Abstract

We propose and experimentally demonstrate a new method to extend the range of Brillouin optical time domain analysis (BOTDA) systems. It exploits the virtual transparency created by second-order Raman pumping in optical fibers. The idea is theoretically analyzed and experimentally demonstrated in a 50 km fiber. By working close to transparency, we also show that the measurement length of the BOTDA can be increased up to 100 km with 2 meter resolution. We envisage extensions of this technique to measurement lengths well beyond this value, as long as the issue of relative intensity noise (RIN) of the primary Raman pump can be avoided.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2(5), 352–354 (1990).
    [CrossRef]
  2. X. Bao, D. J. Webb, and D. A. Jackson, “32-km distributed temperature sensor based on Brillouin loss in an optical fiber,” Opt. Lett. 18(18), 1561–1563 (1993), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-18-18-1561 .
    [CrossRef] [PubMed]
  3. M. Niklès, L. Thévenaz, and P. A. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett. 21(10), 758–760 (1996), http://www.opticsinfobase.org/abstract.cfm?URI=ol-21-10-758 .
    [CrossRef] [PubMed]
  4. M. DeMerchant, A. Brown, X. Bao, and T. Bremner, “Structural monitoring by use of a Brillouin distributed sensor,” Appl. Opt. 38(13), 2755–2759 (1999), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-13-2755 .
    [CrossRef]
  5. H. Naruse, M. Tateda, H. Ohno, and A. Shimada, “Dependence of the Brillouin gain spectrum on linear strain distribution for optical time-domain reflectometer-type strain sensors,” Appl. Opt. 41(34), 7212–7217 (2002), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-41-34-7212 .
    [CrossRef] [PubMed]
  6. T. Horiguchi and M. Tateda, “Optical-fiber-attenuation investigation using stimulated Brillouin scattering between a pulse and a continuous wave,” Opt. Lett. 14(8), 408–410 (1989), http://www.opticsinfobase.org/abstract.cfm?URI=ol-14-8-408 .
    [CrossRef] [PubMed]
  7. K.-Y. Song, M. González Herráez, and L. Thévenaz, “Mapping of Chromatic-Dispersion Distribution Along Optical Fibers With 20-m Spatial Resolution,” J. Lightwave Technol. 23, 4140- (2005) http://www.opticsinfobase.org/JLT/abstract.cfm?URI=JLT-23-12-4140
  8. A. Vedadi, D. Alasia, E. Lantz, H. Maillotte, L. Thévenaz, M. González-Herráez, and T. Sylvestre, “Brillouin Optical Time-Domain Analysis of Fiber-Optic Parametric Amplifiers,” IEEE Photon. Technol. Lett. 19(3), 179–181 (2007).
    [CrossRef]
  9. M. Niklès, “Fibre optic distributed scattering sensing system: Perspectives and challenges for high performance applications”. Third European Workshop on Optical Fiber Sensors, 66190D, Italy, 2007.
  10. A. W. Brown, M. D. DeMerchant, X. Bao, and T. W. Bremner, “Spatial Resolution Enhancement of a Brillouin-Distributed Sensor Using a Novel Signal Processing Method,” J. Lightwave Technol. 17(7), 1179–1183 (1999), http://www.opticsinfobase.org/JLT/abstract.cfm?URI=JLT-17-7-1179 .
    [CrossRef]
  11. M. A. Soto, G. Bolognini, and F. Di Pasquale, “Analysis of optical pulse coding in spontaneous Brillouin-based distributed temperature sensors,” Opt. Express 16(23), 19097–19111 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-23-19097 .
    [CrossRef]
  12. M. N. Alahbabi, Y. T. Cho, and T. P. Newson, “150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification,” J. Opt. Soc. Am. B 22(6), 1321–1324 (2005), http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-22-6-1321 .
    [CrossRef]
  13. F. Rodriguez-Barrios, S. Martín-López, A. Carrasco-Sanz, P. Corredera, J. D. Ania-Castañón, L. Thévenaz, and M. González-Herráez, “Distributed Brillouin fiber sensor assisted by first-order Raman amplification,” J. Lightwave Technol. 28(15), 2162–2172 (2010), http://dx.doi.org/10.1109/JLT.2010.2051141 .
    [CrossRef]
  14. G. Bolognini and M. A. Soto, “Optical pulse coding in hybrid distributed sensing based on Raman and Brillouin scattering employing Fabry-Perot lasers,” Opt. Express 18(8), 8459–8465 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-8-8459 .
    [CrossRef] [PubMed]
  15. J. D. Ania-Castañón, “Quasi-lossless transmission using second-order Raman amplification and fibre Bragg gratings,” Opt. Express 12(19), 4372–4377 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-19-4372 .
    [CrossRef] [PubMed]
  16. M. Alcón-Camas, and J. D. Ania-Castañón, “Relative Intensity Noise transfer in high-order distributed amplification through ultra-long fibre cavities”, in Proc. of SPIE Photonics North 2010, Session 14, Niagara Falls, Canada.
  17. B. Bristiel, P. Shifeng Jiang, Gallion, and E. Pincemin, “New model of noise figure and RIN transfer in fiber Raman amplifiers,” IEEE Photon. Technol. Lett. 18(8), 980–982 (2006).
    [CrossRef]
  18. S. Foaleng Mafang, F. Rodriguez, S. Martin-Lopez, M. González-Herráez, and L. Thévenaz, “Impact of self phase modulation on the performance of Brillouin distributed fibre sensors” accepted for presentation at the Fourth European Workshop on Optical Fiber Sensors (EWOFS 2010), Porto, Portugal.
  19. V. Lecœuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, “25 km Brillouin based single-ended distributed fibre sensor for threshold detection of temperature or strain,” Opt. Commun. 168(1-4), 95–102 (1999).
    [CrossRef]
  20. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. Academic Press, San Diego, 2007. Chap. 9.

2010 (2)

2008 (1)

2007 (1)

A. Vedadi, D. Alasia, E. Lantz, H. Maillotte, L. Thévenaz, M. González-Herráez, and T. Sylvestre, “Brillouin Optical Time-Domain Analysis of Fiber-Optic Parametric Amplifiers,” IEEE Photon. Technol. Lett. 19(3), 179–181 (2007).
[CrossRef]

2006 (1)

B. Bristiel, P. Shifeng Jiang, Gallion, and E. Pincemin, “New model of noise figure and RIN transfer in fiber Raman amplifiers,” IEEE Photon. Technol. Lett. 18(8), 980–982 (2006).
[CrossRef]

2005 (1)

2004 (1)

2002 (1)

1999 (3)

1996 (1)

1993 (1)

1990 (1)

T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2(5), 352–354 (1990).
[CrossRef]

1989 (1)

Alahbabi, M. N.

Alasia, D.

A. Vedadi, D. Alasia, E. Lantz, H. Maillotte, L. Thévenaz, M. González-Herráez, and T. Sylvestre, “Brillouin Optical Time-Domain Analysis of Fiber-Optic Parametric Amplifiers,” IEEE Photon. Technol. Lett. 19(3), 179–181 (2007).
[CrossRef]

Ania-Castañón, J. D.

Bao, X.

Bolognini, G.

Bremner, T.

Bremner, T. W.

Bristiel, B.

B. Bristiel, P. Shifeng Jiang, Gallion, and E. Pincemin, “New model of noise figure and RIN transfer in fiber Raman amplifiers,” IEEE Photon. Technol. Lett. 18(8), 980–982 (2006).
[CrossRef]

Brown, A.

Brown, A. W.

Carrasco-Sanz, A.

Cho, Y. T.

Corredera, P.

DeMerchant, M.

DeMerchant, M. D.

Di Pasquale, F.

Gallion,

B. Bristiel, P. Shifeng Jiang, Gallion, and E. Pincemin, “New model of noise figure and RIN transfer in fiber Raman amplifiers,” IEEE Photon. Technol. Lett. 18(8), 980–982 (2006).
[CrossRef]

González-Herráez, M.

F. Rodriguez-Barrios, S. Martín-López, A. Carrasco-Sanz, P. Corredera, J. D. Ania-Castañón, L. Thévenaz, and M. González-Herráez, “Distributed Brillouin fiber sensor assisted by first-order Raman amplification,” J. Lightwave Technol. 28(15), 2162–2172 (2010), http://dx.doi.org/10.1109/JLT.2010.2051141 .
[CrossRef]

A. Vedadi, D. Alasia, E. Lantz, H. Maillotte, L. Thévenaz, M. González-Herráez, and T. Sylvestre, “Brillouin Optical Time-Domain Analysis of Fiber-Optic Parametric Amplifiers,” IEEE Photon. Technol. Lett. 19(3), 179–181 (2007).
[CrossRef]

Horiguchi, T.

Jackson, D. A.

V. Lecœuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, “25 km Brillouin based single-ended distributed fibre sensor for threshold detection of temperature or strain,” Opt. Commun. 168(1-4), 95–102 (1999).
[CrossRef]

X. Bao, D. J. Webb, and D. A. Jackson, “32-km distributed temperature sensor based on Brillouin loss in an optical fiber,” Opt. Lett. 18(18), 1561–1563 (1993), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-18-18-1561 .
[CrossRef] [PubMed]

Kurashima, T.

T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2(5), 352–354 (1990).
[CrossRef]

Lantz, E.

A. Vedadi, D. Alasia, E. Lantz, H. Maillotte, L. Thévenaz, M. González-Herráez, and T. Sylvestre, “Brillouin Optical Time-Domain Analysis of Fiber-Optic Parametric Amplifiers,” IEEE Photon. Technol. Lett. 19(3), 179–181 (2007).
[CrossRef]

Lecœuche, V.

V. Lecœuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, “25 km Brillouin based single-ended distributed fibre sensor for threshold detection of temperature or strain,” Opt. Commun. 168(1-4), 95–102 (1999).
[CrossRef]

Maillotte, H.

A. Vedadi, D. Alasia, E. Lantz, H. Maillotte, L. Thévenaz, M. González-Herráez, and T. Sylvestre, “Brillouin Optical Time-Domain Analysis of Fiber-Optic Parametric Amplifiers,” IEEE Photon. Technol. Lett. 19(3), 179–181 (2007).
[CrossRef]

Martín-López, S.

Naruse, H.

Newson, T. P.

Niklès, M.

Ohno, H.

Pannell, C. N.

V. Lecœuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, “25 km Brillouin based single-ended distributed fibre sensor for threshold detection of temperature or strain,” Opt. Commun. 168(1-4), 95–102 (1999).
[CrossRef]

Pincemin, E.

B. Bristiel, P. Shifeng Jiang, Gallion, and E. Pincemin, “New model of noise figure and RIN transfer in fiber Raman amplifiers,” IEEE Photon. Technol. Lett. 18(8), 980–982 (2006).
[CrossRef]

Robert, P. A.

Rodriguez-Barrios, F.

Shifeng Jiang, P.

B. Bristiel, P. Shifeng Jiang, Gallion, and E. Pincemin, “New model of noise figure and RIN transfer in fiber Raman amplifiers,” IEEE Photon. Technol. Lett. 18(8), 980–982 (2006).
[CrossRef]

Shimada, A.

Soto, M. A.

Sylvestre, T.

A. Vedadi, D. Alasia, E. Lantz, H. Maillotte, L. Thévenaz, M. González-Herráez, and T. Sylvestre, “Brillouin Optical Time-Domain Analysis of Fiber-Optic Parametric Amplifiers,” IEEE Photon. Technol. Lett. 19(3), 179–181 (2007).
[CrossRef]

Tateda, M.

Thévenaz, L.

Vedadi, A.

A. Vedadi, D. Alasia, E. Lantz, H. Maillotte, L. Thévenaz, M. González-Herráez, and T. Sylvestre, “Brillouin Optical Time-Domain Analysis of Fiber-Optic Parametric Amplifiers,” IEEE Photon. Technol. Lett. 19(3), 179–181 (2007).
[CrossRef]

Webb, D. J.

V. Lecœuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, “25 km Brillouin based single-ended distributed fibre sensor for threshold detection of temperature or strain,” Opt. Commun. 168(1-4), 95–102 (1999).
[CrossRef]

X. Bao, D. J. Webb, and D. A. Jackson, “32-km distributed temperature sensor based on Brillouin loss in an optical fiber,” Opt. Lett. 18(18), 1561–1563 (1993), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-18-18-1561 .
[CrossRef] [PubMed]

Appl. Opt. (2)

IEEE Photon. Technol. Lett. (3)

T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2(5), 352–354 (1990).
[CrossRef]

A. Vedadi, D. Alasia, E. Lantz, H. Maillotte, L. Thévenaz, M. González-Herráez, and T. Sylvestre, “Brillouin Optical Time-Domain Analysis of Fiber-Optic Parametric Amplifiers,” IEEE Photon. Technol. Lett. 19(3), 179–181 (2007).
[CrossRef]

B. Bristiel, P. Shifeng Jiang, Gallion, and E. Pincemin, “New model of noise figure and RIN transfer in fiber Raman amplifiers,” IEEE Photon. Technol. Lett. 18(8), 980–982 (2006).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

V. Lecœuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, “25 km Brillouin based single-ended distributed fibre sensor for threshold detection of temperature or strain,” Opt. Commun. 168(1-4), 95–102 (1999).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Other (5)

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. Academic Press, San Diego, 2007. Chap. 9.

S. Foaleng Mafang, F. Rodriguez, S. Martin-Lopez, M. González-Herráez, and L. Thévenaz, “Impact of self phase modulation on the performance of Brillouin distributed fibre sensors” accepted for presentation at the Fourth European Workshop on Optical Fiber Sensors (EWOFS 2010), Porto, Portugal.

M. Niklès, “Fibre optic distributed scattering sensing system: Perspectives and challenges for high performance applications”. Third European Workshop on Optical Fiber Sensors, 66190D, Italy, 2007.

M. Alcón-Camas, and J. D. Ania-Castañón, “Relative Intensity Noise transfer in high-order distributed amplification through ultra-long fibre cavities”, in Proc. of SPIE Photonics North 2010, Session 14, Niagara Falls, Canada.

K.-Y. Song, M. González Herráez, and L. Thévenaz, “Mapping of Chromatic-Dispersion Distribution Along Optical Fibers With 20-m Spatial Resolution,” J. Lightwave Technol. 23, 4140- (2005) http://www.opticsinfobase.org/JLT/abstract.cfm?URI=JLT-23-12-4140

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Scheme analyzed. A 1365 nm Raman pump creates an ultra-long laser at 1455 nm. The power distribution of the mode at 1455 nm is such that creates very even gain distribution along the fiber at 1550 nm. If the adequate power levels are selected, this scheme allows virtually transparent propagation of the signals at 1550 nm. WDM: wavelength-division multiplexer, allowing efficient coupling of the 1365 nm and 1550 nm signals; FBGs: fiber-Bragg gratings at 1455 nm.

Fig. 2
Fig. 2

Experimental setup. LD: laser diode; EDFA: erbium-doped fiber amplifier; NOLM: nonlinear optical loop mirror; PC: polarization controller; VOA: variable optical attenuator; WDM: wavelength-division multiplexer; PS: polarization scrambler.

