Abstract

Here we present a new method to make liquid lenses. It is based on the microfluidics method and involves the preparation of emulsions one drop at a time. Tests of lenses by image formation are presented. Experimental results are compared with results of an optical design program. We also present a new type of lens that we call a Compound Lens which consists of two spherical lenses, one inside the other.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Erickson, C. Yang, and D. Psaltis, “Optofluidics emerges from the laboratory,” Photon. Spectra 42, 74–79 (2008).
  2. D. Yin, D. W. Deamer, H. Schmidt, J. P. Barber, and A. R. Hawkins, “Integrated optical waveguides with liquid cores,” Appl. Phys. Lett. 85(16), 3477–3479 (2004).
    [CrossRef]
  3. Z. Li and D. Psaltis, “Optofluidic Dye Lasers,” Microfluid. Nanofluid. 4(1-2), 145–158 (2008).
    [CrossRef]
  4. C. Grillet, P. Domachuk, V. Ta’eed, E. Mägi, J. A. Bolger, B. J. Eggleton, L. E. Rodd, and J. Cooper-White, “Compact tunable microfluidic interferometer,” Opt. Express 12(22), 5440–5447 (2004).
    [CrossRef] [PubMed]
  5. H. Ren and S.-T. Wu, “Variable-focus liquid lens,” Opt. Express 15(10), 5931–5936 (2007).
    [CrossRef] [PubMed]
  6. Y. Hongbin, Z. Guangya, C. F. Siong, and L. Feiwen, “Optofluidic variable aperture,” Opt. Lett. 33(6), 548–550 (2008).
    [CrossRef] [PubMed]
  7. A. E. Vasdekis, G. E. Town, G. A. Turnbull, and I. D. W. Samuel, “Fluidic fibre dye lasers,” Opt. Express 15(7), 3962–3967 (2007).
    [CrossRef] [PubMed]
  8. S. Calixto, M. E. Sánchez-Morales, F. J. Sánchez-Marin, M. Rosete-Aguilar, A. M. Richa, and K. A. Barrera-Rivera, “Optofluidic variable focus lenses,” Appl. Opt. 48(12), 2308–2314 (2009).
    [CrossRef] [PubMed]
  9. S. Calixto, F. J. Sanchez-Marin, and M. Rosete-Aguilar, “Pressure sensor with optofluidic configuration,” Appl. Opt. 47(35), 6580–6585 (2008).
    [CrossRef] [PubMed]
  10. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
    [CrossRef]
  11. A. S. Utada, A. Fernandez-Nieves, H. A. Stone, and D. A. Weitz, “Dripping to jetting transitions in coflowing liquid streams,” Phys. Rev. Lett. 99, 094502 (2007).
    [CrossRef] [PubMed]
  12. F. Leal-Calderon, V. Schmidt, and J. Bibette, Emulsion Science, Basic Principles (Springer, New York, 2007)
  13. N. Pulido-Mayoral and E. Galindo, “Phases dispersion and oxygen transfer in a simulated fermentation broth containing castor oil and proteins,” Biotechnol. Prog. 20(5), 1608–1613 (2004).
    [CrossRef] [PubMed]
  14. S. Lucatero, C. P. Larralde-Corona, G. Corkidi, and E. Galindo, “Oil and air dispersion in a simulated fermentation broth as a function of mycelial morphology,” Biotechnol. Prog. 19(2), 285–292 (2003).
    [CrossRef] [PubMed]
  15. M. S. Cordova-Aguilar, R. Diaz-Uribe, O. Escobar, G. Corkidi, and E. Galindo, “An optical approach for identifying the nature and the relative 3D spatial position of components of complex structures formed in multiphase dispersión systems,” Chem. Eng. Sci. 63(11), 3047–3056 (2008).
    [CrossRef]
  16. M. McCoy, “Surfactant firms end a tough year,” Chem. Eng. News 84, 21–22 (2006).
    [CrossRef]
  17. L. Vicari, “Self focusing in microemulsions,” Proc. SPIE 3749, 524–525 (1999).
    [CrossRef]
  18. F. Riechert, G. Bastian, and U. Lemmer, “Laser speckle reduction via colloidal-dispersion-filled projection screens,” Appl. Opt. 48(19), 3742–3749 (2009).
    [CrossRef] [PubMed]
  19. R. C. Gonzalez, and R. E. Woods, Digital Image Processing (Addison-Wesley, Reading, 1992)
  20. Cole-Parmer, Catalog number U-25702, Hamilton syringes. www.coleparmer.com
  21. M. B. Klein, Optics, (John Wiley and Sons,1970). P. 383
  22. E. Navarrete-García and S. Calixto, “Continuous surface relief micro-optical elements fabricated on photographic emulsions by use of binary and halftone masks,” Opt. Mater. 23(3-4), 501–512 (2003).
    [CrossRef]
  23. M. Freemantle, “New Frontiers for Ionic Liquids,” Chem. Eng. News 85, 120–126 (2007).
  24. T. P. Pham, C.-W. Cho, and Y.-S. Yun, “Environmental fate and toxicity of ionic liquids: a review,” Water Res. 44(2), 352–372 (2010).
    [CrossRef]
  25. C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
    [CrossRef]

