Abstract

In this work, we describe an all-fibered set-up that allows the optical magnification of the amplitude jitter of low-fluctuation pulse trains, enabling an easy measurement of the statistical properties by usual photodiodes and electronic equipments.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Pan, C. Yu, and A. E. Willner, “Optical performance monitoring for the next generation optical communication networks,” Opt. Fiber Technol. 16(1), 20–45 (2010).
    [CrossRef]
  2. J. Fatome, J. Garnier, S. Pitois, M. Petit, G. Millot, M. Gay, B. Clouet, L. Bramerie, and J. C. Simon, “All-optical measurements of background, amplitude, and timing jitters for high speed pulse trains or PRBS sequences using autocorrelation function,” Opt. Fiber Technol. 14(1), 84–91 (2008).
    [CrossRef]
  3. T. D. Vo, M. D. Pelusi, J. Schröder, F. Luan, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Simultaneous multi-impairment monitoring of 640 Gb/s signals using photonic chip based RF spectrum analyzer,” Opt. Express 18(4), 3938–3945 (2010).
    [CrossRef] [PubMed]
  4. D. Von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39(4), 201–217 (1986).
    [CrossRef]
  5. M. C. Gross, M. Hanna, K. M. Patel, and S. E. Ralph, “Spectral method for the simultaneous determination of uncorrelated and correlated amplitude and timing jitter,” Appl. Phys. Lett. 80(20), 3694–3696 (2002).
    [CrossRef]
  6. J. Fatome and C. Finot, “Scaling guidelines of a soliton-based power limiter for 2R-optical regeneration applications,” J. Lightw. Technol. DOI: (2010).
    [CrossRef]
  7. M. Asobe, A. Hirano, Y. Miyamoto, K. Sato, K. Hagimoto, and Y. Yamabayashi, “Noise reduction of 20 Gbit/s pulse train using spectrally filtered optical solitons,” Electron. Lett. 34(11), 1135–1136 (1998).
    [CrossRef]
  8. T. Ohara, H. Takara, S. Kawanishi, T. Yamada, and M. M. Fejer, “160 Gb/s all-optical limiter based on spectrally filtered optical solitons,” IEEE Photon. Technol. Lett. 16(10), 2311–2313 (2004).
    [CrossRef]
  9. M. Gay, M. Costa e Silva, T. N. Nguyen, L. Bramerie, T. Chartier, M. Joindot, J. C. Simon, J. Fatome, C. Finot, and J. L. Oudar, “170 Gbit/s bit error rate assessment of regeneration using a saturable absorber and a nonlinear fiber based power limiter,” IEEE Photon. Technol. Lett. 22(3), 158–160 (2010).
    [CrossRef]
  10. L. A. Provost, C. Finot, P. Petropoulos, K. Mukasa, and D. J. Richardson, “Design scaling rules for 2R-optical self-phase modulation-based regenerators,” Opt. Express 15(8), 5100–5113 (2007).
    [CrossRef] [PubMed]
  11. S. Oda and A. Maruta, “Two-bit all-optical analog-to-digital conversion by filtering broadened and split spectrum induced by soliton effect or self-phase modulation in fiber,” IEEE J. Sel. Top. Quantum Electron. 12(2), 307–314 (2006).
    [CrossRef]
  12. P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” in European Conference on Optical Communication, ECOC'98, 1998), 475–476.
  13. S. Boscolo, S. K. Turitsyn, and K. J. Blow, “Nonlinear loop mirror-based all-optical signal processing in fiber-optic communications,” Opt. Fiber Technol. 14(4), 299–316 (2008).
    [CrossRef]
  14. M. Rochette, L. B. Fu, V. G. Ta'eed, D. J. Moss, and B. J. Eggleton, “2R optical regeneration: an all-optical solution for BER improvement,” IEEE J. Sel. Top. Quantum Electron. 12(4), 736–744 (2006).
    [CrossRef]
  15. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
    [CrossRef]

2010 (4)

J. Fatome and C. Finot, “Scaling guidelines of a soliton-based power limiter for 2R-optical regeneration applications,” J. Lightw. Technol. DOI: (2010).
[CrossRef]

M. Gay, M. Costa e Silva, T. N. Nguyen, L. Bramerie, T. Chartier, M. Joindot, J. C. Simon, J. Fatome, C. Finot, and J. L. Oudar, “170 Gbit/s bit error rate assessment of regeneration using a saturable absorber and a nonlinear fiber based power limiter,” IEEE Photon. Technol. Lett. 22(3), 158–160 (2010).
[CrossRef]

Z. Pan, C. Yu, and A. E. Willner, “Optical performance monitoring for the next generation optical communication networks,” Opt. Fiber Technol. 16(1), 20–45 (2010).
[CrossRef]

