Abstract

Experimental studies of second harmonic generation (SHG) from electric-field poled PMMA - DR1 system show occurrence of a maximum in diagonal and off diagonal tensor components χ (2)(−2ω; ω, ω) at 15 mol % concentration and a rapid decrease above, with a stabilization. The origin of the observed concentration dependence is studied using the Monte Carlo (MC) modeling. We find that presence of maximum is conditioned by the pre-poling history of the sample, when entanglement of linear dipolar structures takes place. Length of the pre-poling interval is an important kinetic parameter which differentiates between various non-exponential kinetics of build-up of polar phase responsible for strong/weak SHG susceptibility.

© 2010 OSA

Full Article  |  PDF Article
OSA Recommended Articles
High and stable photoinduced anisotropy in guest–host polymer mediated by chromophore aggregation

Arri Priimagi, Andriy Shevchenko, Matti Kaivola, Francisco J. Rodriguez, Martti Kauranen, and Paul Rochon
Opt. Lett. 35(11) 1813-1815 (2010)

Second-order nonlinear optical effects in novel side-chain liquid crystalline polymers and monomers under bias of an applied dc electric field

W. M. K. P. Wijekoon, Y. Zhang, S. P. Karna, P. N. Prasad, A. C. Griffin, and A. M. Bhatti
J. Opt. Soc. Am. B 9(10) 1832-1842 (1992)

Electro-optic determination of the nonlinear-optical properties of a covalently functionalized Disperse Red 1 copolymer

Ajay Nahata, Jianhui Shan, James T. Yardley, and Chengjiu Wu
J. Opt. Soc. Am. B 10(9) 1553-1564 (1993)

References

  • View by:
  • |
  • |
  • |

  1. Z. Sekkat and W. Knoll, Photoreactive Organic Thin Films (Academic Press, 2002).
  2. I. Rau and F. Kajzar, “Second harmonic generation and its applications,” Nonl. Opt. Quant. Opt. 38, 99–140 (2008).
  3. Y-Ch. Lee, “Role of Carbohydrates in Oxidative Modification of Fibrinogen and Other Plasma Proteins” in Photoactive Organic Materials: Science and Application, F. Kajzar, V. M. Agranovich, and C. Y.-C. Lee, Eds. (NATO ASI Series High Technology Vol. 9, Kluwer, Dordrecht, 1995), pp. 175–181.
  4. L. R. Dalton, “Nonlinear Optical Polymeric Materials: From Chromophore Design to Commercial Applications” in Polymers for Photonics Applications I, Advances in Polymer Science, K. S. Lee, Ed., Vol. 158 (Springer Berlin/Heidelberg Publisher, 2002), pp. 1–86.
  5. L. R. Dalton, B. H. Robinson, A. K.-Y. Jen, W. H. Steier, and R. Nielsen, “Systematic Development of High Bandwidth, Low Drive Voltage Organic Electrooptic Devices and Their Applications,” Opt. Mater. 21, 19–28 (2003).
    [Crossref]
  6. M. Rutkis, A. Jurgis, V. Kampars, A. Vembris, A. Tokmakovs, and V. Kokars, “New Figure of Merit for Tailoring Optimal Structure of the Second Order NLO Chromophore for Guest-Host Polymers,” Mol. Cryst. Liq. Cryst. 485, 903–914 (2008).
    [Crossref]
  7. A. W. Harper, S. S. Sun, L. R. Dalton, S. M. Garner, A. Chen, S. Kalluri, W. H. Steier, and B. H. Robinson, “Translating Microscopic Optical Nonlinearity to Macroscopic Optical Nonlinearity: The Role of Chromophore-Chromophore Electrostatic Interactions,” J. Opt. Soc. Am. B 15, 329–337 (1998).
    [Crossref]
  8. B. H. Robinson, L. R. Dalton, A. W. Harper, A. S. Ren, F. Wang, C. Zhang, G. Todorova, M. S. Lee, R. Aniszfeld, S. M. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledoux, J. Zyss, and A. K. Y. Jen, “The Molecular and Supramolecular Engineering of Polymeric Electrooptic Materials,” Chem. Phys. 245, 35–50 (1999).
    [Crossref]
  9. I. Rau, P. Armatys, P.-A. Chollet, F. Kajzar, Y. Bretonniere, and C. Andraud, “Aggregation: A new mechanism of relaxation of polar order in electro-optic polymers,” Chem. Phys. Lett. 442, 329–333 (2007).
    [Crossref]
  10. G. Pawlik, A. C. Mitus, I. Rau, and F. Kajzar, “Poling of Electro-Optic Materials: Paradigms and Concepts,” Nonl. Opt. Quant. Opt. 40, 57–63 (2010).
  11. A. C. Mitus, G. Pawlik, I. Rau, and F. Kajzar, “Computer Simulations of Poled Guest-Host Systems,” Nonl. Opt. Quant. Opt. 38, 141–162 (2008).
  12. L. R. Dalton, W. H. Steier, B. H. Robinson, C. Zhang, A. S. Ren, S. M. Garner, A. Chen, T. M. Londergan, L. Irwin, B. Carlson, L. Fifield, G. Phelan, C. Kincaid, J. Amend, and A. K.-J. Jen, “From Molecules to Opto-Chips: Organic Electrooptic Materials,” J. Chem. Mater. 9, 1905–1920 (1999).
    [Crossref]
  13. B. H. Robinson and L. R. Dalton, “Monte Carlo Statistical Mechanical Simulations of the Competition of Intermolecular Electrostatic and Poling Field Interactions in Defining Macroscopic Electrooptic Activity for Organic Chromophore/Polymer Materials,” J. Phys. Chem. A 104, 4785–4795 (2000).
    [Crossref]
  14. L. R. Dalton, “Rational Design of Organic Electrooptic Materials,” J. Phys.: Condens. Matter 15, R897–R934 (2003).
    [Crossref]
  15. H.L. Rommel and B.H. Robinson, “Orientation of Electro-optic Chromophores under Poling Conditions: A Spheroidal Model,” J. Phys. Chem. C 111, 18765–18777 (2007).
    [Crossref]
  16. G. Pawlik, A.C. Mitus, I. Rau, and F. Kajzar, “Monte Carlo Modeling of Chosen Non-Linear Optical Effects for Systems of Guest Molecules in Polymeric and Liquid-Crystal Matrices,” Nonl. Opt. Quant. Opt. 38, 227–244 (2009).
  17. M. Makowska-Janusik, H. Reis, M.G. Papadopoulos, I. Economou, and N.J. Zacharopoulos, “Molecular Dynamics Simulations of Electric Field Poled Nonlinear Optical Chromophores Incorporated in a Polymer Matrix,” J. Phys. Chem. B 108, 588–596 (2004).
    [Crossref]
  18. M. R. Leahy-Hoppa, P. D. Cunningham, J. A. French, and L. M. Hayden, “Atomistic Molecular Modeling of the Effect of Chromophore Concentration on the Electro-optic Coefficient in Nonlinear Optical Polymers,” J. Phys. Chem. A 110, 5792–5797 (2006).
    [Crossref] [PubMed]
  19. H. Reis H., M. Makowska-Janusik, and M.G. Papadopoulos, “Nonlinear optical susceptibilities of poled guest–host systems: A computational study,” J. Phys. Chem. B 108, 8931 – 8940 (2004).
    [Crossref]
  20. Y.V. Pereverzev and O.V. Prezhdo, “Mean-field theory of acentric order of dipolar chromophores in polymeric electro-optic materials,” Phys. Rev. E 62, 8324–8334 (2000).
    [Crossref]
  21. Y.V. Pereverzev, O.V. Prezhdo, and L.R. Dalton, “Mean-field theory of acentric order of chromophores with displaced dipoles,” Chem. Phys. Lett. 340, 328–335 (2001).
    [Crossref]
  22. K. Won-Kook and L.M. Hayden, “Fully atomistic modeling of an electric field poled guest–host nonlinear optical polymer,” J. Chem. Phys. 111, 5212–5222 (1999).
    [Crossref]
  23. Y. Tu, Y. Luo, and H. Agren, “Molecular Dynamics Simulations Applied to Electric Field Induced Second Harmonic Generation in Dipolar Chromophore Solutions,” J. Phys. Chem. B 110, 8971–8977 (2006).
    [Crossref] [PubMed]
  24. Y. Tu, Q. Zhang, and H. Agren, “Electric field poled polymeric nonlinear optical systems: molecular dynamics simulations of poly(methyl methacrylate) doped with disperse red chromophores,” J. Phys. Chem. B 111, 3591–3598 (2007).
    [Crossref] [PubMed]
  25. G. Pawlik, A.C. Mitus, I. Rau, and F. Kajzar, “Monte Carlo kinetic study of chromophore distribution in poled guest–host systems,” Proc. SPIE 6891, 68910A-1 – 68910A-7 (2008).
  26. G. Pawlik, D. Wronski, A.C. Mitus, I. Rau, C. Andraud, and F. Kajzar, “A new mechanism of relaxation in poled guest–host systems: Monte Carlo analysis of aggregation scenario,” Proc. SPIE 6653, 66530J-1 – 66530J-7 (2007).
  27. C.A. Walsh, D.M. Burland, V.Y. Lee, R.D. Miller, B.A. Smith, R.J. Twieg, and W. Volksen, “Orientational Relaxation in Electric Field Poled Guest – Host and Side – Chain Polymers below Tg,” Macromol. 26, 3720–3722 (1993).
    [Crossref]
  28. R.R. Barto, C.W. Frank, P.V. Bedworth, R.E. Taylor, W.W. Anderson, S. Ermer, A. K.-Y. Jen, J.D. Luo, H. Ma, H. - Z. Tang, M. Lee, and A.S. Ren, “Bonding and Molecular Environment Effects on Near – Infrared Optical Absorption Behavior in Nonlinear Optical Monoazo Chromophore – Polymer Materials,” Macromol. 39, 7566 – 7577 (2006).
    [Crossref]
  29. F. Kajzar, O. Krupka, G. Pawlik, A. Mitus, and I. Rau, “Concentration Variation of Quadratic NLO Susceptibility in PMMA-DR1 Side Chain Polymer,” Mol. Cryst. Liq. Cryst. 522, 180–190 (2010).
    [Crossref]
  30. F. Kajzar, A. Jen, and K. S. Lee, “Polymeric Materials and Their Orientation Techniques for Second-Order Nonlinear Optics, Polymers for Photonics Applications II: Nonlinear Optical, Photorefractive and Two-Photon Absorption Polymers,” in Advances in Polymer Science, K. S. Lee and G. Wegner, Eds., Vol. 161 (Springer Verlag, 2003).
  31. A. Priimagi, S. Cattaneo, R.H.A. Ras, S. Valkama, O. Ikkala, and M. Kauranen, “Polymer – Dye Complexes: A Facile Method for High Doping Level and Aggregation Control of Dye Molecules,” Chem. Mater. 17, 5798–5802 (2005).
    [Crossref]
  32. J. Reyes-Esqueda, B. Darracq, J. Garcia-Macedo, M. Canva, M. Blanchard-Desce, F. Chaput, K. Lahlil, J.P. Boilot, A. Brun, and Y. Levy, “Effect of chromophore – chromophore electrostatic interactions in the NLO response of functionalized organic – inorganic sol – gel materials,” Opt. Commun. 198, 207–215 (2001).
    [Crossref]
  33. L. Favaretto, G. Barbarella, I. Rau, F. Kajzar, S. Caria, M. Murgia, and R. Zamboni, “Efficient second harmonic generation from thin films of V-shaped benzo[b]thiophene based molecules,” Opt. Express 17, 2557–2564 (2009).
    [Crossref] [PubMed]
  34. P. Oswald and P. Pieranski, Les cristaix liquides: Concepts et proprits physiques illustrs par des expriences, Vol. 1, p. 51 (Gordon and Breach Science Publishers, Paris, 2000).
  35. A. K. Hamanoue, S. Hirayama, M. Amano, K. Nakajima, T. Nakayama, and H. Teranishi, “Spectroscopic Study of 10-Benzoyl-9-anthrol and Its Anion in Basic Media. An Estimation of Microscopic Polarity of PMMA,” Bull. Chem. Soc. Jpn. 55, 3104–3108 (1982).
    [Crossref]
  36. D. Morichere, M. Dumont, Y. Levy, G. Gadret, and F. Kajzar, “Nonlinear properties of poled polymer films: SHG and electrooptic measurements,” Proc. SPIE 1560, 214–225 (1991).
    [Crossref]
  37. G. Pawlik, A.C. Mitus, A. Miniewicz, and F. Kajzar, “Monte Carlo simulations of temperature dependence of the kinetics of diffraction gratings formation in a polymer matrix containing azobenzene chromophores,” J. Nonl. Opt. Phys. Mat. 13, 481–489 (2004).
    [Crossref]
  38. R. Metzler and J. Klafter, “The random walk’s guide to anomalous diffusion: A fractional dynamics approach,” Phys. Rep. 339, 1–77 (2000).
    [Crossref]
  39. A. Z. Patashinski and M.A. Ratner, “Orientation relaxation in glassy polymers. II. Dipole-size spectroscopy and short-time kinetics,” J. Chem. Phys. 103, 10779–10789 (1995).
    [Crossref]

2010 (2)

G. Pawlik, A. C. Mitus, I. Rau, and F. Kajzar, “Poling of Electro-Optic Materials: Paradigms and Concepts,” Nonl. Opt. Quant. Opt. 40, 57–63 (2010).