2010 (1)

T. P. Pham, C.-W. Cho, and Y.-S. Yun, “Environmental fate and toxicity of ionic liquids: a review,” Water Res. 44(2), 352–372 (2010).
[CrossRef]

2009 (3)

2008 (5)

M. S. Cordova-Aguilar, R. Diaz-Uribe, O. Escobar, G. Corkidi, and E. Galindo, “An optical approach for identifying the nature and the relative 3D spatial position of components of complex structures formed in multiphase dispersión systems,” Chem. Eng. Sci. 63(11), 3047–3056 (2008).
[CrossRef]

S. Calixto, F. J. Sanchez-Marin, and M. Rosete-Aguilar, “Pressure sensor with optofluidic configuration,” Appl. Opt. 47(35), 6580–6585 (2008).
[CrossRef] [PubMed]

Y. Hongbin, Z. Guangya, C. F. Siong, and L. Feiwen, “Optofluidic variable aperture,” Opt. Lett. 33(6), 548–550 (2008).
[CrossRef] [PubMed]

D. Erickson, C. Yang, and D. Psaltis, “Optofluidics emerges from the laboratory,” Photon. Spectra 42, 74–79 (2008).

Z. Li and D. Psaltis, “Optofluidic Dye Lasers,” Microfluid. Nanofluid. 4(1-2), 145–158 (2008).
[CrossRef]

2007 (4)

A. E. Vasdekis, G. E. Town, G. A. Turnbull, and I. D. W. Samuel, “Fluidic fibre dye lasers,” Opt. Express 15(7), 3962–3967 (2007).
[CrossRef] [PubMed]

A. S. Utada, A. Fernandez-Nieves, H. A. Stone, and D. A. Weitz, “Dripping to jetting transitions in coflowing liquid streams,” Phys. Rev. Lett. 99, 094502 (2007).
[CrossRef] [PubMed]

H. Ren and S.-T. Wu, “Variable-focus liquid lens,” Opt. Express 15(10), 5931–5936 (2007).
[CrossRef] [PubMed]

M. Freemantle, “New Frontiers for Ionic Liquids,” Chem. Eng. News 85, 120–126 (2007).

2006 (1)

M. McCoy, “Surfactant firms end a tough year,” Chem. Eng. News 84, 21–22 (2006).
[CrossRef]

2004 (4)

N. Pulido-Mayoral and E. Galindo, “Phases dispersion and oxygen transfer in a simulated fermentation broth containing castor oil and proteins,” Biotechnol. Prog. 20(5), 1608–1613 (2004).
[CrossRef] [PubMed]