T. D. Vo, M. D. Pelusi, J. Schröder, F. Luan, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Simultaneous multi-impairment monitoring of 640 Gb/s signals using photonic chip based RF spectrum analyzer,” Opt. Express 18(4), 3938–3945 (2010).
[CrossRef] [PubMed]

2008 (3)

J. Fatome, J. Garnier, S. Pitois, M. Petit, G. Millot, M. Gay, B. Clouet, L. Bramerie, and J. C. Simon, “All-optical measurements of background, amplitude, and timing jitters for high speed pulse trains or PRBS sequences using autocorrelation function,” Opt. Fiber Technol. 14(1), 84–91 (2008).
[CrossRef]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

S. Boscolo, S. K. Turitsyn, and K. J. Blow, “Nonlinear loop mirror-based all-optical signal processing in fiber-optic communications,” Opt. Fiber Technol. 14(4), 299–316 (2008).
[CrossRef]

2007 (1)

2006 (2)

M. Rochette, L. B. Fu, V. G. Ta'eed, D. J. Moss, and B. J. Eggleton, “2R optical regeneration: an all-optical solution for BER improvement,” IEEE J. Sel. Top. Quantum Electron. 12(4), 736–744 (2006).
[CrossRef]

S. Oda and A. Maruta, “Two-bit all-optical analog-to-digital conversion by filtering broadened and split spectrum induced by soliton effect or self-phase modulation in fiber,” IEEE J. Sel. Top. Quantum Electron. 12(2), 307–314 (2006).
[CrossRef]

2004 (1)

T. Ohara, H. Takara, S. Kawanishi, T. Yamada, and M. M. Fejer, “160 Gb/s all-optical limiter based on spectrally filtered optical solitons,” IEEE Photon. Technol. Lett. 16(10), 2311–2313 (2004).
[CrossRef]

2002 (1)

M. C. Gross, M. Hanna, K. M. Patel, and S. E. Ralph, “Spectral method for the simultaneous determination of uncorrelated and correlated amplitude and timing jitter,” Appl. Phys. Lett. 80(20), 3694–3696 (2002).
[CrossRef]

1998 (1)

M. Asobe, A. Hirano, Y. Miyamoto, K. Sato, K. Hagimoto, and Y. Yamabayashi, “Noise reduction of 20 Gbit/s pulse train using spectrally filtered optical solitons,” Electron. Lett. 34(11), 1135–1136 (1998).
[CrossRef]

1986 (1)

D. Von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39(4), 201–217 (1986).
[CrossRef]

Asobe, M.

M. Asobe, A. Hirano, Y. Miyamoto, K. Sato, K. Hagimoto, and Y. Yamabayashi, “Noise reduction of 20 Gbit/s pulse train using spectrally filtered optical solitons,” Electron. Lett. 34(11), 1135–1136 (1998).
[CrossRef]

Blow, K. J.

S. Boscolo, S. K. Turitsyn, and K. J. Blow, “Nonlinear loop mirror-based all-optical signal processing in fiber-optic communications,” Opt. Fiber Technol. 14(4), 299–316 (2008).
[CrossRef]

Boscolo, S.

S. Boscolo, S. K. Turitsyn, and K. J. Blow, “Nonlinear loop mirror-based all-optical signal processing in fiber-optic communications,” Opt. Fiber Technol. 14(4), 299–316 (2008).
[CrossRef]

Bramerie, L.

M. Gay, M. Costa e Silva, T. N. Nguyen, L. Bramerie, T. Chartier, M. Joindot, J. C. Simon, J. Fatome, C. Finot, and J. L. Oudar, “170 Gbit/s bit error rate assessment of regeneration using a saturable absorber and a nonlinear fiber based power limiter,” IEEE Photon. Technol. Lett. 22(3), 158–160 (2010).
[CrossRef]

J. Fatome, J. Garnier, S. Pitois, M. Petit, G. Millot, M. Gay, B. Clouet, L. Bramerie, and J. C. Simon, “All-optical measurements of background, amplitude, and timing jitters for high speed pulse trains or PRBS sequences using autocorrelation function,” Opt. Fiber Technol. 14(1), 84–91 (2008).
[CrossRef]

Bulla, D. A. P.

Chartier, T.

M. Gay, M. Costa e Silva, T. N. Nguyen, L. Bramerie, T. Chartier, M. Joindot, J. C. Simon, J. Fatome, C. Finot, and J. L. Oudar, “170 Gbit/s bit error rate assessment of regeneration using a saturable absorber and a nonlinear fiber based power limiter,” IEEE Photon. Technol. Lett. 22(3), 158–160 (2010).
[CrossRef]

Choi, D.-Y.

Clouet, B.