F. Kajzar, O. Krupka, G. Pawlik, A. Mitus, and I. Rau, “Concentration Variation of Quadratic NLO Susceptibility in PMMA-DR1 Side Chain Polymer,” Mol. Cryst. Liq. Cryst. 522, 180–190 (2010).
[Crossref]

2009 (2)

L. Favaretto, G. Barbarella, I. Rau, F. Kajzar, S. Caria, M. Murgia, and R. Zamboni, “Efficient second harmonic generation from thin films of V-shaped benzo[b]thiophene based molecules,” Opt. Express 17, 2557–2564 (2009).
[Crossref] [PubMed]

G. Pawlik, A.C. Mitus, I. Rau, and F. Kajzar, “Monte Carlo Modeling of Chosen Non-Linear Optical Effects for Systems of Guest Molecules in Polymeric and Liquid-Crystal Matrices,” Nonl. Opt. Quant. Opt. 38, 227–244 (2009).

2008 (4)

A. C. Mitus, G. Pawlik, I. Rau, and F. Kajzar, “Computer Simulations of Poled Guest-Host Systems,” Nonl. Opt. Quant. Opt. 38, 141–162 (2008).

I. Rau and F. Kajzar, “Second harmonic generation and its applications,” Nonl. Opt. Quant. Opt. 38, 99–140 (2008).

M. Rutkis, A. Jurgis, V. Kampars, A. Vembris, A. Tokmakovs, and V. Kokars, “New Figure of Merit for Tailoring Optimal Structure of the Second Order NLO Chromophore for Guest-Host Polymers,” Mol. Cryst. Liq. Cryst. 485, 903–914 (2008).
[Crossref]

G. Pawlik, A.C. Mitus, I. Rau, and F. Kajzar, “Monte Carlo kinetic study of chromophore distribution in poled guest–host systems,” Proc. SPIE 6891, 68910A-1 – 68910A-7 (2008).

2007 (4)

G. Pawlik, D. Wronski, A.C. Mitus, I. Rau, C. Andraud, and F. Kajzar, “A new mechanism of relaxation in poled guest–host systems: Monte Carlo analysis of aggregation scenario,” Proc. SPIE 6653, 66530J-1 – 66530J-7 (2007).

H.L. Rommel and B.H. Robinson, “Orientation of Electro-optic Chromophores under Poling Conditions: A Spheroidal Model,” J. Phys. Chem. C 111, 18765–18777 (2007).
[Crossref]

Y. Tu, Q. Zhang, and H. Agren, “Electric field poled polymeric nonlinear optical systems: molecular dynamics simulations of poly(methyl methacrylate) doped with disperse red chromophores,” J. Phys. Chem. B 111, 3591–3598 (2007).
[Crossref] [PubMed]

I. Rau, P. Armatys, P.-A. Chollet, F. Kajzar, Y. Bretonniere, and C. Andraud, “Aggregation: A new mechanism of relaxation of polar order in electro-optic polymers,” Chem. Phys. Lett. 442, 329–333 (2007).
[Crossref]

2006 (3)

M. R. Leahy-Hoppa, P. D. Cunningham, J. A. French, and L. M. Hayden, “Atomistic Molecular Modeling of the Effect of Chromophore Concentration on the Electro-optic Coefficient in Nonlinear Optical Polymers,” J. Phys. Chem. A 110, 5792–5797 (2006).
[Crossref] [PubMed]

R.R. Barto, C.W. Frank, P.V. Bedworth, R.E. Taylor, W.W. Anderson, S. Ermer, A. K.-Y. Jen, J.D. Luo, H. Ma, H. - Z. Tang, M. Lee, and A.S. Ren, “Bonding and Molecular Environment Effects on Near – Infrared Optical Absorption Behavior in Nonlinear Optical Monoazo Chromophore – Polymer Materials,” Macromol. 39, 7566 – 7577 (2006).
[Crossref]

Y. Tu, Y. Luo, and H. Agren, “Molecular Dynamics Simulations Applied to Electric Field Induced Second Harmonic Generation in Dipolar Chromophore Solutions,” J. Phys. Chem. B 110, 8971–8977 (2006).
[Crossref] [PubMed]

2005 (1)

A. Priimagi, S. Cattaneo, R.H.A. Ras, S. Valkama, O. Ikkala, and M. Kauranen, “Polymer – Dye Complexes: A Facile Method for High Doping Level and Aggregation Control of Dye Molecules,” Chem. Mater. 17, 5798–5802 (2005).
[Crossref]

2004 (3)

G. Pawlik, A.C. Mitus, A. Miniewicz, and F. Kajzar, “Monte Carlo simulations of temperature dependence of the kinetics of diffraction gratings formation in a polymer matrix containing azobenzene chromophores,” J. Nonl. Opt. Phys. Mat. 13, 481–489 (2004).
[Crossref]

H. Reis H., M. Makowska-Janusik, and M.G. Papadopoulos, “Nonlinear optical susceptibilities of poled guest–host systems: A computational study,” J. Phys. Chem. B 108, 8931 – 8940 (2004).
[Crossref]

M. Makowska-Janusik, H. Reis, M.G. Papadopoulos, I. Economou, and N.J. Zacharopoulos, “Molecular Dynamics Simulations of Electric Field Poled Nonlinear Optical Chromophores Incorporated in a Polymer Matrix,” J. Phys. Chem. B 108, 588–596 (2004).
[Crossref]

2003 (2)

L. R. Dalton, “Rational Design of Organic Electrooptic Materials,” J. Phys.: Condens. Matter 15, R897–R934 (2003).
[Crossref]

L. R. Dalton, B. H. Robinson, A. K.-Y. Jen, W. H. Steier, and R. Nielsen, “Systematic Development of High Bandwidth, Low Drive Voltage Organic Electrooptic Devices and Their Applications,” Opt. Mater. 21, 19–28 (2003).
[Crossref]

2001 (2)

Y.V. Pereverzev, O.V. Prezhdo, and L.R. Dalton, “Mean-field theory of acentric order of chromophores with displaced dipoles,” Chem. Phys. Lett. 340, 328–335 (2001).
[Crossref]

J. Reyes-Esqueda, B. Darracq, J. Garcia-Macedo, M. Canva, M. Blanchard-Desce, F. Chaput, K. Lahlil, J.P. Boilot, A. Brun, and Y. Levy, “Effect of chromophore – chromophore electrostatic interactions in the NLO response of functionalized organic – inorganic sol – gel materials,” Opt. Commun. 198, 207–215 (2001).
[Crossref]

2000 (3)

R. Metzler and J. Klafter, “The random walk’s guide to anomalous diffusion: A fractional dynamics approach,” Phys. Rep. 339, 1–77 (2000).
[Crossref]

Y.V. Pereverzev and O.V. Prezhdo, “Mean-field theory of acentric order of dipolar chromophores in polymeric electro-optic materials,” Phys. Rev. E 62, 8324–8334 (2000).
[Crossref]

B. H. Robinson and L. R. Dalton, “Monte Carlo Statistical Mechanical Simulations of the Competition of Intermolecular Electrostatic and Poling Field Interactions in Defining Macroscopic Electrooptic Activity for Organic Chromophore/Polymer Materials,” J. Phys. Chem. A 104, 4785–4795 (2000).
[Crossref]

1999 (3)

K. Won-Kook and L.M. Hayden, “Fully atomistic modeling of an electric field poled guest–host nonlinear optical polymer,” J. Chem. Phys. 111, 5212–5222 (1999).
[Crossref]

B. H. Robinson, L. R. Dalton, A. W. Harper, A. S. Ren, F. Wang, C. Zhang, G. Todorova, M. S. Lee, R. Aniszfeld, S. M. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledoux, J. Zyss, and A. K. Y. Jen, “The Molecular and Supramolecular Engineering of Polymeric Electrooptic Materials,” Chem. Phys. 245, 35–50 (1999).
[Crossref]

L. R. Dalton, W. H. Steier, B. H. Robinson, C. Zhang, A. S. Ren, S. M. Garner, A. Chen, T. M. Londergan, L. Irwin, B. Carlson, L. Fifield, G. Phelan, C. Kincaid, J. Amend, and A. K.-J. Jen, “From Molecules to Opto-Chips: Organic Electrooptic Materials,” J. Chem. Mater. 9, 1905–1920 (1999).
[Crossref]

1998 (1)

1995 (1)

A. Z. Patashinski and M.A. Ratner, “Orientation relaxation in glassy polymers. II. Dipole-size spectroscopy and short-time kinetics,” J. Chem. Phys. 103, 10779–10789 (1995).
[Crossref]

1993 (1)

C.A. Walsh, D.M. Burland, V.Y. Lee, R.D. Miller, B.A. Smith, R.J. Twieg, and W. Volksen, “Orientational Relaxation in Electric Field Poled Guest – Host and Side – Chain Polymers below Tg,” Macromol. 26, 3720–3722 (1993).
[Crossref]

1991 (1)

D. Morichere, M. Dumont, Y. Levy, G. Gadret, and F. Kajzar, “Nonlinear properties of poled polymer films: SHG and electrooptic measurements,” Proc. SPIE 1560, 214–225 (1991).
[Crossref]

1982 (1)

A. K. Hamanoue, S. Hirayama, M. Amano, K. Nakajima, T. Nakayama, and H. Teranishi, “Spectroscopic Study of 10-Benzoyl-9-anthrol and Its Anion in Basic Media. An Estimation of Microscopic Polarity of PMMA,” Bull. Chem. Soc. Jpn. 55, 3104–3108 (1982).
[Crossref]

Agren, H.

Y. Tu, Q. Zhang, and H. Agren, “Electric field poled polymeric nonlinear optical systems: molecular dynamics simulations of poly(methyl methacrylate) doped with disperse red chromophores,” J. Phys. Chem. B 111, 3591–3598 (2007).
[Crossref] [PubMed]

Y. Tu, Y. Luo, and H. Agren, “Molecular Dynamics Simulations Applied to Electric Field Induced Second Harmonic Generation in Dipolar Chromophore Solutions,” J. Phys. Chem. B 110, 8971–8977 (2006).
[Crossref] [PubMed]

Amano, M.

A. K. Hamanoue, S. Hirayama, M. Amano, K. Nakajima, T. Nakayama, and H. Teranishi, “Spectroscopic Study of 10-Benzoyl-9-anthrol and Its Anion in Basic Media. An Estimation of Microscopic Polarity of PMMA,” Bull. Chem. Soc. Jpn. 55, 3104–3108 (1982).
[Crossref]

Amend, J.

L. R. Dalton, W. H. Steier, B. H. Robinson, C. Zhang, A. S. Ren, S. M. Garner, A. Chen, T. M. Londergan, L. Irwin, B. Carlson, L. Fifield, G. Phelan, C. Kincaid, J. Amend, and A. K.-J. Jen, “From Molecules to Opto-Chips: Organic Electrooptic Materials,” J. Chem. Mater. 9, 1905–1920 (1999).
[Crossref]

Anderson, W.W.

R.R. Barto, C.W. Frank, P.V. Bedworth, R.E. Taylor, W.W. Anderson, S. Ermer, A. K.-Y. Jen, J.D. Luo, H. Ma, H. - Z. Tang, M. Lee, and A.S. Ren, “Bonding and Molecular Environment Effects on Near – Infrared Optical Absorption Behavior in Nonlinear Optical Monoazo Chromophore – Polymer Materials,” Macromol. 39, 7566 – 7577 (2006).
[Crossref]

Andraud, C.

