Abstract

Broadband emissions at around 1.20 and 1.46 μm wavelengths from thulium (Tm3+)-doped tellurite glasses were observed under 465 nm wavelength excitation. The 1.20 μm emission originates from the Tm3+: 1G43H4 transition, and the associated stimulated peak emission cross-section is calculated to be 0.47 × 10−20 cm2. Population inversion occurs between the 1G4 and 3H4 levels, and a positive gain band from 1.20 to 1.28 μm is achieved at relatively low Tm3+ dopant concentration. Our results suggest that this glass system is promising for optical fiber amplifiers operating at the relatively unexplored low loss 1.20 μm wavelength region.

© 2010 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. A. Thomas, B. I. Shraiman, P. F. Glodis, and M. J. Stephen, “Towards the clarity limit in optical fibre,” Nature 404(6775), 262–264 (2000).
    [CrossRef] [PubMed]
  2. K. Driesen, V. K. Tikhomirov, C. Görller-Walrand, V. D. Rodriguez, and A. B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett. 88(7), 073111 (2006).
    [CrossRef]
  3. V. V. Dvoyrin, O. I. Medvedkov, V. M. Mashinsky, A. A. Umnikov, A. N. Guryanov, and E. M. Dianov, “Optical amplification in 1430-1495 nm range and laser action in Bi-doped fibers,” Opt. Express 16(21), 16971–16976 (2008).
    [CrossRef] [PubMed]
  4. M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express 17(22), 19345–19355 (2009).
    [CrossRef] [PubMed]
  5. M. Y. Sharonov, A. B. Bykov, V. Petricevic, and R. R. Alfano, “Spectroscopic study of optical centers formed in Bi-, Pb-, Sb-, Sn-, Te-, and In-doped germanate glasses,” Opt. Lett. 33(18), 2131–2133 (2008).
    [CrossRef] [PubMed]
  6. E. Bélanger, M. Bernier, D. Faucher, D. Côté, and R. Vallée, “High-power and widely tunable all-fiber Raman laser,” J. Lightwave Technol. 26(12), 1696–1701 (2008).
    [CrossRef]
  7. Z. Yang, L. Luo, and W. Chen, “The 1.23 and 1.47 μm emissions from Tm3+ in chalcogenide glasses,” J. Appl. Phys. 99(7), 076107 (2006).
    [CrossRef]
  8. P. Laperle, A. Chandonnet, and R. Vallee, “Photoinduced absorption in thulium-doped ZBLAN fibers,” Opt. Lett. 20(24), 2484–2486 (1995).
    [CrossRef] [PubMed]
  9. M. Dejneka and B. Samson, “Rare earth-doped fibers for telecommunication applications,” Mater. Res. Soc. Bull. 24, 39–45 (1999).
  10. M. Naftaly, S. Shen, and A. Jha, “Tm3+-doped tellurite glass for a broadband amplifier at 1.47 μm,” Appl. Opt. 39(27), 4979–4984 (2000).
    [CrossRef] [PubMed]
  11. L. Huang, S. Shen, and A. Jha, “Near infrared spectroscopic investigation of Tm3+-Yb3+ co-doped tellurite glasses,” J. Non-Cryst. Solids 345–346, 349–353 (2004).
    [CrossRef]
  12. Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “Tm(3+)/Ho(3+) codoped tellurite fiber laser,” Opt. Lett. 33(11), 1282–1284 (2008).
    [CrossRef] [PubMed]
  13. B. R. Judd, “Optical Absorption Intensities of Rare-Earth Ions,” Phys. Rev. 127(3), 750–761 (1962).
    [CrossRef]
  14. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
    [CrossRef]
  15. B. Zhou, E. Y. B. Pun, H. Lin, D. L. Yang, and L. H. Huang, “Judd-Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses,” J. Appl. Phys. 106(10), 103105 (2009).
    [CrossRef]
  16. Z. Xiao, R. Serna, F. Xu, and C. N. Afonso, “Critical seperation for efficient Tm3+-Tm3+ energy transfer evidenced in nanostructured Tm3+:Al2O3 thin films,” Opt. Lett. 33(6), 608–610 (2008).
    [CrossRef] [PubMed]
  17. K. Ohta, H. Saito, and M. Obara, “Spectroscopic characterization of Tm3+:YVO4 crystal as an efficient diode pumped laser source near 2000 nm,” J. Appl. Phys. 73(7), 3149–3152 (1993).
    [CrossRef]
  18. R. S. Quimby and B. Zheng, “Excited-state absorption measurement technique and application Pr3+-doped fluorozirconate glass,” Appl. Phys. Lett. 60(9), 1055–1057 (1992).
    [CrossRef]
  19. T. Schweizer, B. N. Samson, J. R. Hector, and D. N. Payne, “Infrared emission from holmium doped gallium lanthanum sulphide glass,” Infrared Phys. Technol. 40(4), 329–335 (1999).
    [CrossRef]
  20. D. E. McCumber, “Einstein relations concerning broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
    [CrossRef]
  21. J. Ganem, J. Crawford, P. Schmidt, N. W. Jenkins, and S. R. Bowman, “Thulium cross-relaxation in a low phonon energy crystalline host,” Phys. Rev. B 66(24), 245101 (2002).
    [CrossRef]
  22. T. H. Lee and J. Heo, “1.6 µm emission and gain properties of Ho3+ in selenide and chalcohalide glasses,” J. Appl. Phys. 98(11), 113510 (2005).
    [CrossRef]