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[CrossRef]

C. Grillet, P. Domachuk, V. Ta’eed, E. Mägi, J. A. Bolger, B. J. Eggleton, L. E. Rodd, and J. Cooper-White, “Compact tunable microfluidic interferometer,” Opt. Express 12(22), 5440–5447 (2004).
[CrossRef] [PubMed]

D. Yin, D. W. Deamer, H. Schmidt, J. P. Barber, and A. R. Hawkins, “Integrated optical waveguides with liquid cores,” Appl. Phys. Lett. 85(16), 3477–3479 (2004).
[CrossRef]

2003 (2)

S. Lucatero, C. P. Larralde-Corona, G. Corkidi, and E. Galindo, “Oil and air dispersion in a simulated fermentation broth as a function of mycelial morphology,” Biotechnol. Prog. 19(2), 285–292 (2003).
[CrossRef] [PubMed]

E. Navarrete-García and S. Calixto, “Continuous surface relief micro-optical elements fabricated on photographic emulsions by use of binary and halftone masks,” Opt. Mater. 23(3-4), 501–512 (2003).
[CrossRef]

1999 (1)

L. Vicari, “Self focusing in microemulsions,” Proc. SPIE 3749, 524–525 (1999).
[CrossRef]

Barber, J. P.

D. Yin, D. W. Deamer, H. Schmidt, J. P. Barber, and A. R. Hawkins, “Integrated optical waveguides with liquid cores,” Appl. Phys. Lett. 85(16), 3477–3479 (2004).
[CrossRef]

Barrera-Rivera, K. A.

Bastian, G.

Bolger, J. A.

Calixto, S.

Cho, C.-W.

T. P. Pham, C.-W. Cho, and Y.-S. Yun, “Environmental fate and toxicity of ionic liquids: a review,” Water Res. 44(2), 352–372 (2010).
[CrossRef]

Cooper-White, J.

Cordova-Aguilar, M. S.

M. S. Cordova-Aguilar, R. Diaz-Uribe, O. Escobar, G. Corkidi, and E. Galindo, “An optical approach for identifying the nature and the relative 3D spatial position of components of complex structures formed in multiphase dispersión systems,” Chem. Eng. Sci. 63(11), 3047–3056 (2008).
[CrossRef]

Corkidi, G.

M. S. Cordova-Aguilar, R. Diaz-Uribe, O. Escobar, G. Corkidi, and E. Galindo, “An optical approach for identifying the nature and the relative 3D spatial position of components of complex structures formed in multiphase dispersión systems,” Chem. Eng. Sci. 63(11), 3047–3056 (2008).
[CrossRef]

S. Lucatero, C. P. Larralde-Corona, G. Corkidi, and E. Galindo, “Oil and air dispersion in a simulated fermentation broth as a function of mycelial morphology,” Biotechnol. Prog. 19(2), 285–292 (2003).
[CrossRef] [PubMed]

Deamer, D. W.

D. Yin, D. W. Deamer, H. Schmidt, J. P. Barber, and A. R. Hawkins, “Integrated optical waveguides with liquid cores,” Appl. Phys. Lett. 85(16), 3477–3479 (2004).
[CrossRef]

Diaz-Uribe, R.

M. S. Cordova-Aguilar, R. Diaz-Uribe, O. Escobar, G. Corkidi, and E. Galindo, “An optical approach for identifying the nature and the relative 3D spatial position of components of complex structures formed in multiphase dispersión systems,” Chem. Eng. Sci. 63(11), 3047–3056 (2008).
[CrossRef]

Domachuk, P.

Dong, C. H.

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[CrossRef]

Eggleton, B. J.

Erickson, D.

D. Erickson, C. Yang, and D. Psaltis, “Optofluidics emerges from the laboratory,” Photon. Spectra 42, 74–79 (2008).

Escobar, O.