G. Pawlik, D. Wronski, A.C. Mitus, I. Rau, C. Andraud, and F. Kajzar, “A new mechanism of relaxation in poled guest–host systems: Monte Carlo analysis of aggregation scenario,” Proc. SPIE 6653, 66530J-1 – 66530J-7 (2007).

I. Rau, P. Armatys, P.-A. Chollet, F. Kajzar, Y. Bretonniere, and C. Andraud, “Aggregation: A new mechanism of relaxation of polar order in electro-optic polymers,” Chem. Phys. Lett. 442, 329–333 (2007).
[Crossref]

Aniszfeld, R.

B. H. Robinson, L. R. Dalton, A. W. Harper, A. S. Ren, F. Wang, C. Zhang, G. Todorova, M. S. Lee, R. Aniszfeld, S. M. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledoux, J. Zyss, and A. K. Y. Jen, “The Molecular and Supramolecular Engineering of Polymeric Electrooptic Materials,” Chem. Phys. 245, 35–50 (1999).
[Crossref]

Armatys, P.

I. Rau, P. Armatys, P.-A. Chollet, F. Kajzar, Y. Bretonniere, and C. Andraud, “Aggregation: A new mechanism of relaxation of polar order in electro-optic polymers,” Chem. Phys. Lett. 442, 329–333 (2007).
[Crossref]

Barbarella, G.

Barto, R.R.

R.R. Barto, C.W. Frank, P.V. Bedworth, R.E. Taylor, W.W. Anderson, S. Ermer, A. K.-Y. Jen, J.D. Luo, H. Ma, H. - Z. Tang, M. Lee, and A.S. Ren, “Bonding and Molecular Environment Effects on Near – Infrared Optical Absorption Behavior in Nonlinear Optical Monoazo Chromophore – Polymer Materials,” Macromol. 39, 7566 – 7577 (2006).
[Crossref]

Bedworth, P.V.

R.R. Barto, C.W. Frank, P.V. Bedworth, R.E. Taylor, W.W. Anderson, S. Ermer, A. K.-Y. Jen, J.D. Luo, H. Ma, H. - Z. Tang, M. Lee, and A.S. Ren, “Bonding and Molecular Environment Effects on Near – Infrared Optical Absorption Behavior in Nonlinear Optical Monoazo Chromophore – Polymer Materials,” Macromol. 39, 7566 – 7577 (2006).
[Crossref]

Blanchard-Desce, M.

J. Reyes-Esqueda, B. Darracq, J. Garcia-Macedo, M. Canva, M. Blanchard-Desce, F. Chaput, K. Lahlil, J.P. Boilot, A. Brun, and Y. Levy, “Effect of chromophore – chromophore electrostatic interactions in the NLO response of functionalized organic – inorganic sol – gel materials,” Opt. Commun. 198, 207–215 (2001).
[Crossref]

Boilot, J.P.

J. Reyes-Esqueda, B. Darracq, J. Garcia-Macedo, M. Canva, M. Blanchard-Desce, F. Chaput, K. Lahlil, J.P. Boilot, A. Brun, and Y. Levy, “Effect of chromophore – chromophore electrostatic interactions in the NLO response of functionalized organic – inorganic sol – gel materials,” Opt. Commun. 198, 207–215 (2001).
[Crossref]

Bretonniere, Y.

I. Rau, P. Armatys, P.-A. Chollet, F. Kajzar, Y. Bretonniere, and C. Andraud, “Aggregation: A new mechanism of relaxation of polar order in electro-optic polymers,” Chem. Phys. Lett. 442, 329–333 (2007).
[Crossref]

Brun, A.

J. Reyes-Esqueda, B. Darracq, J. Garcia-Macedo, M. Canva, M. Blanchard-Desce, F. Chaput, K. Lahlil, J.P. Boilot, A. Brun, and Y. Levy, “Effect of chromophore – chromophore electrostatic interactions in the NLO response of functionalized organic – inorganic sol – gel materials,” Opt. Commun. 198, 207–215 (2001).
[Crossref]

Burland, D.M.

C.A. Walsh, D.M. Burland, V.Y. Lee, R.D. Miller, B.A. Smith, R.J. Twieg, and W. Volksen, “Orientational Relaxation in Electric Field Poled Guest – Host and Side – Chain Polymers below Tg,” Macromol. 26, 3720–3722 (1993).
[Crossref]

Canva, M.

J. Reyes-Esqueda, B. Darracq, J. Garcia-Macedo, M. Canva, M. Blanchard-Desce, F. Chaput, K. Lahlil, J.P. Boilot, A. Brun, and Y. Levy, “Effect of chromophore – chromophore electrostatic interactions in the NLO response of functionalized organic – inorganic sol – gel materials,” Opt. Commun. 198, 207–215 (2001).
[Crossref]

Caria, S.

Carlson, B.

L. R. Dalton, W. H. Steier, B. H. Robinson, C. Zhang, A. S. Ren, S. M. Garner, A. Chen, T. M. Londergan, L. Irwin, B. Carlson, L. Fifield, G. Phelan, C. Kincaid, J. Amend, and A. K.-J. Jen, “From Molecules to Opto-Chips: Organic Electrooptic Materials,” J. Chem. Mater. 9, 1905–1920 (1999).
[Crossref]

Cattaneo, S.

A. Priimagi, S. Cattaneo, R.H.A. Ras, S. Valkama, O. Ikkala, and M. Kauranen, “Polymer – Dye Complexes: A Facile Method for High Doping Level and Aggregation Control of Dye Molecules,” Chem. Mater. 17, 5798–5802 (2005).
[Crossref]

Chaput, F.

J. Reyes-Esqueda, B. Darracq, J. Garcia-Macedo, M. Canva, M. Blanchard-Desce, F. Chaput, K. Lahlil, J.P. Boilot, A. Brun, and Y. Levy, “Effect of chromophore – chromophore electrostatic interactions in the NLO response of functionalized organic – inorganic sol – gel materials,” Opt. Commun. 198, 207–215 (2001).
[Crossref]

Chen, A.

L. R. Dalton, W. H. Steier, B. H. Robinson, C. Zhang, A. S. Ren, S. M. Garner, A. Chen, T. M. Londergan, L. Irwin, B. Carlson, L. Fifield, G. Phelan, C. Kincaid, J. Amend, and A. K.-J. Jen, “From Molecules to Opto-Chips: Organic Electrooptic Materials,” J. Chem. Mater. 9, 1905–1920 (1999).
[Crossref]

B. H. Robinson, L. R. Dalton, A. W. Harper, A. S. Ren, F. Wang, C. Zhang, G. Todorova, M. S. Lee, R. Aniszfeld, S. M. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledoux, J. Zyss, and A. K. Y. Jen, “The Molecular and Supramolecular Engineering of Polymeric Electrooptic Materials,” Chem. Phys. 245, 35–50 (1999).
[Crossref]

A. W. Harper, S. S. Sun, L. R. Dalton, S. M. Garner, A. Chen, S. Kalluri, W. H. Steier, and B. H. Robinson, “Translating Microscopic Optical Nonlinearity to Macroscopic Optical Nonlinearity: The Role of Chromophore-Chromophore Electrostatic Interactions,” J. Opt. Soc. Am. B 15, 329–337 (1998).
[Crossref]

Chollet, P.-A.

I. Rau, P. Armatys, P.-A. Chollet, F. Kajzar, Y. Bretonniere, and C. Andraud, “Aggregation: A new mechanism of relaxation of polar order in electro-optic polymers,” Chem. Phys. Lett. 442, 329–333 (2007).
[Crossref]

Cunningham, P. D.

M. R. Leahy-Hoppa, P. D. Cunningham, J. A. French, and L. M. Hayden, “Atomistic Molecular Modeling of the Effect of Chromophore Concentration on the Electro-optic Coefficient in Nonlinear Optical Polymers,” J. Phys. Chem. A 110, 5792–5797 (2006).
[Crossref] [PubMed]

Dalton, L. R.

L. R. Dalton, “Rational Design of Organic Electrooptic Materials,” J. Phys.: Condens. Matter 15, R897–R934 (2003).
[Crossref]

L. R. Dalton, B. H. Robinson, A. K.-Y. Jen, W. H. Steier, and R. Nielsen, “Systematic Development of High Bandwidth, Low Drive Voltage Organic Electrooptic Devices and Their Applications,” Opt. Mater. 21, 19–28 (2003).
[Crossref]

B. H. Robinson and L. R. Dalton, “Monte Carlo Statistical Mechanical Simulations of the Competition of Intermolecular Electrostatic and Poling Field Interactions in Defining Macroscopic Electrooptic Activity for Organic Chromophore/Polymer Materials,” J. Phys. Chem. A 104, 4785–4795 (2000).
[Crossref]

B. H. Robinson, L. R. Dalton, A. W. Harper, A. S. Ren, F. Wang, C. Zhang, G. Todorova, M. S. Lee, R. Aniszfeld, S. M. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledoux, J. Zyss, and A. K. Y. Jen, “The Molecular and Supramolecular Engineering of Polymeric Electrooptic Materials,” Chem. Phys. 245, 35–50 (1999).
[Crossref]

L. R. Dalton, W. H. Steier, B. H. Robinson, C. Zhang, A. S. Ren, S. M. Garner, A. Chen, T. M. Londergan, L. Irwin, B. Carlson, L. Fifield, G. Phelan, C. Kincaid, J. Amend, and A. K.-J. Jen, “From Molecules to Opto-Chips: Organic Electrooptic Materials,” J. Chem. Mater. 9, 1905–1920 (1999).
[Crossref]

A. W. Harper, S. S. Sun, L. R. Dalton, S. M. Garner, A. Chen, S. Kalluri, W. H. Steier, and B. H. Robinson, “Translating Microscopic Optical Nonlinearity to Macroscopic Optical Nonlinearity: The Role of Chromophore-Chromophore Electrostatic Interactions,” J. Opt. Soc. Am. B 15, 329–337 (1998).
[Crossref]

L. R. Dalton, “Nonlinear Optical Polymeric Materials: From Chromophore Design to Commercial Applications” in Polymers for Photonics Applications I, Advances in Polymer Science, K. S. Lee, Ed., Vol. 158 (Springer Berlin/Heidelberg Publisher, 2002), pp. 1–86.

Dalton, L.R.

Y.V. Pereverzev, O.V. Prezhdo, and L.R. Dalton, “Mean-field theory of acentric order of chromophores with displaced dipoles,” Chem. Phys. Lett. 340, 328–335 (2001).
[Crossref]

Darracq, B.

J. Reyes-Esqueda, B. Darracq, J. Garcia-Macedo, M. Canva, M. Blanchard-Desce, F. Chaput, K. Lahlil, J.P. Boilot, A. Brun, and Y. Levy, “Effect of chromophore – chromophore electrostatic interactions in the NLO response of functionalized organic – inorganic sol – gel materials,” Opt. Commun. 198, 207–215 (2001).
[Crossref]

Dumont, M.

D. Morichere, M. Dumont, Y. Levy, G. Gadret, and F. Kajzar, “Nonlinear properties of poled polymer films: SHG and electrooptic measurements,” Proc. SPIE 1560, 214–225 (1991).
[Crossref]

Economou, I.

M. Makowska-Janusik, H. Reis, M.G. Papadopoulos, I. Economou, and N.J. Zacharopoulos, “Molecular Dynamics Simulations of Electric Field Poled Nonlinear Optical Chromophores Incorporated in a Polymer Matrix,” J. Phys. Chem. B 108, 588–596 (2004).
[Crossref]

Ermer, S.

R.R. Barto, C.W. Frank, P.V. Bedworth, R.E. Taylor, W.W. Anderson, S. Ermer, A. K.-Y. Jen, J.D. Luo, H. Ma, H. - Z. Tang, M. Lee, and A.S. Ren, “Bonding and Molecular Environment Effects on Near – Infrared Optical Absorption Behavior in Nonlinear Optical Monoazo Chromophore – Polymer Materials,” Macromol. 39, 7566 – 7577 (2006).
[Crossref]

Favaretto, L.

Fifield, L.