2009 (2)

B. Zhou, E. Y. B. Pun, H. Lin, D. L. Yang, and L. H. Huang, “Judd-Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses,” J. Appl. Phys. 106(10), 103105 (2009).
[CrossRef]

M. A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, and D. W. Hewak, “Ultrabroad emission from a bismuth doped chalcogenide glass,” Opt. Express 17(22), 19345–19355 (2009).
[CrossRef] [PubMed]

2008 (5)

2006 (2)

K. Driesen, V. K. Tikhomirov, C. Görller-Walrand, V. D. Rodriguez, and A. B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett. 88(7), 073111 (2006).
[CrossRef]

Z. Yang, L. Luo, and W. Chen, “The 1.23 and 1.47 μm emissions from Tm3+ in chalcogenide glasses,” J. Appl. Phys. 99(7), 076107 (2006).
[CrossRef]

2005 (1)

T. H. Lee and J. Heo, “1.6 µm emission and gain properties of Ho3+ in selenide and chalcohalide glasses,” J. Appl. Phys. 98(11), 113510 (2005).
[CrossRef]

2004 (1)

L. Huang, S. Shen, and A. Jha, “Near infrared spectroscopic investigation of Tm3+-Yb3+ co-doped tellurite glasses,” J. Non-Cryst. Solids 345–346, 349–353 (2004).
[CrossRef]

2002 (1)

J. Ganem, J. Crawford, P. Schmidt, N. W. Jenkins, and S. R. Bowman, “Thulium cross-relaxation in a low phonon energy crystalline host,” Phys. Rev. B 66(24), 245101 (2002).
[CrossRef]

2000 (2)

G. A. Thomas, B. I. Shraiman, P. F. Glodis, and M. J. Stephen, “Towards the clarity limit in optical fibre,” Nature 404(6775), 262–264 (2000).
[CrossRef] [PubMed]

M. Naftaly, S. Shen, and A. Jha, “Tm3+-doped tellurite glass for a broadband amplifier at 1.47 μm,” Appl. Opt. 39(27), 4979–4984 (2000).
[CrossRef] [PubMed]

1999 (2)

M. Dejneka and B. Samson, “Rare earth-doped fibers for telecommunication applications,” Mater. Res. Soc. Bull. 24, 39–45 (1999).

T. Schweizer, B. N. Samson, J. R. Hector, and D. N. Payne, “Infrared emission from holmium doped gallium lanthanum sulphide glass,” Infrared Phys. Technol. 40(4), 329–335 (1999).
[CrossRef]

1995 (1)

1993 (1)

K. Ohta, H. Saito, and M. Obara, “Spectroscopic characterization of Tm3+:YVO4 crystal as an efficient diode pumped laser source near 2000 nm,” J. Appl. Phys. 73(7), 3149–3152 (1993).
[CrossRef]

1992 (1)

R. S. Quimby and B. Zheng, “Excited-state absorption measurement technique and application Pr3+-doped fluorozirconate glass,” Appl. Phys. Lett. 60(9), 1055–1057 (1992).
[CrossRef]

1964 (1)

D. E. McCumber, “Einstein relations concerning broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
[CrossRef]

1962 (2)

B. R. Judd, “Optical Absorption Intensities of Rare-Earth Ions,” Phys. Rev. 127(3), 750–761 (1962).
[CrossRef]

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[CrossRef]

Afonso, C. N.

Akada, T.