M. S. Cordova-Aguilar, R. Diaz-Uribe, O. Escobar, G. Corkidi, and E. Galindo, “An optical approach for identifying the nature and the relative 3D spatial position of components of complex structures formed in multiphase dispersión systems,” Chem. Eng. Sci. 63(11), 3047–3056 (2008).
[CrossRef]

Feiwen, L.

Fernandez-Nieves, A.

A. S. Utada, A. Fernandez-Nieves, H. A. Stone, and D. A. Weitz, “Dripping to jetting transitions in coflowing liquid streams,” Phys. Rev. Lett. 99, 094502 (2007).
[CrossRef] [PubMed]

Freemantle, M.

M. Freemantle, “New Frontiers for Ionic Liquids,” Chem. Eng. News 85, 120–126 (2007).

Gaddam, V. R.

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[CrossRef]

Galindo, E.

M. S. Cordova-Aguilar, R. Diaz-Uribe, O. Escobar, G. Corkidi, and E. Galindo, “An optical approach for identifying the nature and the relative 3D spatial position of components of complex structures formed in multiphase dispersión systems,” Chem. Eng. Sci. 63(11), 3047–3056 (2008).
[CrossRef]

N. Pulido-Mayoral and E. Galindo, “Phases dispersion and oxygen transfer in a simulated fermentation broth containing castor oil and proteins,” Biotechnol. Prog. 20(5), 1608–1613 (2004).
[CrossRef] [PubMed]

S. Lucatero, C. P. Larralde-Corona, G. Corkidi, and E. Galindo, “Oil and air dispersion in a simulated fermentation broth as a function of mycelial morphology,” Biotechnol. Prog. 19(2), 285–292 (2003).
[CrossRef] [PubMed]

Grillet, C.

Guangya, Z.

Guo, G. C.

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[CrossRef]

Han, Z. F.

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[CrossRef]

Hawkins, A. R.

D. Yin, D. W. Deamer, H. Schmidt, J. P. Barber, and A. R. Hawkins, “Integrated optical waveguides with liquid cores,” Appl. Phys. Lett. 85(16), 3477–3479 (2004).
[CrossRef]

He, L.

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[CrossRef]

Hendriks, B. H. W.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[CrossRef]

Hongbin, Y.

Kuiper, S.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[CrossRef]

Larralde-Corona, C. P.

S. Lucatero, C. P. Larralde-Corona, G. Corkidi, and E. Galindo, “Oil and air dispersion in a simulated fermentation broth as a function of mycelial morphology,” Biotechnol. Prog. 19(2), 285–292 (2003).
[CrossRef] [PubMed]

Lemmer, U.

Li, Z.

Z. Li and D. Psaltis, “Optofluidic Dye Lasers,” Microfluid. Nanofluid. 4(1-2), 145–158 (2008).
[CrossRef]

Lucatero, S.

S. Lucatero, C. P. Larralde-Corona, G. Corkidi, and E. Galindo, “Oil and air dispersion in a simulated fermentation broth as a function of mycelial morphology,” Biotechnol. Prog. 19(2), 285–292 (2003).
[CrossRef] [PubMed]

Mägi, E.

McCoy, M.

M. McCoy, “Surfactant firms end a tough year,” Chem. Eng. News 84, 21–22 (2006).
[CrossRef]

Navarrete-García, E.

E. Navarrete-García and S. Calixto, “Continuous surface relief micro-optical elements fabricated on photographic emulsions by use of binary and halftone masks,” Opt. Mater. 23(3-4), 501–512 (2003).
[CrossRef]

Ozdemir, S. K.

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[CrossRef]

Pham, T. P.

T. P. Pham, C.-W. Cho, and Y.-S. Yun, “Environmental fate and toxicity of ionic liquids: a review,” Water Res. 44(2), 352–372 (2010).
[CrossRef]

Psaltis, D.