L. R. Dalton, W. H. Steier, B. H. Robinson, C. Zhang, A. S. Ren, S. M. Garner, A. Chen, T. M. Londergan, L. Irwin, B. Carlson, L. Fifield, G. Phelan, C. Kincaid, J. Amend, and A. K.-J. Jen, “From Molecules to Opto-Chips: Organic Electrooptic Materials,” J. Chem. Mater. 9, 1905–1920 (1999).
[Crossref]

Frank, C.W.

R.R. Barto, C.W. Frank, P.V. Bedworth, R.E. Taylor, W.W. Anderson, S. Ermer, A. K.-Y. Jen, J.D. Luo, H. Ma, H. - Z. Tang, M. Lee, and A.S. Ren, “Bonding and Molecular Environment Effects on Near – Infrared Optical Absorption Behavior in Nonlinear Optical Monoazo Chromophore – Polymer Materials,” Macromol. 39, 7566 – 7577 (2006).
[Crossref]

French, J. A.

M. R. Leahy-Hoppa, P. D. Cunningham, J. A. French, and L. M. Hayden, “Atomistic Molecular Modeling of the Effect of Chromophore Concentration on the Electro-optic Coefficient in Nonlinear Optical Polymers,” J. Phys. Chem. A 110, 5792–5797 (2006).
[Crossref] [PubMed]

Gadret, G.

D. Morichere, M. Dumont, Y. Levy, G. Gadret, and F. Kajzar, “Nonlinear properties of poled polymer films: SHG and electrooptic measurements,” Proc. SPIE 1560, 214–225 (1991).
[Crossref]

Garcia-Macedo, J.

J. Reyes-Esqueda, B. Darracq, J. Garcia-Macedo, M. Canva, M. Blanchard-Desce, F. Chaput, K. Lahlil, J.P. Boilot, A. Brun, and Y. Levy, “Effect of chromophore – chromophore electrostatic interactions in the NLO response of functionalized organic – inorganic sol – gel materials,” Opt. Commun. 198, 207–215 (2001).
[Crossref]

Garner, S. M.

L. R. Dalton, W. H. Steier, B. H. Robinson, C. Zhang, A. S. Ren, S. M. Garner, A. Chen, T. M. Londergan, L. Irwin, B. Carlson, L. Fifield, G. Phelan, C. Kincaid, J. Amend, and A. K.-J. Jen, “From Molecules to Opto-Chips: Organic Electrooptic Materials,” J. Chem. Mater. 9, 1905–1920 (1999).
[Crossref]

B. H. Robinson, L. R. Dalton, A. W. Harper, A. S. Ren, F. Wang, C. Zhang, G. Todorova, M. S. Lee, R. Aniszfeld, S. M. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledoux, J. Zyss, and A. K. Y. Jen, “The Molecular and Supramolecular Engineering of Polymeric Electrooptic Materials,” Chem. Phys. 245, 35–50 (1999).
[Crossref]

A. W. Harper, S. S. Sun, L. R. Dalton, S. M. Garner, A. Chen, S. Kalluri, W. H. Steier, and B. H. Robinson, “Translating Microscopic Optical Nonlinearity to Macroscopic Optical Nonlinearity: The Role of Chromophore-Chromophore Electrostatic Interactions,” J. Opt. Soc. Am. B 15, 329–337 (1998).
[Crossref]

H., H. Reis

H. Reis H., M. Makowska-Janusik, and M.G. Papadopoulos, “Nonlinear optical susceptibilities of poled guest–host systems: A computational study,” J. Phys. Chem. B 108, 8931 – 8940 (2004).
[Crossref]

Hamanoue, A. K.

A. K. Hamanoue, S. Hirayama, M. Amano, K. Nakajima, T. Nakayama, and H. Teranishi, “Spectroscopic Study of 10-Benzoyl-9-anthrol and Its Anion in Basic Media. An Estimation of Microscopic Polarity of PMMA,” Bull. Chem. Soc. Jpn. 55, 3104–3108 (1982).
[Crossref]

Harper, A. W.

B. H. Robinson, L. R. Dalton, A. W. Harper, A. S. Ren, F. Wang, C. Zhang, G. Todorova, M. S. Lee, R. Aniszfeld, S. M. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledoux, J. Zyss, and A. K. Y. Jen, “The Molecular and Supramolecular Engineering of Polymeric Electrooptic Materials,” Chem. Phys. 245, 35–50 (1999).
[Crossref]

A. W. Harper, S. S. Sun, L. R. Dalton, S. M. Garner, A. Chen, S. Kalluri, W. H. Steier, and B. H. Robinson, “Translating Microscopic Optical Nonlinearity to Macroscopic Optical Nonlinearity: The Role of Chromophore-Chromophore Electrostatic Interactions,” J. Opt. Soc. Am. B 15, 329–337 (1998).
[Crossref]

Hayden, L. M.

M. R. Leahy-Hoppa, P. D. Cunningham, J. A. French, and L. M. Hayden, “Atomistic Molecular Modeling of the Effect of Chromophore Concentration on the Electro-optic Coefficient in Nonlinear Optical Polymers,” J. Phys. Chem. A 110, 5792–5797 (2006).
[Crossref] [PubMed]

Hayden, L.M.

K. Won-Kook and L.M. Hayden, “Fully atomistic modeling of an electric field poled guest–host nonlinear optical polymer,” J. Chem. Phys. 111, 5212–5222 (1999).
[Crossref]

Hirayama, S.

A. K. Hamanoue, S. Hirayama, M. Amano, K. Nakajima, T. Nakayama, and H. Teranishi, “Spectroscopic Study of 10-Benzoyl-9-anthrol and Its Anion in Basic Media. An Estimation of Microscopic Polarity of PMMA,” Bull. Chem. Soc. Jpn. 55, 3104–3108 (1982).
[Crossref]

Houbrecht, S.

B. H. Robinson, L. R. Dalton, A. W. Harper, A. S. Ren, F. Wang, C. Zhang, G. Todorova, M. S. Lee, R. Aniszfeld, S. M. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledoux, J. Zyss, and A. K. Y. Jen, “The Molecular and Supramolecular Engineering of Polymeric Electrooptic Materials,” Chem. Phys. 245, 35–50 (1999).
[Crossref]

Ikkala, O.

A. Priimagi, S. Cattaneo, R.H.A. Ras, S. Valkama, O. Ikkala, and M. Kauranen, “Polymer – Dye Complexes: A Facile Method for High Doping Level and Aggregation Control of Dye Molecules,” Chem. Mater. 17, 5798–5802 (2005).
[Crossref]

Irwin, L.

L. R. Dalton, W. H. Steier, B. H. Robinson, C. Zhang, A. S. Ren, S. M. Garner, A. Chen, T. M. Londergan, L. Irwin, B. Carlson, L. Fifield, G. Phelan, C. Kincaid, J. Amend, and A. K.-J. Jen, “From Molecules to Opto-Chips: Organic Electrooptic Materials,” J. Chem. Mater. 9, 1905–1920 (1999).
[Crossref]

Jen, A.

F. Kajzar, A. Jen, and K. S. Lee, “Polymeric Materials and Their Orientation Techniques for Second-Order Nonlinear Optics, Polymers for Photonics Applications II: Nonlinear Optical, Photorefractive and Two-Photon Absorption Polymers,” in Advances in Polymer Science, K. S. Lee and G. Wegner, Eds., Vol. 161 (Springer Verlag, 2003).

Jen, A. K. Y.

B. H. Robinson, L. R. Dalton, A. W. Harper, A. S. Ren, F. Wang, C. Zhang, G. Todorova, M. S. Lee, R. Aniszfeld, S. M. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledoux, J. Zyss, and A. K. Y. Jen, “The Molecular and Supramolecular Engineering of Polymeric Electrooptic Materials,” Chem. Phys. 245, 35–50 (1999).
[Crossref]

Jen, A. K.-J.

L. R. Dalton, W. H. Steier, B. H. Robinson, C. Zhang, A. S. Ren, S. M. Garner, A. Chen, T. M. Londergan, L. Irwin, B. Carlson, L. Fifield, G. Phelan, C. Kincaid, J. Amend, and A. K.-J. Jen, “From Molecules to Opto-Chips: Organic Electrooptic Materials,” J. Chem. Mater. 9, 1905–1920 (1999).
[Crossref]

Jen, A. K.-Y.

R.R. Barto, C.W. Frank, P.V. Bedworth, R.E. Taylor, W.W. Anderson, S. Ermer, A. K.-Y. Jen, J.D. Luo, H. Ma, H. - Z. Tang, M. Lee, and A.S. Ren, “Bonding and Molecular Environment Effects on Near – Infrared Optical Absorption Behavior in Nonlinear Optical Monoazo Chromophore – Polymer Materials,” Macromol. 39, 7566 – 7577 (2006).
[Crossref]

L. R. Dalton, B. H. Robinson, A. K.-Y. Jen, W. H. Steier, and R. Nielsen, “Systematic Development of High Bandwidth, Low Drive Voltage Organic Electrooptic Devices and Their Applications,” Opt. Mater. 21, 19–28 (2003).
[Crossref]

Jurgis, A.

M. Rutkis, A. Jurgis, V. Kampars, A. Vembris, A. Tokmakovs, and V. Kokars, “New Figure of Merit for Tailoring Optimal Structure of the Second Order NLO Chromophore for Guest-Host Polymers,” Mol. Cryst. Liq. Cryst. 485, 903–914 (2008).
[Crossref]

Kajzar, F.

G. Pawlik, A. C. Mitus, I. Rau, and F. Kajzar, “Poling of Electro-Optic Materials: Paradigms and Concepts,” Nonl. Opt. Quant. Opt. 40, 57–63 (2010).

F. Kajzar, O. Krupka, G. Pawlik, A. Mitus, and I. Rau, “Concentration Variation of Quadratic NLO Susceptibility in PMMA-DR1 Side Chain Polymer,” Mol. Cryst. Liq. Cryst. 522, 180–190 (2010).
[Crossref]

G. Pawlik, A.C. Mitus, I. Rau, and F. Kajzar, “Monte Carlo Modeling of Chosen Non-Linear Optical Effects for Systems of Guest Molecules in Polymeric and Liquid-Crystal Matrices,” Nonl. Opt. Quant. Opt. 38, 227–244 (2009).

L. Favaretto, G. Barbarella, I. Rau, F. Kajzar, S. Caria, M. Murgia, and R. Zamboni, “Efficient second harmonic generation from thin films of V-shaped benzo[b]thiophene based molecules,” Opt. Express 17, 2557–2564 (2009).
[Crossref] [PubMed]

G. Pawlik, A.C. Mitus, I. Rau, and F. Kajzar, “Monte Carlo kinetic study of chromophore distribution in poled guest–host systems,” Proc. SPIE 6891, 68910A-1 – 68910A-7 (2008).

A. C. Mitus, G. Pawlik, I. Rau, and F. Kajzar, “Computer Simulations of Poled Guest-Host Systems,” Nonl. Opt. Quant. Opt. 38, 141–162 (2008).

I. Rau and F. Kajzar, “Second harmonic generation and its applications,” Nonl. Opt. Quant. Opt. 38, 99–140 (2008).

I. Rau, P. Armatys, P.-A. Chollet, F. Kajzar, Y. Bretonniere, and C. Andraud, “Aggregation: A new mechanism of relaxation of polar order in electro-optic polymers,” Chem. Phys. Lett. 442, 329–333 (2007).
[Crossref]

G. Pawlik, D. Wronski, A.C. Mitus, I. Rau, C. Andraud, and F. Kajzar, “A new mechanism of relaxation in poled guest–host systems: Monte Carlo analysis of aggregation scenario,” Proc. SPIE 6653, 66530J-1 – 66530J-7 (2007).

G. Pawlik, A.C. Mitus, A. Miniewicz, and F. Kajzar, “Monte Carlo simulations of temperature dependence of the kinetics of diffraction gratings formation in a polymer matrix containing azobenzene chromophores,” J. Nonl. Opt. Phys. Mat. 13, 481–489 (2004).
[Crossref]

D. Morichere, M. Dumont, Y. Levy, G. Gadret, and F. Kajzar, “Nonlinear properties of poled polymer films: SHG and electrooptic measurements,” Proc. SPIE 1560, 214–225 (1991).
[Crossref]

F. Kajzar, A. Jen, and K. S. Lee, “Polymeric Materials and Their Orientation Techniques for Second-Order Nonlinear Optics, Polymers for Photonics Applications II: Nonlinear Optical, Photorefractive and Two-Photon Absorption Polymers,” in Advances in Polymer Science, K. S. Lee and G. Wegner, Eds., Vol. 161 (Springer Verlag, 2003).