Alfano, R. R.

Bélanger, E.

Bernier, M.

Binks, D.

Bowman, S. R.

J. Ganem, J. Crawford, P. Schmidt, N. W. Jenkins, and S. R. Bowman, “Thulium cross-relaxation in a low phonon energy crystalline host,” Phys. Rev. B 66(24), 245101 (2002).
[CrossRef]

Bykov, A. B.

Chandonnet, A.

Chen, W.

Z. Yang, L. Luo, and W. Chen, “The 1.23 and 1.47 μm emissions from Tm3+ in chalcogenide glasses,” J. Appl. Phys. 99(7), 076107 (2006).
[CrossRef]

Côté, D.

Crawford, J.

J. Ganem, J. Crawford, P. Schmidt, N. W. Jenkins, and S. R. Bowman, “Thulium cross-relaxation in a low phonon energy crystalline host,” Phys. Rev. B 66(24), 245101 (2002).
[CrossRef]

Dejneka, M.

M. Dejneka and B. Samson, “Rare earth-doped fibers for telecommunication applications,” Mater. Res. Soc. Bull. 24, 39–45 (1999).

Dianov, E. M.

Driesen, K.

K. Driesen, V. K. Tikhomirov, C. Görller-Walrand, V. D. Rodriguez, and A. B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett. 88(7), 073111 (2006).
[CrossRef]

Dvoyrin, V. V.

Faucher, D.

Ganem, J.

J. Ganem, J. Crawford, P. Schmidt, N. W. Jenkins, and S. R. Bowman, “Thulium cross-relaxation in a low phonon energy crystalline host,” Phys. Rev. B 66(24), 245101 (2002).
[CrossRef]

Glodis, P. F.

G. A. Thomas, B. I. Shraiman, P. F. Glodis, and M. J. Stephen, “Towards the clarity limit in optical fibre,” Nature 404(6775), 262–264 (2000).
[CrossRef] [PubMed]

Görller-Walrand, C.

K. Driesen, V. K. Tikhomirov, C. Görller-Walrand, V. D. Rodriguez, and A. B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett. 88(7), 073111 (2006).
[CrossRef]

Guryanov, A. N.

Hector, J. R.

T. Schweizer, B. N. Samson, J. R. Hector, and D. N. Payne, “Infrared emission from holmium doped gallium lanthanum sulphide glass,” Infrared Phys. Technol. 40(4), 329–335 (1999).
[CrossRef]

Heo, J.

T. H. Lee and J. Heo, “1.6 µm emission and gain properties of Ho3+ in selenide and chalcohalide glasses,” J. Appl. Phys. 98(11), 113510 (2005).
[CrossRef]

Hewak, D. W.

Huang, L.

L. Huang, S. Shen, and A. Jha, “Near infrared spectroscopic investigation of Tm3+-Yb3+ co-doped tellurite glasses,” J. Non-Cryst. Solids 345–346, 349–353 (2004).
[CrossRef]

Huang, L. H.

B. Zhou, E. Y. B. Pun, H. Lin, D. L. Yang, and L. H. Huang, “Judd-Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses,” J. Appl. Phys. 106(10), 103105 (2009).
[CrossRef]

Hughes, M. A.

Jenkins, N. W.

J. Ganem, J. Crawford, P. Schmidt, N. W. Jenkins, and S. R. Bowman, “Thulium cross-relaxation in a low phonon energy crystalline host,” Phys. Rev. B 66(24), 245101 (2002).
[CrossRef]

Jha, A.

Judd, B. R.

B. R. Judd, “Optical Absorption Intensities of Rare-Earth Ions,” Phys. Rev. 127(3), 750–761 (1962).
[CrossRef]

Laperle, P.

Lee, T. H.

T. H. Lee and J. Heo, “1.6 µm emission and gain properties of Ho3+ in selenide and chalcohalide glasses,” J. Appl. Phys. 98(11), 113510 (2005).
[CrossRef]

Lin, H.

B. Zhou, E. Y. B. Pun, H. Lin, D. L. Yang, and L. H. Huang, “Judd-Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses,” J. Appl. Phys. 106(10), 103105 (2009).
[CrossRef]

Lousteau, J.

Luo, L.

Z. Yang, L. Luo, and W. Chen, “The 1.23 and 1.47 μm emissions from Tm3+ in chalcogenide glasses,” J. Appl. Phys. 99(7), 076107 (2006).
[CrossRef]

Mashinsky, V. M.