Z. Li and D. Psaltis, “Optofluidic Dye Lasers,” Microfluid. Nanofluid. 4(1-2), 145–158 (2008).
[CrossRef]

D. Erickson, C. Yang, and D. Psaltis, “Optofluidics emerges from the laboratory,” Photon. Spectra 42, 74–79 (2008).

Pulido-Mayoral, N.

N. Pulido-Mayoral and E. Galindo, “Phases dispersion and oxygen transfer in a simulated fermentation broth containing castor oil and proteins,” Biotechnol. Prog. 20(5), 1608–1613 (2004).
[CrossRef] [PubMed]

Ren, H.

Richa, A. M.

Riechert, F.

Rodd, L. E.

Rosete-Aguilar, M.

Samuel, I. D. W.

Sanchez-Marin, F. J.

Sánchez-Marin, F. J.

Sánchez-Morales, M. E.

Schmidt, H.

D. Yin, D. W. Deamer, H. Schmidt, J. P. Barber, and A. R. Hawkins, “Integrated optical waveguides with liquid cores,” Appl. Phys. Lett. 85(16), 3477–3479 (2004).
[CrossRef]

Siong, C. F.

Stone, H. A.

A. S. Utada, A. Fernandez-Nieves, H. A. Stone, and D. A. Weitz, “Dripping to jetting transitions in coflowing liquid streams,” Phys. Rev. Lett. 99, 094502 (2007).
[CrossRef] [PubMed]

Ta’eed, V.

Town, G. E.

Turnbull, G. A.

Utada, A. S.

A. S. Utada, A. Fernandez-Nieves, H. A. Stone, and D. A. Weitz, “Dripping to jetting transitions in coflowing liquid streams,” Phys. Rev. Lett. 99, 094502 (2007).
[CrossRef] [PubMed]

Vasdekis, A. E.

Vicari, L.

L. Vicari, “Self focusing in microemulsions,” Proc. SPIE 3749, 524–525 (1999).
[CrossRef]

Weitz, D. A.

A. S. Utada, A. Fernandez-Nieves, H. A. Stone, and D. A. Weitz, “Dripping to jetting transitions in coflowing liquid streams,” Phys. Rev. Lett. 99, 094502 (2007).
[CrossRef] [PubMed]

Wu, S.-T.

Xiao, Y. F.

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[CrossRef]

Yang, C.

D. Erickson, C. Yang, and D. Psaltis, “Optofluidics emerges from the laboratory,” Photon. Spectra 42, 74–79 (2008).

Yang, L.

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[CrossRef]

Yin, D.

D. Yin, D. W. Deamer, H. Schmidt, J. P. Barber, and A. R. Hawkins, “Integrated optical waveguides with liquid cores,” Appl. Phys. Lett. 85(16), 3477–3479 (2004).
[CrossRef]

Yun, Y.-S.

T. P. Pham, C.-W. Cho, and Y.-S. Yun, “Environmental fate and toxicity of ionic liquids: a review,” Water Res. 44(2), 352–372 (2010).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (3)

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[CrossRef]

D. Yin, D. W. Deamer, H. Schmidt, J. P. Barber, and A. R. Hawkins, “Integrated optical waveguides with liquid cores,” Appl. Phys. Lett. 85(16), 3477–3479 (2004).
[CrossRef]

C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C. Guo, and L. Yang, “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing,” Appl. Phys. Lett. 94(23), 231119 (2009).
[CrossRef]

Biotechnol. Prog. (2)

N. Pulido-Mayoral and E. Galindo, “Phases dispersion and oxygen transfer in a simulated fermentation broth containing castor oil and proteins,” Biotechnol. Prog. 20(5), 1608–1613 (2004).
[CrossRef] [PubMed]

S. Lucatero, C. P. Larralde-Corona, G. Corkidi, and E. Galindo, “Oil and air dispersion in a simulated fermentation broth as a function of mycelial morphology,” Biotechnol. Prog. 19(2), 285–292 (2003).
[CrossRef] [PubMed]