Kalluri, S.

Kampars, V.

M. Rutkis, A. Jurgis, V. Kampars, A. Vembris, A. Tokmakovs, and V. Kokars, “New Figure of Merit for Tailoring Optimal Structure of the Second Order NLO Chromophore for Guest-Host Polymers,” Mol. Cryst. Liq. Cryst. 485, 903–914 (2008).
[Crossref]

Kauranen, M.

A. Priimagi, S. Cattaneo, R.H.A. Ras, S. Valkama, O. Ikkala, and M. Kauranen, “Polymer – Dye Complexes: A Facile Method for High Doping Level and Aggregation Control of Dye Molecules,” Chem. Mater. 17, 5798–5802 (2005).
[Crossref]

Kincaid, C.

L. R. Dalton, W. H. Steier, B. H. Robinson, C. Zhang, A. S. Ren, S. M. Garner, A. Chen, T. M. Londergan, L. Irwin, B. Carlson, L. Fifield, G. Phelan, C. Kincaid, J. Amend, and A. K.-J. Jen, “From Molecules to Opto-Chips: Organic Electrooptic Materials,” J. Chem. Mater. 9, 1905–1920 (1999).
[Crossref]

Klafter, J.

R. Metzler and J. Klafter, “The random walk’s guide to anomalous diffusion: A fractional dynamics approach,” Phys. Rep. 339, 1–77 (2000).
[Crossref]

Knoll, W.

Z. Sekkat and W. Knoll, Photoreactive Organic Thin Films (Academic Press, 2002).

Kokars, V.

M. Rutkis, A. Jurgis, V. Kampars, A. Vembris, A. Tokmakovs, and V. Kokars, “New Figure of Merit for Tailoring Optimal Structure of the Second Order NLO Chromophore for Guest-Host Polymers,” Mol. Cryst. Liq. Cryst. 485, 903–914 (2008).
[Crossref]

Krupka, O.

F. Kajzar, O. Krupka, G. Pawlik, A. Mitus, and I. Rau, “Concentration Variation of Quadratic NLO Susceptibility in PMMA-DR1 Side Chain Polymer,” Mol. Cryst. Liq. Cryst. 522, 180–190 (2010).
[Crossref]

Lahlil, K.

J. Reyes-Esqueda, B. Darracq, J. Garcia-Macedo, M. Canva, M. Blanchard-Desce, F. Chaput, K. Lahlil, J.P. Boilot, A. Brun, and Y. Levy, “Effect of chromophore – chromophore electrostatic interactions in the NLO response of functionalized organic – inorganic sol – gel materials,” Opt. Commun. 198, 207–215 (2001).
[Crossref]

Leahy-Hoppa, M. R.

M. R. Leahy-Hoppa, P. D. Cunningham, J. A. French, and L. M. Hayden, “Atomistic Molecular Modeling of the Effect of Chromophore Concentration on the Electro-optic Coefficient in Nonlinear Optical Polymers,” J. Phys. Chem. A 110, 5792–5797 (2006).
[Crossref] [PubMed]

Ledoux, I.

B. H. Robinson, L. R. Dalton, A. W. Harper, A. S. Ren, F. Wang, C. Zhang, G. Todorova, M. S. Lee, R. Aniszfeld, S. M. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledoux, J. Zyss, and A. K. Y. Jen, “The Molecular and Supramolecular Engineering of Polymeric Electrooptic Materials,” Chem. Phys. 245, 35–50 (1999).
[Crossref]

Lee, K. S.

F. Kajzar, A. Jen, and K. S. Lee, “Polymeric Materials and Their Orientation Techniques for Second-Order Nonlinear Optics, Polymers for Photonics Applications II: Nonlinear Optical, Photorefractive and Two-Photon Absorption Polymers,” in Advances in Polymer Science, K. S. Lee and G. Wegner, Eds., Vol. 161 (Springer Verlag, 2003).

Lee, M.

R.R. Barto, C.W. Frank, P.V. Bedworth, R.E. Taylor, W.W. Anderson, S. Ermer, A. K.-Y. Jen, J.D. Luo, H. Ma, H. - Z. Tang, M. Lee, and A.S. Ren, “Bonding and Molecular Environment Effects on Near – Infrared Optical Absorption Behavior in Nonlinear Optical Monoazo Chromophore – Polymer Materials,” Macromol. 39, 7566 – 7577 (2006).
[Crossref]

Lee, M. S.

B. H. Robinson, L. R. Dalton, A. W. Harper, A. S. Ren, F. Wang, C. Zhang, G. Todorova, M. S. Lee, R. Aniszfeld, S. M. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledoux, J. Zyss, and A. K. Y. Jen, “The Molecular and Supramolecular Engineering of Polymeric Electrooptic Materials,” Chem. Phys. 245, 35–50 (1999).
[Crossref]

Lee, V.Y.

C.A. Walsh, D.M. Burland, V.Y. Lee, R.D. Miller, B.A. Smith, R.J. Twieg, and W. Volksen, “Orientational Relaxation in Electric Field Poled Guest – Host and Side – Chain Polymers below Tg,” Macromol. 26, 3720–3722 (1993).
[Crossref]

Lee, Y-Ch.

Y-Ch. Lee, “Role of Carbohydrates in Oxidative Modification of Fibrinogen and Other Plasma Proteins” in Photoactive Organic Materials: Science and Application, F. Kajzar, V. M. Agranovich, and C. Y.-C. Lee, Eds. (NATO ASI Series High Technology Vol. 9, Kluwer, Dordrecht, 1995), pp. 175–181.

Levy, Y.

J. Reyes-Esqueda, B. Darracq, J. Garcia-Macedo, M. Canva, M. Blanchard-Desce, F. Chaput, K. Lahlil, J.P. Boilot, A. Brun, and Y. Levy, “Effect of chromophore – chromophore electrostatic interactions in the NLO response of functionalized organic – inorganic sol – gel materials,” Opt. Commun. 198, 207–215 (2001).
[Crossref]

D. Morichere, M. Dumont, Y. Levy, G. Gadret, and F. Kajzar, “Nonlinear properties of poled polymer films: SHG and electrooptic measurements,” Proc. SPIE 1560, 214–225 (1991).
[Crossref]

Londergan, T. M.

L. R. Dalton, W. H. Steier, B. H. Robinson, C. Zhang, A. S. Ren, S. M. Garner, A. Chen, T. M. Londergan, L. Irwin, B. Carlson, L. Fifield, G. Phelan, C. Kincaid, J. Amend, and A. K.-J. Jen, “From Molecules to Opto-Chips: Organic Electrooptic Materials,” J. Chem. Mater. 9, 1905–1920 (1999).
[Crossref]

Luo, J.D.

R.R. Barto, C.W. Frank, P.V. Bedworth, R.E. Taylor, W.W. Anderson, S. Ermer, A. K.-Y. Jen, J.D. Luo, H. Ma, H. - Z. Tang, M. Lee, and A.S. Ren, “Bonding and Molecular Environment Effects on Near – Infrared Optical Absorption Behavior in Nonlinear Optical Monoazo Chromophore – Polymer Materials,” Macromol. 39, 7566 – 7577 (2006).
[Crossref]

Luo, Y.

Y. Tu, Y. Luo, and H. Agren, “Molecular Dynamics Simulations Applied to Electric Field Induced Second Harmonic Generation in Dipolar Chromophore Solutions,” J. Phys. Chem. B 110, 8971–8977 (2006).
[Crossref] [PubMed]

Ma, H.

R.R. Barto, C.W. Frank, P.V. Bedworth, R.E. Taylor, W.W. Anderson, S. Ermer, A. K.-Y. Jen, J.D. Luo, H. Ma, H. - Z. Tang, M. Lee, and A.S. Ren, “Bonding and Molecular Environment Effects on Near – Infrared Optical Absorption Behavior in Nonlinear Optical Monoazo Chromophore – Polymer Materials,” Macromol. 39, 7566 – 7577 (2006).
[Crossref]

Makowska-Janusik, M.

H. Reis H., M. Makowska-Janusik, and M.G. Papadopoulos, “Nonlinear optical susceptibilities of poled guest–host systems: A computational study,” J. Phys. Chem. B 108, 8931 – 8940 (2004).
[Crossref]

M. Makowska-Janusik, H. Reis, M.G. Papadopoulos, I. Economou, and N.J. Zacharopoulos, “Molecular Dynamics Simulations of Electric Field Poled Nonlinear Optical Chromophores Incorporated in a Polymer Matrix,” J. Phys. Chem. B 108, 588–596 (2004).
[Crossref]

Metzler, R.

R. Metzler and J. Klafter, “The random walk’s guide to anomalous diffusion: A fractional dynamics approach,” Phys. Rep. 339, 1–77 (2000).
[Crossref]

Miller, R.D.

C.A. Walsh, D.M. Burland, V.Y. Lee, R.D. Miller, B.A. Smith, R.J. Twieg, and W. Volksen, “Orientational Relaxation in Electric Field Poled Guest – Host and Side – Chain Polymers below Tg,” Macromol. 26, 3720–3722 (1993).
[Crossref]

Miniewicz, A.

G. Pawlik, A.C. Mitus, A. Miniewicz, and F. Kajzar, “Monte Carlo simulations of temperature dependence of the kinetics of diffraction gratings formation in a polymer matrix containing azobenzene chromophores,” J. Nonl. Opt. Phys. Mat. 13, 481–489 (2004).
[Crossref]

Mitus, A.

F. Kajzar, O. Krupka, G. Pawlik, A. Mitus, and I. Rau, “Concentration Variation of Quadratic NLO Susceptibility in PMMA-DR1 Side Chain Polymer,” Mol. Cryst. Liq. Cryst. 522, 180–190 (2010).
[Crossref]

Mitus, A. C.

G. Pawlik, A. C. Mitus, I. Rau, and F. Kajzar, “Poling of Electro-Optic Materials: Paradigms and Concepts,” Nonl. Opt. Quant. Opt. 40, 57–63 (2010).

A. C. Mitus, G. Pawlik, I. Rau, and F. Kajzar, “Computer Simulations of Poled Guest-Host Systems,” Nonl. Opt. Quant. Opt. 38, 141–162 (2008).

Mitus, A.C.

G. Pawlik, A.C. Mitus, I. Rau, and F. Kajzar, “Monte Carlo Modeling of Chosen Non-Linear Optical Effects for Systems of Guest Molecules in Polymeric and Liquid-Crystal Matrices,” Nonl. Opt. Quant. Opt. 38, 227–244 (2009).

G. Pawlik, A.C. Mitus, I. Rau, and F. Kajzar, “Monte Carlo kinetic study of chromophore distribution in poled guest–host systems,” Proc. SPIE 6891, 68910A-1 – 68910A-7 (2008).

G. Pawlik, D. Wronski, A.C. Mitus, I. Rau, C. Andraud, and F. Kajzar, “A new mechanism of relaxation in poled guest–host systems: Monte Carlo analysis of aggregation scenario,” Proc. SPIE 6653, 66530J-1 – 66530J-7 (2007).

G. Pawlik, A.C. Mitus, A. Miniewicz, and F. Kajzar, “Monte Carlo simulations of temperature dependence of the kinetics of diffraction gratings formation in a polymer matrix containing azobenzene chromophores,” J. Nonl. Opt. Phys. Mat. 13, 481–489 (2004).
[Crossref]

Morichere, D.

D. Morichere, M. Dumont, Y. Levy, G. Gadret, and F. Kajzar, “Nonlinear properties of poled polymer films: SHG and electrooptic measurements,” Proc. SPIE 1560, 214–225 (1991).
[Crossref]

Murgia, M.

Nakajima, K.

A. K. Hamanoue, S. Hirayama, M. Amano, K. Nakajima, T. Nakayama, and H. Teranishi, “Spectroscopic Study of 10-Benzoyl-9-anthrol and Its Anion in Basic Media. An Estimation of Microscopic Polarity of PMMA,” Bull. Chem. Soc. Jpn. 55, 3104–3108 (1982).
[Crossref]

Nakayama, T.

A. K. Hamanoue, S. Hirayama, M. Amano, K. Nakajima, T. Nakayama, and H. Teranishi, “Spectroscopic Study of 10-Benzoyl-9-anthrol and Its Anion in Basic Media. An Estimation of Microscopic Polarity of PMMA,” Bull. Chem. Soc. Jpn. 55, 3104–3108 (1982).
[Crossref]

Nielsen, R.

L. R. Dalton, B. H. Robinson, A. K.-Y. Jen, W. H. Steier, and R. Nielsen, “Systematic Development of High Bandwidth, Low Drive Voltage Organic Electrooptic Devices and Their Applications,” Opt. Mater. 21, 19–28 (2003).
[Crossref]

Oswald, P.

P. Oswald and P. Pieranski, Les cristaix liquides: Concepts et proprits physiques illustrs par des expriences, Vol. 1, p. 51 (Gordon and Breach Science Publishers, Paris, 2000).

Papadopoulos, M.G.

M. Makowska-Janusik, H. Reis, M.G. Papadopoulos, I. Economou, and N.J. Zacharopoulos, “Molecular Dynamics Simulations of Electric Field Poled Nonlinear Optical Chromophores Incorporated in a Polymer Matrix,” J. Phys. Chem. B 108, 588–596 (2004).
[Crossref]

H. Reis H., M. Makowska-Janusik, and M.G. Papadopoulos, “Nonlinear optical susceptibilities of poled guest–host systems: A computational study,” J. Phys. Chem. B 108, 8931 – 8940 (2004).
[Crossref]

Patashinski, A. Z.

A. Z. Patashinski and M.A. Ratner, “Orientation relaxation in glassy polymers. II. Dipole-size spectroscopy and short-time kinetics,” J. Chem. Phys. 103, 10779–10789 (1995).
[Crossref]

Pawlik, G.

F. Kajzar, O. Krupka, G. Pawlik, A. Mitus, and I. Rau, “Concentration Variation of Quadratic NLO Susceptibility in PMMA-DR1 Side Chain Polymer,” Mol. Cryst. Liq. Cryst. 522, 180–190 (2010).
[Crossref]

G. Pawlik, A. C. Mitus, I. Rau, and F. Kajzar, “Poling of Electro-Optic Materials: Paradigms and Concepts,” Nonl. Opt. Quant. Opt. 40, 57–63 (2010).

G. Pawlik, A.C. Mitus, I. Rau, and F. Kajzar, “Monte Carlo Modeling of Chosen Non-Linear Optical Effects for Systems of Guest Molecules in Polymeric and Liquid-Crystal Matrices,” Nonl. Opt. Quant. Opt. 38, 227–244 (2009).

G. Pawlik, A.C. Mitus, I. Rau, and F. Kajzar, “Monte Carlo kinetic study of chromophore distribution in poled guest–host systems,” Proc. SPIE 6891, 68910A-1 – 68910A-7 (2008).

A. C. Mitus, G. Pawlik, I. Rau, and F. Kajzar, “Computer Simulations of Poled Guest-Host Systems,” Nonl. Opt. Quant. Opt. 38, 141–162 (2008).

G. Pawlik, D. Wronski, A.C. Mitus, I. Rau, C. Andraud, and F. Kajzar, “A new mechanism of relaxation in poled guest–host systems: Monte Carlo analysis of aggregation scenario,” Proc. SPIE 6653, 66530J-1 – 66530J-7 (2007).

G. Pawlik, A.C. Mitus, A. Miniewicz, and F. Kajzar, “Monte Carlo simulations of temperature dependence of the kinetics of diffraction gratings formation in a polymer matrix containing azobenzene chromophores,” J. Nonl. Opt. Phys. Mat. 13, 481–489 (2004).
[Crossref]

Pereverzev, Y.V.

Y.V. Pereverzev, O.V. Prezhdo, and L.R. Dalton, “Mean-field theory of acentric order of chromophores with displaced dipoles,” Chem. Phys. Lett. 340, 328–335 (2001).
[Crossref]

Y.V. Pereverzev and O.V. Prezhdo, “Mean-field theory of acentric order of dipolar chromophores in polymeric electro-optic materials,” Phys. Rev. E 62, 8324–8334 (2000).
[Crossref]

Persoons, A.

B. H. Robinson, L. R. Dalton, A. W. Harper, A. S. Ren, F. Wang, C. Zhang, G. Todorova, M. S. Lee, R. Aniszfeld, S. M. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledoux, J. Zyss, and A. K. Y. Jen, “The Molecular and Supramolecular Engineering of Polymeric Electrooptic Materials,” Chem. Phys. 245, 35–50 (1999).
[Crossref]

Phelan, G.

L. R. Dalton, W. H. Steier, B. H. Robinson, C. Zhang, A. S. Ren, S. M. Garner, A. Chen, T. M. Londergan, L. Irwin, B. Carlson, L. Fifield, G. Phelan, C. Kincaid, J. Amend, and A. K.-J. Jen, “From Molecules to Opto-Chips: Organic Electrooptic Materials,” J. Chem. Mater. 9, 1905–1920 (1999).
[Crossref]

Pieranski, P.

P. Oswald and P. Pieranski, Les cristaix liquides: Concepts et proprits physiques illustrs par des expriences, Vol. 1, p. 51 (Gordon and Breach Science Publishers, Paris, 2000).

Prezhdo, O.V.

Y.V. Pereverzev, O.V. Prezhdo, and L.R. Dalton, “Mean-field theory of acentric order of chromophores with displaced dipoles,” Chem. Phys. Lett. 340, 328–335 (2001).
[Crossref]

Y.V. Pereverzev and O.V. Prezhdo, “Mean-field theory of acentric order of dipolar chromophores in polymeric electro-optic materials,” Phys. Rev. E 62, 8324–8334 (2000).
[Crossref]

Priimagi, A.

A. Priimagi, S. Cattaneo, R.H.A. Ras, S. Valkama, O. Ikkala, and M. Kauranen, “Polymer – Dye Complexes: A Facile Method for High Doping Level and Aggregation Control of Dye Molecules,” Chem. Mater. 17, 5798–5802 (2005).
[Crossref]

Ras, R.H.A.

A. Priimagi, S. Cattaneo, R.H.A. Ras, S. Valkama, O. Ikkala, and M. Kauranen, “Polymer – Dye Complexes: A Facile Method for High Doping Level and Aggregation Control of Dye Molecules,” Chem. Mater. 17, 5798–5802 (2005).
[Crossref]

Ratner, M.A.

A. Z. Patashinski and M.A. Ratner, “Orientation relaxation in glassy polymers. II. Dipole-size spectroscopy and short-time kinetics,” J. Chem. Phys. 103, 10779–10789 (1995).
[Crossref]

Rau, I.

F. Kajzar, O. Krupka, G. Pawlik, A. Mitus, and I. Rau, “Concentration Variation of Quadratic NLO Susceptibility in PMMA-DR1 Side Chain Polymer,” Mol. Cryst. Liq. Cryst. 522, 180–190 (2010).
[Crossref]

G. Pawlik, A. C. Mitus, I. Rau, and F. Kajzar, “Poling of Electro-Optic Materials: Paradigms and Concepts,” Nonl. Opt. Quant. Opt. 40, 57–63 (2010).

G. Pawlik, A.C. Mitus, I. Rau, and F. Kajzar, “Monte Carlo Modeling of Chosen Non-Linear Optical Effects for Systems of Guest Molecules in Polymeric and Liquid-Crystal Matrices,” Nonl. Opt. Quant. Opt. 38, 227–244 (2009).

L. Favaretto, G. Barbarella, I. Rau, F. Kajzar, S. Caria, M. Murgia, and R. Zamboni, “Efficient second harmonic generation from thin films of V-shaped benzo[b]thiophene based molecules,” Opt. Express 17, 2557–2564 (2009).
[Crossref] [PubMed]

G. Pawlik, A.C. Mitus, I. Rau, and F. Kajzar, “Monte Carlo kinetic study of chromophore distribution in poled guest–host systems,” Proc. SPIE 6891, 68910A-1 – 68910A-7 (2008).

A. C. Mitus, G. Pawlik, I. Rau, and F. Kajzar, “Computer Simulations of Poled Guest-Host Systems,” Nonl. Opt. Quant. Opt. 38, 141–162 (2008).

I. Rau and F. Kajzar, “Second harmonic generation and its applications,” Nonl. Opt. Quant. Opt. 38, 99–140 (2008).

I. Rau, P. Armatys, P.-A. Chollet, F. Kajzar, Y. Bretonniere, and C. Andraud, “Aggregation: A new mechanism of relaxation of polar order in electro-optic polymers,” Chem. Phys. Lett. 442, 329–333 (2007).
[Crossref]

G. Pawlik, D. Wronski, A.C. Mitus, I. Rau, C. Andraud, and F. Kajzar, “A new mechanism of relaxation in poled guest–host systems: Monte Carlo analysis of aggregation scenario,” Proc. SPIE 6653, 66530J-1 – 66530J-7 (2007).

Reis, H.

M. Makowska-Janusik, H. Reis, M.G. Papadopoulos, I. Economou, and N.J. Zacharopoulos, “Molecular Dynamics Simulations of Electric Field Poled Nonlinear Optical Chromophores Incorporated in a Polymer Matrix,” J. Phys. Chem. B 108, 588–596 (2004).
[Crossref]

Ren, A. S.

L. R. Dalton, W. H. Steier, B. H. Robinson, C. Zhang, A. S. Ren, S. M. Garner, A. Chen, T. M. Londergan, L. Irwin, B. Carlson, L. Fifield, G. Phelan, C. Kincaid, J. Amend, and A. K.-J. Jen, “From Molecules to Opto-Chips: Organic Electrooptic Materials,” J. Chem. Mater. 9, 1905–1920 (1999).
[Crossref]

B. H. Robinson, L. R. Dalton, A. W. Harper, A. S. Ren, F. Wang, C. Zhang, G. Todorova, M. S. Lee, R. Aniszfeld, S. M. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledoux, J. Zyss, and A. K. Y. Jen, “The Molecular and Supramolecular Engineering of Polymeric Electrooptic Materials,” Chem. Phys. 245, 35–50 (1999).
[Crossref]

Ren, A.S.

R.R. Barto, C.W. Frank, P.V. Bedworth, R.E. Taylor, W.W. Anderson, S. Ermer, A. K.-Y. Jen, J.D. Luo, H. Ma, H. - Z. Tang, M. Lee, and A.S. Ren, “Bonding and Molecular Environment Effects on Near – Infrared Optical Absorption Behavior in Nonlinear Optical Monoazo Chromophore – Polymer Materials,” Macromol. 39, 7566 – 7577 (2006).
[Crossref]

Reyes-Esqueda, J.

J. Reyes-Esqueda, B. Darracq, J. Garcia-Macedo, M. Canva, M. Blanchard-Desce, F. Chaput, K. Lahlil, J.P. Boilot, A. Brun, and Y. Levy, “Effect of chromophore – chromophore electrostatic interactions in the NLO response of functionalized organic – inorganic sol – gel materials,” Opt. Commun. 198, 207–215 (2001).
[Crossref]

Robinson, B. H.

L. R. Dalton, B. H. Robinson, A. K.-Y. Jen, W. H. Steier, and R. Nielsen, “Systematic Development of High Bandwidth, Low Drive Voltage Organic Electrooptic Devices and Their Applications,” Opt. Mater. 21, 19–28 (2003).
[Crossref]

B. H. Robinson and L. R. Dalton, “Monte Carlo Statistical Mechanical Simulations of the Competition of Intermolecular Electrostatic and Poling Field Interactions in Defining Macroscopic Electrooptic Activity for Organic Chromophore/Polymer Materials,” J. Phys. Chem. A 104, 4785–4795 (2000).
[Crossref]

B. H. Robinson, L. R. Dalton, A. W. Harper, A. S. Ren, F. Wang, C. Zhang, G. Todorova, M. S. Lee, R. Aniszfeld, S. M. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledoux, J. Zyss, and A. K. Y. Jen, “The Molecular and Supramolecular Engineering of Polymeric Electrooptic Materials,” Chem. Phys. 245, 35–50 (1999).
[Crossref]

L. R. Dalton, W. H. Steier, B. H. Robinson, C. Zhang, A. S. Ren, S. M. Garner, A. Chen, T. M. Londergan, L. Irwin, B. Carlson, L. Fifield, G. Phelan, C. Kincaid, J. Amend, and A. K.-J. Jen, “From Molecules to Opto-Chips: Organic Electrooptic Materials,” J. Chem. Mater. 9, 1905–1920 (1999).
[Crossref]

A. W. Harper, S. S. Sun, L. R. Dalton, S. M. Garner, A. Chen, S. Kalluri, W. H. Steier, and B. H. Robinson, “Translating Microscopic Optical Nonlinearity to Macroscopic Optical Nonlinearity: The Role of Chromophore-Chromophore Electrostatic Interactions,” J. Opt. Soc. Am. B 15, 329–337 (1998).
[Crossref]

Robinson, B.H.

H.L. Rommel and B.H. Robinson, “Orientation of Electro-optic Chromophores under Poling Conditions: A Spheroidal Model,” J. Phys. Chem. C 111, 18765–18777 (2007).
[Crossref]

Rommel, H.L.

H.L. Rommel and B.H. Robinson, “Orientation of Electro-optic Chromophores under Poling Conditions: A Spheroidal Model,” J. Phys. Chem. C 111, 18765–18777 (2007).
[Crossref]

Rutkis, M.

M. Rutkis, A. Jurgis, V. Kampars, A. Vembris, A. Tokmakovs, and V. Kokars, “New Figure of Merit for Tailoring Optimal Structure of the Second Order NLO Chromophore for Guest-Host Polymers,” Mol. Cryst. Liq. Cryst. 485, 903–914 (2008).
[Crossref]

Sekkat, Z.

Z. Sekkat and W. Knoll, Photoreactive Organic Thin Films (Academic Press, 2002).

Smith, B.A.

C.A. Walsh, D.M. Burland, V.Y. Lee, R.D. Miller, B.A. Smith, R.J. Twieg, and W. Volksen, “Orientational Relaxation in Electric Field Poled Guest – Host and Side – Chain Polymers below Tg,” Macromol. 26, 3720–3722 (1993).
[Crossref]

Steier, W. H.

L. R. Dalton, B. H. Robinson, A. K.-Y. Jen, W. H. Steier, and R. Nielsen, “Systematic Development of High Bandwidth, Low Drive Voltage Organic Electrooptic Devices and Their Applications,” Opt. Mater. 21, 19–28 (2003).
[Crossref]

L. R. Dalton, W. H. Steier, B. H. Robinson, C. Zhang, A. S. Ren, S. M. Garner, A. Chen, T. M. Londergan, L. Irwin, B. Carlson, L. Fifield, G. Phelan, C. Kincaid, J. Amend, and A. K.-J. Jen, “From Molecules to Opto-Chips: Organic Electrooptic Materials,” J. Chem. Mater. 9, 1905–1920 (1999).
[Crossref]

B. H. Robinson, L. R. Dalton, A. W. Harper, A. S. Ren, F. Wang, C. Zhang, G. Todorova, M. S. Lee, R. Aniszfeld, S. M. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledoux, J. Zyss, and A. K. Y. Jen, “The Molecular and Supramolecular Engineering of Polymeric Electrooptic Materials,” Chem. Phys. 245, 35–50 (1999).
[Crossref]

A. W. Harper, S. S. Sun, L. R. Dalton, S. M. Garner, A. Chen, S. Kalluri, W. H. Steier, and B. H. Robinson, “Translating Microscopic Optical Nonlinearity to Macroscopic Optical Nonlinearity: The Role of Chromophore-Chromophore Electrostatic Interactions,” J. Opt. Soc. Am. B 15, 329–337 (1998).
[Crossref]

Sun, S. S.

Tang, H. - Z.

R.R. Barto, C.W. Frank, P.V. Bedworth, R.E. Taylor, W.W. Anderson, S. Ermer, A. K.-Y. Jen, J.D. Luo, H. Ma, H. - Z. Tang, M. Lee, and A.S. Ren, “Bonding and Molecular Environment Effects on Near – Infrared Optical Absorption Behavior in Nonlinear Optical Monoazo Chromophore – Polymer Materials,” Macromol. 39, 7566 – 7577 (2006).
[Crossref]

Taylor, R.E.

R.R. Barto, C.W. Frank, P.V. Bedworth, R.E. Taylor, W.W. Anderson, S. Ermer, A. K.-Y. Jen, J.D. Luo, H. Ma, H. - Z. Tang, M. Lee, and A.S. Ren, “Bonding and Molecular Environment Effects on Near – Infrared Optical Absorption Behavior in Nonlinear Optical Monoazo Chromophore – Polymer Materials,” Macromol. 39, 7566 – 7577 (2006).
[Crossref]

Teranishi, H.

A. K. Hamanoue, S. Hirayama, M. Amano, K. Nakajima, T. Nakayama, and H. Teranishi, “Spectroscopic Study of 10-Benzoyl-9-anthrol and Its Anion in Basic Media. An Estimation of Microscopic Polarity of PMMA,” Bull. Chem. Soc. Jpn. 55, 3104–3108 (1982).
[Crossref]

Todorova, G.

B. H. Robinson, L. R. Dalton, A. W. Harper, A. S. Ren, F. Wang, C. Zhang, G. Todorova, M. S. Lee, R. Aniszfeld, S. M. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledoux, J. Zyss, and A. K. Y. Jen, “The Molecular and Supramolecular Engineering of Polymeric Electrooptic Materials,” Chem. Phys. 245, 35–50 (1999).
[Crossref]

Tokmakovs, A.

M. Rutkis, A. Jurgis, V. Kampars, A. Vembris, A. Tokmakovs, and V. Kokars, “New Figure of Merit for Tailoring Optimal Structure of the Second Order NLO Chromophore for Guest-Host Polymers,” Mol. Cryst. Liq. Cryst. 485, 903–914 (2008).
[Crossref]

Tu, Y.

Y. Tu, Q. Zhang, and H. Agren, “Electric field poled polymeric nonlinear optical systems: molecular dynamics simulations of poly(methyl methacrylate) doped with disperse red chromophores,” J. Phys. Chem. B 111, 3591–3598 (2007).
[Crossref] [PubMed]

Y. Tu, Y. Luo, and H. Agren, “Molecular Dynamics Simulations Applied to Electric Field Induced Second Harmonic Generation in Dipolar Chromophore Solutions,” J. Phys. Chem. B 110, 8971–8977 (2006).
[Crossref] [PubMed]

Twieg, R.J.

C.A. Walsh, D.M. Burland, V.Y. Lee, R.D. Miller, B.A. Smith, R.J. Twieg, and W. Volksen, “Orientational Relaxation in Electric Field Poled Guest – Host and Side – Chain Polymers below Tg,” Macromol. 26, 3720–3722 (1993).
[Crossref]

Valkama, S.

A. Priimagi, S. Cattaneo, R.H.A. Ras, S. Valkama, O. Ikkala, and M. Kauranen, “Polymer – Dye Complexes: A Facile Method for High Doping Level and Aggregation Control of Dye Molecules,” Chem. Mater. 17, 5798–5802 (2005).
[Crossref]

Vembris, A.

M. Rutkis, A. Jurgis, V. Kampars, A. Vembris, A. Tokmakovs, and V. Kokars, “New Figure of Merit for Tailoring Optimal Structure of the Second Order NLO Chromophore for Guest-Host Polymers,” Mol. Cryst. Liq. Cryst. 485, 903–914 (2008).
[Crossref]

Volksen, W.

C.A. Walsh, D.M. Burland, V.Y. Lee, R.D. Miller, B.A. Smith, R.J. Twieg, and W. Volksen, “Orientational Relaxation in Electric Field Poled Guest – Host and Side – Chain Polymers below Tg,” Macromol. 26, 3720–3722 (1993).
[Crossref]

Walsh, C.A.

C.A. Walsh, D.M. Burland, V.Y. Lee, R.D. Miller, B.A. Smith, R.J. Twieg, and W. Volksen, “Orientational Relaxation in Electric Field Poled Guest – Host and Side – Chain Polymers below Tg,” Macromol. 26, 3720–3722 (1993).
[Crossref]

Wang, F.

B. H. Robinson, L. R. Dalton, A. W. Harper, A. S. Ren, F. Wang, C. Zhang, G. Todorova, M. S. Lee, R. Aniszfeld, S. M. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledoux, J. Zyss, and A. K. Y. Jen, “The Molecular and Supramolecular Engineering of Polymeric Electrooptic Materials,” Chem. Phys. 245, 35–50 (1999).
[Crossref]

Won-Kook, K.

K. Won-Kook and L.M. Hayden, “Fully atomistic modeling of an electric field poled guest–host nonlinear optical polymer,” J. Chem. Phys. 111, 5212–5222 (1999).
[Crossref]

Wronski, D.

G. Pawlik, D. Wronski, A.C. Mitus, I. Rau, C. Andraud, and F. Kajzar, “A new mechanism of relaxation in poled guest–host systems: Monte Carlo analysis of aggregation scenario,” Proc. SPIE 6653, 66530J-1 – 66530J-7 (2007).

Zacharopoulos, N.J.

M. Makowska-Janusik, H. Reis, M.G. Papadopoulos, I. Economou, and N.J. Zacharopoulos, “Molecular Dynamics Simulations of Electric Field Poled Nonlinear Optical Chromophores Incorporated in a Polymer Matrix,” J. Phys. Chem. B 108, 588–596 (2004).
[Crossref]

Zamboni, R.

Zhang, C.

B. H. Robinson, L. R. Dalton, A. W. Harper, A. S. Ren, F. Wang, C. Zhang, G. Todorova, M. S. Lee, R. Aniszfeld, S. M. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledoux, J. Zyss, and A. K. Y. Jen, “The Molecular and Supramolecular Engineering of Polymeric Electrooptic Materials,” Chem. Phys. 245, 35–50 (1999).
[Crossref]

L. R. Dalton, W. H. Steier, B. H. Robinson, C. Zhang, A. S. Ren, S. M. Garner, A. Chen, T. M. Londergan, L. Irwin, B. Carlson, L. Fifield, G. Phelan, C. Kincaid, J. Amend, and A. K.-J. Jen, “From Molecules to Opto-Chips: Organic Electrooptic Materials,” J. Chem. Mater. 9, 1905–1920 (1999).
[Crossref]

Zhang, Q.

Y. Tu, Q. Zhang, and H. Agren, “Electric field poled polymeric nonlinear optical systems: molecular dynamics simulations of poly(methyl methacrylate) doped with disperse red chromophores,” J. Phys. Chem. B 111, 3591–3598 (2007).
[Crossref] [PubMed]

Zyss, J.