McCumber, D. E.

D. E. McCumber, “Einstein relations concerning broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
[CrossRef]

Medvedkov, O. I.

Naftaly, M.

Obara, M.

K. Ohta, H. Saito, and M. Obara, “Spectroscopic characterization of Tm3+:YVO4 crystal as an efficient diode pumped laser source near 2000 nm,” J. Appl. Phys. 73(7), 3149–3152 (1993).
[CrossRef]

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[CrossRef]

Ohishi, Y.

Ohta, K.

K. Ohta, H. Saito, and M. Obara, “Spectroscopic characterization of Tm3+:YVO4 crystal as an efficient diode pumped laser source near 2000 nm,” J. Appl. Phys. 73(7), 3149–3152 (1993).
[CrossRef]

Payne, D. N.

T. Schweizer, B. N. Samson, J. R. Hector, and D. N. Payne, “Infrared emission from holmium doped gallium lanthanum sulphide glass,” Infrared Phys. Technol. 40(4), 329–335 (1999).
[CrossRef]

Petricevic, V.

Pun, E. Y. B.

B. Zhou, E. Y. B. Pun, H. Lin, D. L. Yang, and L. H. Huang, “Judd-Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses,” J. Appl. Phys. 106(10), 103105 (2009).
[CrossRef]

Quimby, R. S.

R. S. Quimby and B. Zheng, “Excited-state absorption measurement technique and application Pr3+-doped fluorozirconate glass,” Appl. Phys. Lett. 60(9), 1055–1057 (1992).
[CrossRef]

Richards, B.

Rodriguez, V. D.

K. Driesen, V. K. Tikhomirov, C. Görller-Walrand, V. D. Rodriguez, and A. B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett. 88(7), 073111 (2006).
[CrossRef]

Saito, H.

K. Ohta, H. Saito, and M. Obara, “Spectroscopic characterization of Tm3+:YVO4 crystal as an efficient diode pumped laser source near 2000 nm,” J. Appl. Phys. 73(7), 3149–3152 (1993).
[CrossRef]

Samson, B.

M. Dejneka and B. Samson, “Rare earth-doped fibers for telecommunication applications,” Mater. Res. Soc. Bull. 24, 39–45 (1999).

Samson, B. N.

T. Schweizer, B. N. Samson, J. R. Hector, and D. N. Payne, “Infrared emission from holmium doped gallium lanthanum sulphide glass,” Infrared Phys. Technol. 40(4), 329–335 (1999).
[CrossRef]

Schmidt, P.

J. Ganem, J. Crawford, P. Schmidt, N. W. Jenkins, and S. R. Bowman, “Thulium cross-relaxation in a low phonon energy crystalline host,” Phys. Rev. B 66(24), 245101 (2002).
[CrossRef]

Schweizer, T.

T. Schweizer, B. N. Samson, J. R. Hector, and D. N. Payne, “Infrared emission from holmium doped gallium lanthanum sulphide glass,” Infrared Phys. Technol. 40(4), 329–335 (1999).
[CrossRef]

Seddon, A. B.

K. Driesen, V. K. Tikhomirov, C. Görller-Walrand, V. D. Rodriguez, and A. B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett. 88(7), 073111 (2006).
[CrossRef]

Serna, R.

Sharonov, M. Y.

Shen, S.

L. Huang, S. Shen, and A. Jha, “Near infrared spectroscopic investigation of Tm3+-Yb3+ co-doped tellurite glasses,” J. Non-Cryst. Solids 345–346, 349–353 (2004).
[CrossRef]

M. Naftaly, S. Shen, and A. Jha, “Tm3+-doped tellurite glass for a broadband amplifier at 1.47 μm,” Appl. Opt. 39(27), 4979–4984 (2000).
[CrossRef] [PubMed]

Shraiman, B. I.

G. A. Thomas, B. I. Shraiman, P. F. Glodis, and M. J. Stephen, “Towards the clarity limit in optical fibre,” Nature 404(6775), 262–264 (2000).
[CrossRef] [PubMed]

Stephen, M. J.

G. A. Thomas, B. I. Shraiman, P. F. Glodis, and M. J. Stephen, “Towards the clarity limit in optical fibre,” Nature 404(6775), 262–264 (2000).
[CrossRef] [PubMed]

Suzuki, T.

Thomas, G. A.