J. Fatome, J. Garnier, S. Pitois, M. Petit, G. Millot, M. Gay, B. Clouet, L. Bramerie, and J. C. Simon, “All-optical measurements of background, amplitude, and timing jitters for high speed pulse trains or PRBS sequences using autocorrelation function,” Opt. Fiber Technol. 14(1), 84–91 (2008).
[CrossRef]

Costa e Silva, M.

M. Gay, M. Costa e Silva, T. N. Nguyen, L. Bramerie, T. Chartier, M. Joindot, J. C. Simon, J. Fatome, C. Finot, and J. L. Oudar, “170 Gbit/s bit error rate assessment of regeneration using a saturable absorber and a nonlinear fiber based power limiter,” IEEE Photon. Technol. Lett. 22(3), 158–160 (2010).
[CrossRef]

Eggleton, B. J.

T. D. Vo, M. D. Pelusi, J. Schröder, F. Luan, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Simultaneous multi-impairment monitoring of 640 Gb/s signals using photonic chip based RF spectrum analyzer,” Opt. Express 18(4), 3938–3945 (2010).
[CrossRef] [PubMed]

M. Rochette, L. B. Fu, V. G. Ta'eed, D. J. Moss, and B. J. Eggleton, “2R optical regeneration: an all-optical solution for BER improvement,” IEEE J. Sel. Top. Quantum Electron. 12(4), 736–744 (2006).
[CrossRef]

Fatome, J.

J. Fatome and C. Finot, “Scaling guidelines of a soliton-based power limiter for 2R-optical regeneration applications,” J. Lightw. Technol. DOI: (2010).
[CrossRef]

M. Gay, M. Costa e Silva, T. N. Nguyen, L. Bramerie, T. Chartier, M. Joindot, J. C. Simon, J. Fatome, C. Finot, and J. L. Oudar, “170 Gbit/s bit error rate assessment of regeneration using a saturable absorber and a nonlinear fiber based power limiter,” IEEE Photon. Technol. Lett. 22(3), 158–160 (2010).
[CrossRef]

J. Fatome, J. Garnier, S. Pitois, M. Petit, G. Millot, M. Gay, B. Clouet, L. Bramerie, and J. C. Simon, “All-optical measurements of background, amplitude, and timing jitters for high speed pulse trains or PRBS sequences using autocorrelation function,” Opt. Fiber Technol. 14(1), 84–91 (2008).
[CrossRef]

Fejer, M. M.

T. Ohara, H. Takara, S. Kawanishi, T. Yamada, and M. M. Fejer, “160 Gb/s all-optical limiter based on spectrally filtered optical solitons,” IEEE Photon. Technol. Lett. 16(10), 2311–2313 (2004).
[CrossRef]

Finot, C.

M. Gay, M. Costa e Silva, T. N. Nguyen, L. Bramerie, T. Chartier, M. Joindot, J. C. Simon, J. Fatome, C. Finot, and J. L. Oudar, “170 Gbit/s bit error rate assessment of regeneration using a saturable absorber and a nonlinear fiber based power limiter,” IEEE Photon. Technol. Lett. 22(3), 158–160 (2010).
[CrossRef]

J. Fatome and C. Finot, “Scaling guidelines of a soliton-based power limiter for 2R-optical regeneration applications,” J. Lightw. Technol. DOI: (2010).
[CrossRef]

L. A. Provost, C. Finot, P. Petropoulos, K. Mukasa, and D. J. Richardson, “Design scaling rules for 2R-optical self-phase modulation-based regenerators,” Opt. Express 15(8), 5100–5113 (2007).
[CrossRef] [PubMed]

Foster, M. A.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

Fu, L. B.

M. Rochette, L. B. Fu, V. G. Ta'eed, D. J. Moss, and B. J. Eggleton, “2R optical regeneration: an all-optical solution for BER improvement,” IEEE J. Sel. Top. Quantum Electron. 12(4), 736–744 (2006).
[CrossRef]

Gaeta, A. L.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

Garnier, J.

J. Fatome, J. Garnier, S. Pitois, M. Petit, G. Millot, M. Gay, B. Clouet, L. Bramerie, and J. C. Simon, “All-optical measurements of background, amplitude, and timing jitters for high speed pulse trains or PRBS sequences using autocorrelation function,” Opt. Fiber Technol. 14(1), 84–91 (2008).
[CrossRef]

Gay, M.

M. Gay, M. Costa e Silva, T. N. Nguyen, L. Bramerie, T. Chartier, M. Joindot, J. C. Simon, J. Fatome, C. Finot, and J. L. Oudar, “170 Gbit/s bit error rate assessment of regeneration using a saturable absorber and a nonlinear fiber based power limiter,” IEEE Photon. Technol. Lett. 22(3), 158–160 (2010).
[CrossRef]

J. Fatome, J. Garnier, S. Pitois, M. Petit, G. Millot, M. Gay, B. Clouet, L. Bramerie, and J. C. Simon, “All-optical measurements of background, amplitude, and timing jitters for high speed pulse trains or PRBS sequences using autocorrelation function,” Opt. Fiber Technol. 14(1), 84–91 (2008).
[CrossRef]

Geraghty, D. F.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

Gross, M. C.