Fig. 3
Fig. 3

Experimental gain traces acquired for the ~50 km fiber with 40 ns pulses. Red curve shows the conventional BOTDA trace obtained for the maximum gain of the fiber (PB + =13.5 mW, pulses have 40 ns width, PS - =0.5 µW). In green, the trace obtained with the same pulse width and probe power (PB + is reduced to 7.5 mW to avoid Brillouin pump depletion, PS - is raised to 0.7 µW). The blue curve shows the simulated gain evolution (Eqs. (1-4) considering the experimental settings and the dashed curve shows the simulated gain evolution for the first-order amplification configuration (see ref [13]. for details) considering the same experimental settings and trying to work as close as possible to transparency. Pump power at 1365 nm is approximately 470 mW from each side.

Fig. 4
Fig. 4

Experimental gain traces acquired for the 50 km fiber with 20 ns pulses. Red curve shows the conventional BOTDA trace obtained for the maximum gain of the fiber (PB + =14 mW, pulses have 20 ns width, PS - =0.6 µW). In green, the trace obtained with the same pulse width and probe power (PB + is reduced to 7.5 mW to avoid Brillouin pump depletion). The blue curve shows the simulated gain evolution (Eqs. (1-4) considering the experimental settings and the measured Brillouin gain broadening. Pump power at 1365 nm is approximately 470 mW from each side.

Fig. 5
Fig. 5

(a) Experimental gain frequency scan acquired for the 50 km fiber with 20 ns pulses, over-amplifying towards the end of the fiber to compensate the contrast loss due to SPM. The gain broadening is visible at the end of the fiber. (b) Measured BOTDA gain trace (green line) vs. numerical simulation. Power settings are as follows: PB + =9 mW, PS - =0.3 µW. Raman power is approximately 780 mW and 270 mW in counter- and co-propagating direction respectively.

Fig. 6
Fig. 6

Experimental gain frequency scan acquired for the 50 km fiber with 20 ns pulses. (a) Measured gain bandwidth showing the growth towards the end of the fiber. (b) Difference between consecutive measurements of Brillouin shift in the fiber. The results indicate that the uncertainty in the measured Brillouin shift remains basically constant along the whole fiber length, not being compromised by fiber attenuation or SPM broadening. Power settings are as follows: PB + =9 mW, PS - =0.3 µW, Raman power is approximately 780 mW and 270 mW in counter- and co-propagating direction (with respect to the Brillouin pump pulse) respectively.

Fig. 7
Fig. 7

(a) Experimental gain frequency scan acquired for the 100 km fiber span with 20 ns pulses. Significant gain broadening and Rayleigh scattering is visible in the trace. (b) Measured BOTDA gain trace (green line) vs. numerical simulation. Power settings are as follows: PB + =10 mW, PS - =2 µW. Raman power is approximately 943 mW and 585 mW in counter- and co-propagating direction (with respect to the Brillouin pump pulse) respectively.

Fig. 8
Fig. 8

Comparison of the retrieved Brillouin shift of the fiber using the second-order Raman-assisted configuration (red line) and the conventional BOTDA configuration (results show up to 75 km).

Tables (1)

Tables Icon

Table 1 Fiber parameters used in the simulations

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d P R 1 ± d z = α 1 P R 1 ± g R 12 ν 1 ν 2 P R 1 ± ( P R 2 + + P R 2 + 4 h ν 2 Δ ν 2 ( 1 + 1 e h ( ν 1 ν 2 ) / K b T 1 ) ) ± ε 1 P R 1
d P R 2 ± d z = α 2 P R 2 ± ± g R 12 ( P R 2 ± + 2 h ν 2 Δ ν 2 ( 1 + 1 e h ( ν 1 ν 2 ) / K b T 1 ) ) ( P R 1 + + P R 1 ) g R 2 S ν 2 ν S P R 2 ± ( P B + + P S ) ± ε 2 P R 2
d P S d z = α S P S g R 2 S ν 2 ν S P S ( P R 2 + + P R 2 ) g B P S P B +
d P B + d z = α S P B + + g R 2 S ν 2 ν S P S ( P R 2 + + P R 2 ) g B P S P B +

Metrics