G. A. Thomas, B. I. Shraiman, P. F. Glodis, and M. J. Stephen, “Towards the clarity limit in optical fibre,” Nature 404(6775), 262–264 (2000).
[CrossRef] [PubMed]

Tikhomirov, V. K.

K. Driesen, V. K. Tikhomirov, C. Görller-Walrand, V. D. Rodriguez, and A. B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett. 88(7), 073111 (2006).
[CrossRef]

Tsang, Y.

Umnikov, A. A.

Vallee, R.

Vallée, R.

Xiao, Z.

Xu, F.

Yang, D. L.

B. Zhou, E. Y. B. Pun, H. Lin, D. L. Yang, and L. H. Huang, “Judd-Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses,” J. Appl. Phys. 106(10), 103105 (2009).
[CrossRef]

Yang, Z.

Z. Yang, L. Luo, and W. Chen, “The 1.23 and 1.47 μm emissions from Tm3+ in chalcogenide glasses,” J. Appl. Phys. 99(7), 076107 (2006).
[CrossRef]

Zheng, B.

R. S. Quimby and B. Zheng, “Excited-state absorption measurement technique and application Pr3+-doped fluorozirconate glass,” Appl. Phys. Lett. 60(9), 1055–1057 (1992).
[CrossRef]

Zhou, B.

B. Zhou, E. Y. B. Pun, H. Lin, D. L. Yang, and L. H. Huang, “Judd-Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses,” J. Appl. Phys. 106(10), 103105 (2009).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

K. Driesen, V. K. Tikhomirov, C. Görller-Walrand, V. D. Rodriguez, and A. B. Seddon, “Transparent Ho3+-doped nano-glass-ceramics for efficient infrared emission,” Appl. Phys. Lett. 88(7), 073111 (2006).
[CrossRef]

R. S. Quimby and B. Zheng, “Excited-state absorption measurement technique and application Pr3+-doped fluorozirconate glass,” Appl. Phys. Lett. 60(9), 1055–1057 (1992).
[CrossRef]

Infrared Phys. Technol. (1)

T. Schweizer, B. N. Samson, J. R. Hector, and D. N. Payne, “Infrared emission from holmium doped gallium lanthanum sulphide glass,” Infrared Phys. Technol. 40(4), 329–335 (1999).
[CrossRef]

J. Appl. Phys. (4)

K. Ohta, H. Saito, and M. Obara, “Spectroscopic characterization of Tm3+:YVO4 crystal as an efficient diode pumped laser source near 2000 nm,” J. Appl. Phys. 73(7), 3149–3152 (1993).
[CrossRef]

T. H. Lee and J. Heo, “1.6 µm emission and gain properties of Ho3+ in selenide and chalcohalide glasses,” J. Appl. Phys. 98(11), 113510 (2005).
[CrossRef]

Z. Yang, L. Luo, and W. Chen, “The 1.23 and 1.47 μm emissions from Tm3+ in chalcogenide glasses,” J. Appl. Phys. 99(7), 076107 (2006).
[CrossRef]

B. Zhou, E. Y. B. Pun, H. Lin, D. L. Yang, and L. H. Huang, “Judd-Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses,” J. Appl. Phys. 106(10), 103105 (2009).
[CrossRef]

J. Chem. Phys. (1)

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[CrossRef]

J. Lightwave Technol. (1)

J. Non-Cryst. Solids (1)

L. Huang, S. Shen, and A. Jha, “Near infrared spectroscopic investigation of Tm3+-Yb3+ co-doped tellurite glasses,” J. Non-Cryst. Solids 345–346, 349–353 (2004).
[CrossRef]

Mater. Res. Soc. Bull. (1)

M. Dejneka and B. Samson, “Rare earth-doped fibers for telecommunication applications,” Mater. Res. Soc. Bull. 24, 39–45 (1999).

Nature (1)

G. A. Thomas, B. I. Shraiman, P. F. Glodis, and M. J. Stephen, “Towards the clarity limit in optical fibre,” Nature 404(6775), 262–264 (2000).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (4)

Phys. Rev. (2)

B. R. Judd, “Optical Absorption Intensities of Rare-Earth Ions,” Phys. Rev. 127(3), 750–761 (1962).
[CrossRef]

D. E. McCumber, “Einstein relations concerning broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
[CrossRef]

Phys. Rev. B (1)

J. Ganem, J. Crawford, P. Schmidt, N. W. Jenkins, and S. R. Bowman, “Thulium cross-relaxation in a low phonon energy crystalline host,” Phys. Rev. B 66(24), 245101 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics