li, P.

Liu, Z.

Lüttge, B.

C. W. Hoheisel, W. Jacobsen, B. Lüttge, and W. Weiner, “Confocal microscopy: applications in materials science,” Macromol. Mater. Eng. 286(11), 663–668 (2001).
[CrossRef]

Maksym, P. A.

J. J. Finley, A. D. Ashmore, A. Lemaître, D. J. Mowbray, M. S. Skolnick, I. E. Itskevich, P. A. Maksym, M. Hopkinson, and T. F. Krauss, “Charged and neutral exciton complexes in individual self-assembled In(Ga)As quantum dots,” Phys. Rev. B 63(7), 073307 (2001).
[CrossRef]

Mayer, S.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85(2), 290–293 (2000).
[CrossRef] [PubMed]

Michler, P.

C. Becher, A. Kiraz, P. Michler, A. Imamoglu, W. V. Schoenfeld, P. M. Petroff, L. D. Zhang, and E. Hu, “Nonclassical radiation from a single self-assembled InAs quantum dot,” Phys. Rev. B 63(12), 121312 (2001).
[CrossRef]

Mirin, R. P.

R. P. Mirin, “Photon antibunching at high temperature from a single InGaAs/GaAs quantum dot,” Appl. Phys. Lett. 84(8), 1260–1262 (2004).
[CrossRef]

Moll, K. D.

Monro, T. M.

J. C. Baggett, T. M. Monro, K. Furusawa, V. Finazzi, and D. J. Richardson, “Understanding bending losses in holey optical fibers,” Opt. Commun. 227, 317–335 (2003).
[CrossRef]

Mortensen, N. A.

Mowbray, D. J.

J. J. Finley, A. D. Ashmore, A. Lemaître, D. J. Mowbray, M. S. Skolnick, I. E. Itskevich, P. A. Maksym, M. Hopkinson, and T. F. Krauss, “Charged and neutral exciton complexes in individual self-assembled In(Ga)As quantum dots,” Phys. Rev. B 63(7), 073307 (2001).
[CrossRef]

Nielsen, M. D.

Otto, C.

Ouzounov, D. G.

Oxborrow, M.

M. Oxborrow and A. G. Sinclair, “Single-photon sources,” Contemp. Phys. 46(3), 173–206 (2005).
[CrossRef]

Pelton, M.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86(8), 1502–1505 (2001).
[CrossRef] [PubMed]

Petersson, A.

Petroff, P. M.

C. Becher, A. Kiraz, P. Michler, A. Imamoglu, W. V. Schoenfeld, P. M. Petroff, L. D. Zhang, and E. Hu, “Nonclassical radiation from a single self-assembled InAs quantum dot,” Phys. Rev. B 63(12), 121312 (2001).
[CrossRef]

Plant, J.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

Popa, I.

T. Gaebel, I. Popa, A. Gruber, M. Domhan, F. Jelezko, and J. Wrachtrup, “Stable single-photon source in the near infrared,” N. J. Phys. 6, 98 (2004).
[CrossRef]

Ra, H.

K. Carlson Maitland, H.-J. Shin, H. Ra, D. Lee, O. Solgaard, and R. Richards-Kortum, “Single fiber confocal microscope with a two-axis gimbaled MEMS scanner for cellular imaging,” Opt. Exp. 14, 8604–8612 (2006).

Richards-Kortum, R.

K. Carlson Maitland, H.-J. Shin, H. Ra, D. Lee, O. Solgaard, and R. Richards-Kortum, “Single fiber confocal microscope with a two-axis gimbaled MEMS scanner for cellular imaging,” Opt. Exp. 14, 8604–8612 (2006).

Richardson, D. J.

J. C. Baggett, T. M. Monro, K. Furusawa, V. Finazzi, and D. J. Richardson, “Understanding bending losses in holey optical fibers,” Opt. Commun. 227, 317–335 (2003).
[CrossRef]

Ritchie, D. A.

Rouse, A. R.

Russell, P. St. J.

Santori, C.

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Single-photon generation with InAs quantum dots,” N. J. Phys. 6, 89 (2004).
[CrossRef]

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86(8), 1502–1505 (2001).
[CrossRef] [PubMed]

Schoenfeld, W. V.

C. Becher, A. Kiraz, P. Michler, A. Imamoglu, W. V. Schoenfeld, P. M. Petroff, L. D. Zhang, and E. Hu, “Nonclassical radiation from a single self-assembled InAs quantum dot,” Phys. Rev. B 63(12), 121312 (2001).
[CrossRef]

Schulhauser, C.

A. Högele, S. Seidl, M. Kroner, K. Karrai, C. Schulhauser, O. Sqalli, J. Scrimgeour, and R. J. Warburton, “Fiber-based confocal microscope for cryogenic spectroscopy,” Rev. Sci. Instrum. 79(2), 023709 (2008).
[CrossRef] [PubMed]

Scrimgeour, J.

A. Högele, S. Seidl, M. Kroner, K. Karrai, C. Schulhauser, O. Sqalli, J. Scrimgeour, and R. J. Warburton, “Fiber-based confocal microscope for cryogenic spectroscopy,” Rev. Sci. Instrum. 79(2), 023709 (2008).
[CrossRef] [PubMed]

Seidl, S.

A. Högele, S. Seidl, M. Kroner, K. Karrai, C. Schulhauser, O. Sqalli, J. Scrimgeour, and R. J. Warburton, “Fiber-based confocal microscope for cryogenic spectroscopy,” Rev. Sci. Instrum. 79(2), 023709 (2008).
[CrossRef] [PubMed]

Shi, K.

Shields, A. J.

Shin, H.-J.

K. Carlson Maitland, H.-J. Shin, H. Ra, D. Lee, O. Solgaard, and R. Richards-Kortum, “Single fiber confocal microscope with a two-axis gimbaled MEMS scanner for cellular imaging,” Opt. Exp. 14, 8604–8612 (2006).

Simonsen, H. R.

Sinclair, A. G.

M. Oxborrow and A. G. Sinclair, “Single-photon sources,” Contemp. Phys. 46(3), 173–206 (2005).
[CrossRef]

Skolnick, M. S.

J. J. Finley, A. D. Ashmore, A. Lemaître, D. J. Mowbray, M. S. Skolnick, I. E. Itskevich, P. A. Maksym, M. Hopkinson, and T. F. Krauss, “Charged and neutral exciton complexes in individual self-assembled In(Ga)As quantum dots,” Phys. Rev. B 63(7), 073307 (2001).
[CrossRef]

Solgaard, O.

K. Carlson Maitland, H.-J. Shin, H. Ra, D. Lee, O. Solgaard, and R. Richards-Kortum, “Single fiber confocal microscope with a two-axis gimbaled MEMS scanner for cellular imaging,” Opt. Exp. 14, 8604–8612 (2006).

Solomon, G.

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86(8), 1502–1505 (2001).
[CrossRef] [PubMed]

Solomon, G. S.

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Single-photon generation with InAs quantum dots,” N. J. Phys. 6, 89 (2004).
[CrossRef]

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

Sqalli, O.

A. Högele, S. Seidl, M. Kroner, K. Karrai, C. Schulhauser, O. Sqalli, J. Scrimgeour, and R. J. Warburton, “Fiber-based confocal microscope for cryogenic spectroscopy,” Rev. Sci. Instrum. 79(2), 023709 (2008).
[CrossRef] [PubMed]

Stark, R. W.

A. M. Gigler, A. J. Huber, M. Bauer, A. Ziegler, R. Hillenbrand, and R. W. Stark, “Nanoscale residual stress-field mapping around nanoindents in SiC by IR s-SNOM and confocal Raman microscopy,” Opt Express 17(25), 22351–22357 (2009).
[CrossRef]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Tank, D. W.

Unitt, D. C.

Uzunbajakava, N.

Vuckovic, J.

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Single-photon generation with InAs quantum dots,” N. J. Phys. 6, 89 (2004).
[CrossRef]

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

Warburton, R. J.

A. Högele, S. Seidl, M. Kroner, K. Karrai, C. Schulhauser, O. Sqalli, J. Scrimgeour, and R. J. Warburton, “Fiber-based confocal microscope for cryogenic spectroscopy,” Rev. Sci. Instrum. 79(2), 023709 (2008).
[CrossRef] [PubMed]

Webb, W. W.

Weiner, W.

C. W. Hoheisel, W. Jacobsen, B. Lüttge, and W. Weiner, “Confocal microscopy: applications in materials science,” Macromol. Mater. Eng. 286(11), 663–668 (2001).
[CrossRef]

Weinfurter, H.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85(2), 290–293 (2000).
[CrossRef] [PubMed]

Wrachtrup, J.

T. Gaebel, I. Popa, A. Gruber, M. Domhan, F. Jelezko, and J. Wrachtrup, “Stable single-photon source in the near infrared,” N. J. Phys. 6, 98 (2004).
[CrossRef]

Yamamoto, Y.

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Single-photon generation with InAs quantum dots,” N. J. Phys. 6, 89 (2004).
[CrossRef]

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86(8), 1502–1505 (2001).
[CrossRef] [PubMed]

Yin, S.

Zarda, P.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85(2), 290–293 (2000).
[CrossRef] [PubMed]

Zhang, B.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

Zhang, L. D.

C. Becher, A. Kiraz, P. Michler, A. Imamoglu, W. V. Schoenfeld, P. M. Petroff, L. D. Zhang, and E. Hu, “Nonclassical radiation from a single self-assembled InAs quantum dot,” Phys. Rev. B 63(12), 121312 (2001).
[CrossRef]

Ziegler, A.

A. M. Gigler, A. J. Huber, M. Bauer, A. Ziegler, R. Hillenbrand, and R. W. Stark, “Nanoscale residual stress-field mapping around nanoindents in SiC by IR s-SNOM and confocal Raman microscopy,” Opt Express 17(25), 22351–22357 (2009).
[CrossRef]

Zipfel, W. R.

Zwiller, V.

T. Aichele, V. Zwiller, and O. Benson, “Visible single-photon generation from semiconductor quantum dots,” N. J. Phys. 6, 90 (2004).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

R. P. Mirin, “Photon antibunching at high temperature from a single InGaAs/GaAs quantum dot,” Appl. Phys. Lett. 84(8), 1260–1262 (2004).
[CrossRef]

Contemp. Phys. (1)

M. Oxborrow and A. G. Sinclair, “Single-photon sources,” Contemp. Phys. 46(3), 173–206 (2005).
[CrossRef]

Macromol. Mater. Eng. (1)

C. W. Hoheisel, W. Jacobsen, B. Lüttge, and W. Weiner, “Confocal microscopy: applications in materials science,” Macromol. Mater. Eng. 286(11), 663–668 (2001).
[CrossRef]

N. J. Phys. (3)

T. Gaebel, I. Popa, A. Gruber, M. Domhan, F. Jelezko, and J. Wrachtrup, “Stable single-photon source in the near infrared,” N. J. Phys. 6, 98 (2004).
[CrossRef]

C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Single-photon generation with InAs quantum dots,” N. J. Phys. 6, 89 (2004).
[CrossRef]

T. Aichele, V. Zwiller, and O. Benson, “Visible single-photon generation from semiconductor quantum dots,” N. J. Phys. 6, 90 (2004).
[CrossRef]

Nat. Photonics (1)

A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics 1(4), 215–223 (2007).
[CrossRef]

Opt Express (1)

A. M. Gigler, A. J. Huber, M. Bauer, A. Ziegler, R. Hillenbrand, and R. W. Stark, “Nanoscale residual stress-field mapping around nanoindents in SiC by IR s-SNOM and confocal Raman microscopy,” Opt Express 17(25), 22351–22357 (2009).
[CrossRef]

Opt. Commun. (1)

J. C. Baggett, T. M. Monro, K. Furusawa, V. Finazzi, and D. J. Richardson, “Understanding bending losses in holey optical fibers,” Opt. Commun. 227, 317–335 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (5)

Phys. Rev. B (2)

J. J. Finley, A. D. Ashmore, A. Lemaître, D. J. Mowbray, M. S. Skolnick, I. E. Itskevich, P. A. Maksym, M. Hopkinson, and T. F. Krauss, “Charged and neutral exciton complexes in individual self-assembled In(Ga)As quantum dots,” Phys. Rev. B 63(7), 073307 (2001).
[CrossRef]