B. H. Robinson, L. R. Dalton, A. W. Harper, A. S. Ren, F. Wang, C. Zhang, G. Todorova, M. S. Lee, R. Aniszfeld, S. M. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledoux, J. Zyss, and A. K. Y. Jen, “The Molecular and Supramolecular Engineering of Polymeric Electrooptic Materials,” Chem. Phys. 245, 35–50 (1999).
[Crossref]

Bull. Chem. Soc. Jpn. (1)

A. K. Hamanoue, S. Hirayama, M. Amano, K. Nakajima, T. Nakayama, and H. Teranishi, “Spectroscopic Study of 10-Benzoyl-9-anthrol and Its Anion in Basic Media. An Estimation of Microscopic Polarity of PMMA,” Bull. Chem. Soc. Jpn. 55, 3104–3108 (1982).
[Crossref]

Chem. Mater. (1)

A. Priimagi, S. Cattaneo, R.H.A. Ras, S. Valkama, O. Ikkala, and M. Kauranen, “Polymer – Dye Complexes: A Facile Method for High Doping Level and Aggregation Control of Dye Molecules,” Chem. Mater. 17, 5798–5802 (2005).
[Crossref]

Chem. Phys. (1)

B. H. Robinson, L. R. Dalton, A. W. Harper, A. S. Ren, F. Wang, C. Zhang, G. Todorova, M. S. Lee, R. Aniszfeld, S. M. Garner, A. Chen, W. H. Steier, S. Houbrecht, A. Persoons, I. Ledoux, J. Zyss, and A. K. Y. Jen, “The Molecular and Supramolecular Engineering of Polymeric Electrooptic Materials,” Chem. Phys. 245, 35–50 (1999).
[Crossref]

Chem. Phys. Lett. (2)

I. Rau, P. Armatys, P.-A. Chollet, F. Kajzar, Y. Bretonniere, and C. Andraud, “Aggregation: A new mechanism of relaxation of polar order in electro-optic polymers,” Chem. Phys. Lett. 442, 329–333 (2007).
[Crossref]

Y.V. Pereverzev, O.V. Prezhdo, and L.R. Dalton, “Mean-field theory of acentric order of chromophores with displaced dipoles,” Chem. Phys. Lett. 340, 328–335 (2001).
[Crossref]

J. Chem. Mater. (1)

L. R. Dalton, W. H. Steier, B. H. Robinson, C. Zhang, A. S. Ren, S. M. Garner, A. Chen, T. M. Londergan, L. Irwin, B. Carlson, L. Fifield, G. Phelan, C. Kincaid, J. Amend, and A. K.-J. Jen, “From Molecules to Opto-Chips: Organic Electrooptic Materials,” J. Chem. Mater. 9, 1905–1920 (1999).
[Crossref]

J. Chem. Phys. (2)

K. Won-Kook and L.M. Hayden, “Fully atomistic modeling of an electric field poled guest–host nonlinear optical polymer,” J. Chem. Phys. 111, 5212–5222 (1999).
[Crossref]

A. Z. Patashinski and M.A. Ratner, “Orientation relaxation in glassy polymers. II. Dipole-size spectroscopy and short-time kinetics,” J. Chem. Phys. 103, 10779–10789 (1995).
[Crossref]

J. Nonl. Opt. Phys. Mat. (1)

G. Pawlik, A.C. Mitus, A. Miniewicz, and F. Kajzar, “Monte Carlo simulations of temperature dependence of the kinetics of diffraction gratings formation in a polymer matrix containing azobenzene chromophores,” J. Nonl. Opt. Phys. Mat. 13, 481–489 (2004).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. A (2)

B. H. Robinson and L. R. Dalton, “Monte Carlo Statistical Mechanical Simulations of the Competition of Intermolecular Electrostatic and Poling Field Interactions in Defining Macroscopic Electrooptic Activity for Organic Chromophore/Polymer Materials,” J. Phys. Chem. A 104, 4785–4795 (2000).
[Crossref]

M. R. Leahy-Hoppa, P. D. Cunningham, J. A. French, and L. M. Hayden, “Atomistic Molecular Modeling of the Effect of Chromophore Concentration on the Electro-optic Coefficient in Nonlinear Optical Polymers,” J. Phys. Chem. A 110, 5792–5797 (2006).
[Crossref] [PubMed]

J. Phys. Chem. B (4)

H. Reis H., M. Makowska-Janusik, and M.G. Papadopoulos, “Nonlinear optical susceptibilities of poled guest–host systems: A computational study,” J. Phys. Chem. B 108, 8931 – 8940 (2004).
[Crossref]

Y. Tu, Y. Luo, and H. Agren, “Molecular Dynamics Simulations Applied to Electric Field Induced Second Harmonic Generation in Dipolar Chromophore Solutions,” J. Phys. Chem. B 110, 8971–8977 (2006).
[Crossref] [PubMed]

Y. Tu, Q. Zhang, and H. Agren, “Electric field poled polymeric nonlinear optical systems: molecular dynamics simulations of poly(methyl methacrylate) doped with disperse red chromophores,” J. Phys. Chem. B 111, 3591–3598 (2007).
[Crossref] [PubMed]

M. Makowska-Janusik, H. Reis, M.G. Papadopoulos, I. Economou, and N.J. Zacharopoulos, “Molecular Dynamics Simulations of Electric Field Poled Nonlinear Optical Chromophores Incorporated in a Polymer Matrix,” J. Phys. Chem. B 108, 588–596 (2004).
[Crossref]

J. Phys. Chem. C (1)

H.L. Rommel and B.H. Robinson, “Orientation of Electro-optic Chromophores under Poling Conditions: A Spheroidal Model,” J. Phys. Chem. C 111, 18765–18777 (2007).
[Crossref]

J. Phys.: Condens. Matter (1)

L. R. Dalton, “Rational Design of Organic Electrooptic Materials,” J. Phys.: Condens. Matter 15, R897–R934 (2003).
[Crossref]

Macromol. (2)

C.A. Walsh, D.M. Burland, V.Y. Lee, R.D. Miller, B.A. Smith, R.J. Twieg, and W. Volksen, “Orientational Relaxation in Electric Field Poled Guest – Host and Side – Chain Polymers below Tg,” Macromol. 26, 3720–3722 (1993).
[Crossref]

R.R. Barto, C.W. Frank, P.V. Bedworth, R.E. Taylor, W.W. Anderson, S. Ermer, A. K.-Y. Jen, J.D. Luo, H. Ma, H. - Z. Tang, M. Lee, and A.S. Ren, “Bonding and Molecular Environment Effects on Near – Infrared Optical Absorption Behavior in Nonlinear Optical Monoazo Chromophore – Polymer Materials,” Macromol. 39, 7566 – 7577 (2006).
[Crossref]

Mol. Cryst. Liq. Cryst. (2)

F. Kajzar, O. Krupka, G. Pawlik, A. Mitus, and I. Rau, “Concentration Variation of Quadratic NLO Susceptibility in PMMA-DR1 Side Chain Polymer,” Mol. Cryst. Liq. Cryst. 522, 180–190 (2010).
[Crossref]

M. Rutkis, A. Jurgis, V. Kampars, A. Vembris, A. Tokmakovs, and V. Kokars, “New Figure of Merit for Tailoring Optimal Structure of the Second Order NLO Chromophore for Guest-Host Polymers,” Mol. Cryst. Liq. Cryst. 485, 903–914 (2008).
[Crossref]

Nonl. Opt. Quant. Opt. (4)

G. Pawlik, A.C. Mitus, I. Rau, and F. Kajzar, “Monte Carlo Modeling of Chosen Non-Linear Optical Effects for Systems of Guest Molecules in Polymeric and Liquid-Crystal Matrices,” Nonl. Opt. Quant. Opt. 38, 227–244 (2009).

G. Pawlik, A. C. Mitus, I. Rau, and F. Kajzar, “Poling of Electro-Optic Materials: Paradigms and Concepts,” Nonl. Opt. Quant. Opt. 40, 57–63 (2010).

A. C. Mitus, G. Pawlik, I. Rau, and F. Kajzar, “Computer Simulations of Poled Guest-Host Systems,” Nonl. Opt. Quant. Opt. 38, 141–162 (2008).

I. Rau and F. Kajzar, “Second harmonic generation and its applications,” Nonl. Opt. Quant. Opt. 38, 99–140 (2008).

Opt. Commun. (1)

J. Reyes-Esqueda, B. Darracq, J. Garcia-Macedo, M. Canva, M. Blanchard-Desce, F. Chaput, K. Lahlil, J.P. Boilot, A. Brun, and Y. Levy, “Effect of chromophore – chromophore electrostatic interactions in the NLO response of functionalized organic – inorganic sol – gel materials,” Opt. Commun. 198, 207–215 (2001).
[Crossref]

Opt. Express (1)

Opt. Mater. (1)

L. R. Dalton, B. H. Robinson, A. K.-Y. Jen, W. H. Steier, and R. Nielsen, “Systematic Development of High Bandwidth, Low Drive Voltage Organic Electrooptic Devices and Their Applications,” Opt. Mater. 21, 19–28 (2003).
[Crossref]

Phys. Rep. (1)

R. Metzler and J. Klafter, “The random walk’s guide to anomalous diffusion: A fractional dynamics approach,” Phys. Rep. 339, 1–77 (2000).
[Crossref]

Phys. Rev. E (1)

Y.V. Pereverzev and O.V. Prezhdo, “Mean-field theory of acentric order of dipolar chromophores in polymeric electro-optic materials,” Phys. Rev. E 62, 8324–8334 (2000).
[Crossref]

Proc. SPIE (3)

D. Morichere, M. Dumont, Y. Levy, G. Gadret, and F. Kajzar, “Nonlinear properties of poled polymer films: SHG and electrooptic measurements,” Proc. SPIE 1560, 214–225 (1991).
[Crossref]

G. Pawlik, A.C. Mitus, I. Rau, and F. Kajzar, “Monte Carlo kinetic study of chromophore distribution in poled guest–host systems,” Proc. SPIE 6891, 68910A-1 – 68910A-7 (2008).

G. Pawlik, D. Wronski, A.C. Mitus, I. Rau, C. Andraud, and F. Kajzar, “A new mechanism of relaxation in poled guest–host systems: Monte Carlo analysis of aggregation scenario,” Proc. SPIE 6653, 66530J-1 – 66530J-7 (2007).

Other (5)

F. Kajzar, A. Jen, and K. S. Lee, “Polymeric Materials and Their Orientation Techniques for Second-Order Nonlinear Optics, Polymers for Photonics Applications II: Nonlinear Optical, Photorefractive and Two-Photon Absorption Polymers,” in Advances in Polymer Science, K. S. Lee and G. Wegner, Eds., Vol. 161 (Springer Verlag, 2003).

P. Oswald and P. Pieranski, Les cristaix liquides: Concepts et proprits physiques illustrs par des expriences, Vol. 1, p. 51 (Gordon and Breach Science Publishers, Paris, 2000).

Z. Sekkat and W. Knoll, Photoreactive Organic Thin Films (Academic Press, 2002).

Y-Ch. Lee, “Role of Carbohydrates in Oxidative Modification of Fibrinogen and Other Plasma Proteins” in Photoactive Organic Materials: Science and Application, F. Kajzar, V. M. Agranovich, and C. Y.-C. Lee, Eds. (NATO ASI Series High Technology Vol. 9, Kluwer, Dordrecht, 1995), pp. 175–181.

L. R. Dalton, “Nonlinear Optical Polymeric Materials: From Chromophore Design to Commercial Applications” in Polymers for Photonics Applications I, Advances in Polymer Science, K. S. Lee, Ed., Vol. 158 (Springer Berlin/Heidelberg Publisher, 2002), pp. 1–86.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Absorption spectra of thin films of PMMA–DR1 with different chromophore concentrations. The optical densities of the thin films were not normalized for film thickness and thus do not scale linearly with concentration.

Fig. 2.
Fig. 2.

Molar chromophore concentration (in percents) dependence of dsp = χ (2) XXZ /2 and dpp = χ (2) ZZZ /2 for the studied thin films. The error bar (not shown) is 10%.

Fig. 3.
Fig. 3.

Poling electric field as function of number of MC steps: system with pre–poling phase (thin solid line) and without pre–poling phase (dashed line).

Fig. 4.
Fig. 4.

Plot of load parameter N < cos3 θ > ∝ χ (2) ZZZ as a function of number density N: with pre–poling history (left) and without pre–poling history (right) (note different scales on vertical axes).

Fig. 5.
Fig. 5.

MC kinetics of acentric order parameter < cos3 θ > for N = 2.16 × 1020/cc. System with pre–poling history (left) and without pre–poling history (right). Solid lines: stretched–exponential fits.

Fig. 6.
Fig. 6.

Configuration of dipoles: initial configuration (a); after 8 × 105 MCS, without pre–poling history (b); after 105 MCS without electric field (pre–poling period) (c); after 8 × 105 MCS for poling started after 105 MCS (d). Polymeric chains are not shown.

Fig. 7.
Fig. 7.

Plot of normalized susceptibility χ (2)/χ (2) max against normalized concentration of dipoles (see text). 〇: experiment, ×: MC simulations, thick solid line: after Ref. [8], thin solid line: after Ref. [6].

Fig. 8.
Fig. 8.

Equilibrium load parameter �� = N < cos3 θ > as function of pre–poling interval length �� for reduced density N = 5.12 × 1020/cc.

Tables (1)

Tables Icon

Table 1. Maximum absorption wavelength for studied thin films for different DR1 concentrations.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

χ ZZZ ( 2 ) ( 2 ω ; ω , ω ) = NF β zzz ( 2 ω ; ω , ω ) cos 3 θ ,
χ XXZ ( 2 ) ( 2 ω ; ω , ω ) = 1 2 NF β zzz ( 2 ω ; ω , ω ) sin 2 θ cos θ ,
Cw = N seg M dye N seg M seg + N mon M mon ,
U = i j 1 4 π ε 0 ε 1 r ij 3 [ μ i · μ j 3 ( μ i · r ̂ ij ) ( μ j · r ̂ ij ) ] i E · μ i + ε LJ i j ( σ r ij ) 12 ,

Metrics