Chem. Eng. News (2)

M. McCoy, “Surfactant firms end a tough year,” Chem. Eng. News 84, 21–22 (2006).
[CrossRef]

M. Freemantle, “New Frontiers for Ionic Liquids,” Chem. Eng. News 85, 120–126 (2007).

Chem. Eng. Sci. (1)

M. S. Cordova-Aguilar, R. Diaz-Uribe, O. Escobar, G. Corkidi, and E. Galindo, “An optical approach for identifying the nature and the relative 3D spatial position of components of complex structures formed in multiphase dispersión systems,” Chem. Eng. Sci. 63(11), 3047–3056 (2008).
[CrossRef]

Microfluid. Nanofluid. (1)

Z. Li and D. Psaltis, “Optofluidic Dye Lasers,” Microfluid. Nanofluid. 4(1-2), 145–158 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. (1)

E. Navarrete-García and S. Calixto, “Continuous surface relief micro-optical elements fabricated on photographic emulsions by use of binary and halftone masks,” Opt. Mater. 23(3-4), 501–512 (2003).
[CrossRef]

Photon. Spectra (1)

D. Erickson, C. Yang, and D. Psaltis, “Optofluidics emerges from the laboratory,” Photon. Spectra 42, 74–79 (2008).

Phys. Rev. Lett. (1)

A. S. Utada, A. Fernandez-Nieves, H. A. Stone, and D. A. Weitz, “Dripping to jetting transitions in coflowing liquid streams,” Phys. Rev. Lett. 99, 094502 (2007).
[CrossRef] [PubMed]

Proc. SPIE (1)

L. Vicari, “Self focusing in microemulsions,” Proc. SPIE 3749, 524–525 (1999).
[CrossRef]

Water Res. (1)

T. P. Pham, C.-W. Cho, and Y.-S. Yun, “Environmental fate and toxicity of ionic liquids: a review,” Water Res. 44(2), 352–372 (2010).
[CrossRef]

Other (4)

F. Leal-Calderon, V. Schmidt, and J. Bibette, Emulsion Science, Basic Principles (Springer, New York, 2007)

R. C. Gonzalez, and R. E. Woods, Digital Image Processing (Addison-Wesley, Reading, 1992)

Cole-Parmer, Catalog number U-25702, Hamilton syringes. www.coleparmer.com

M. B. Klein, Optics, (John Wiley and Sons,1970). P. 383

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

a) Example of an immersion oil lens. Scale is in millimeters. Notice the needle of the syringe and the glass cell. b) A mineral oil lens in water. Notice a small drop emerging from the needle.

Fig. 2
Fig. 2

a) Image of a microlens. b) An image processing procedure was used to segment the outer border of the lens shown in black pixels.

Fig. 3
Fig. 3

Images given by an immersion oil lens. a) When object (a USAF test target) was 5 cm from the lens. b) When object was 56 cm from the lens.

Fig. 4
Fig. 4

Behavior of Lateral Magnification as a function of the distance between the lens and object. a) For an immersion oil lens in water (positive lens), b) for a water lens in oil (negative lens).

Fig. 5
Fig. 5

Behavior of the Image distance (Xi) versus Object distance (Xo) for a) an oil lens in water and b) water lens in oil.

Fig. 6
Fig. 6

A double lens. a) Diagram showing the characteristics of a double lens. b) Photograph of a fabricated double lens. c) Virtual image given by the central lens. d) Real image given by the outside lens.

Fig. 7
Fig. 7

Ray trace diagram of a double lens. Characteristics of the lens are displayed in Fig. 7a. Notice that a virtual image and a real image are present at the same time. Transversal Spherical Aberration TRA is larger for positive lens than for negative lens.

Fig. 8
Fig. 8

A compound lens.

Metrics