C. Becher, A. Kiraz, P. Michler, A. Imamoglu, W. V. Schoenfeld, P. M. Petroff, L. D. Zhang, and E. Hu, “Nonclassical radiation from a single self-assembled InAs quantum dot,” Phys. Rev. B 63(12), 121312 (2001).
[CrossRef]

Phys. Rev. Lett. (3)

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86(8), 1502–1505 (2001).
[CrossRef] [PubMed]

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85(2), 290–293 (2000).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

A. Högele, S. Seidl, M. Kroner, K. Karrai, C. Schulhauser, O. Sqalli, J. Scrimgeour, and R. J. Warburton, “Fiber-based confocal microscope for cryogenic spectroscopy,” Rev. Sci. Instrum. 79(2), 023709 (2008).
[CrossRef] [PubMed]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Other (6)

J. B. Pawley, Handbook of Biological Confocal Microscopy, Third Edition, (Springer, New York 2005).

M. Minsky, “Microscopy Apparatus”, U.S. patent 3,013,467 (1961).

M. R. Harris, “Scanning confocal microscope including a single fiber for transmitting light to and receiving light from an object”, U.S. patent 5,120,953 (1992).

P. Stavrinou, Department of Physics, Imperial College London, London SW7 2AZ (personal communication, 2008).

K. Carlson Maitland, H.-J. Shin, H. Ra, D. Lee, O. Solgaard, and R. Richards-Kortum, “Single fiber confocal microscope with a two-axis gimbaled MEMS scanner for cellular imaging,” Opt. Exp. 14, 8604–8612 (2006).

W. Denk, D. W. Piston, and W. W. Webb, “Multi-photon molecular excitation in laser-scanning microscopy,” in Handbook of Biological Confocal Microscopy, Third Edition, J.B. Pawley, ed. (Springer, New York 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

a) Schematic setup of microscope apparatus. Pump laser light is delivered by a single-mode fiber. The microscope imaging head consists of an aspheric objective lens OL (f = 4.5 mm, NA = 0.55) and an achromatic coupling lens AL (f = 45 mm). PCF: photonic crystal fiber. LP: long pass filter. M1, M2, M3: high reflectors. L1, L2, L3, L4: achromatic lenses. An EMCCD (not shown) detects the imaged spectrum on the side exit of the spectrometer. Light filtered by the front exit slit is coupled to a single-mode fiber, and detected using either Hanbury Brown & Twiss or Michelson interferometers. b) Electron microscope image of large mode area PCF. (c) Schematic diagram of quantum dots (QDs) in a semiconductor DBR microcavity. The microscope objective focuses the excitation laser into the sample and the collects the photoluminescence (PL).

Fig. 2
Fig. 2

Measurements of lateral and axial resolution. a) Cross-sectional intensity profile of raster scan image of an illuminated sharp edge. b) Derivative of intensity profile, dI/dx. The fitted Gaussian has a full width (at 1/e2) of 0.95 μm, which quantifies the microscope’s lateral resolution. c) Signal detected when laser light is focused onto a mirror and its axial position is scanned through the focal plane. The signal’s FWHM is 2.5 μm, and is a measure of the axial resolution.

Fig. 3
Fig. 3

a) PL emission spectrum of a single quantum dot resonant with 2 μm diameter microcavity. b) Variation in emitted photon flux with pump power; the linear dependence below saturation indicates that the microcavity is resonant with the exciton transition. c) 2D raster scan of emission from a microcavity containing a single dot. d) Correlation histogram, showing g ( 2 ) ( τ = 0 ) = 0.05 .

Fig. 4
Fig. 4

Characteristic parameters of single photons. a) The decay time tm , determined by measuring g ( 2 ) ( τ ) = 1 a exp ( | τ | / t m ) as a function of pump power. At high pump powers, tm tends to the spontaneous decay time τ s = 420 ps. b) Interference fringe visibility as a function of interferometer path difference; the exponential decay yields the coherence length.

Metrics