M. C. Gross, M. Hanna, K. M. Patel, and S. E. Ralph, “Spectral method for the simultaneous determination of uncorrelated and correlated amplitude and timing jitter,” Appl. Phys. Lett. 80(20), 3694–3696 (2002).
[CrossRef]

Hagimoto, K.

M. Asobe, A. Hirano, Y. Miyamoto, K. Sato, K. Hagimoto, and Y. Yamabayashi, “Noise reduction of 20 Gbit/s pulse train using spectrally filtered optical solitons,” Electron. Lett. 34(11), 1135–1136 (1998).
[CrossRef]

Hanna, M.

M. C. Gross, M. Hanna, K. M. Patel, and S. E. Ralph, “Spectral method for the simultaneous determination of uncorrelated and correlated amplitude and timing jitter,” Appl. Phys. Lett. 80(20), 3694–3696 (2002).
[CrossRef]

Hirano, A.

M. Asobe, A. Hirano, Y. Miyamoto, K. Sato, K. Hagimoto, and Y. Yamabayashi, “Noise reduction of 20 Gbit/s pulse train using spectrally filtered optical solitons,” Electron. Lett. 34(11), 1135–1136 (1998).
[CrossRef]

Joindot, M.

M. Gay, M. Costa e Silva, T. N. Nguyen, L. Bramerie, T. Chartier, M. Joindot, J. C. Simon, J. Fatome, C. Finot, and J. L. Oudar, “170 Gbit/s bit error rate assessment of regeneration using a saturable absorber and a nonlinear fiber based power limiter,” IEEE Photon. Technol. Lett. 22(3), 158–160 (2010).
[CrossRef]

Kawanishi, S.

T. Ohara, H. Takara, S. Kawanishi, T. Yamada, and M. M. Fejer, “160 Gb/s all-optical limiter based on spectrally filtered optical solitons,” IEEE Photon. Technol. Lett. 16(10), 2311–2313 (2004).
[CrossRef]

Lipson, M.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

Luan, F.

Luther-Davies, B.

Madden, S. J.

Maruta, A.

S. Oda and A. Maruta, “Two-bit all-optical analog-to-digital conversion by filtering broadened and split spectrum induced by soliton effect or self-phase modulation in fiber,” IEEE J. Sel. Top. Quantum Electron. 12(2), 307–314 (2006).
[CrossRef]

Millot, G.

J. Fatome, J. Garnier, S. Pitois, M. Petit, G. Millot, M. Gay, B. Clouet, L. Bramerie, and J. C. Simon, “All-optical measurements of background, amplitude, and timing jitters for high speed pulse trains or PRBS sequences using autocorrelation function,” Opt. Fiber Technol. 14(1), 84–91 (2008).
[CrossRef]

Miyamoto, Y.

M. Asobe, A. Hirano, Y. Miyamoto, K. Sato, K. Hagimoto, and Y. Yamabayashi, “Noise reduction of 20 Gbit/s pulse train using spectrally filtered optical solitons,” Electron. Lett. 34(11), 1135–1136 (1998).
[CrossRef]

Moss, D. J.

M. Rochette, L. B. Fu, V. G. Ta'eed, D. J. Moss, and B. J. Eggleton, “2R optical regeneration: an all-optical solution for BER improvement,” IEEE J. Sel. Top. Quantum Electron. 12(4), 736–744 (2006).
[CrossRef]

Mukasa, K.

Nguyen, T. N.

M. Gay, M. Costa e Silva, T. N. Nguyen, L. Bramerie, T. Chartier, M. Joindot, J. C. Simon, J. Fatome, C. Finot, and J. L. Oudar, “170 Gbit/s bit error rate assessment of regeneration using a saturable absorber and a nonlinear fiber based power limiter,” IEEE Photon. Technol. Lett. 22(3), 158–160 (2010).
[CrossRef]

Oda, S.

S. Oda and A. Maruta, “Two-bit all-optical analog-to-digital conversion by filtering broadened and split spectrum induced by soliton effect or self-phase modulation in fiber,” IEEE J. Sel. Top. Quantum Electron. 12(2), 307–314 (2006).
[CrossRef]

Ohara, T.

T. Ohara, H. Takara, S. Kawanishi, T. Yamada, and M. M. Fejer, “160 Gb/s all-optical limiter based on spectrally filtered optical solitons,” IEEE Photon. Technol. Lett. 16(10), 2311–2313 (2004).
[CrossRef]

Oudar, J. L.

M. Gay, M. Costa e Silva, T. N. Nguyen, L. Bramerie, T. Chartier, M. Joindot, J. C. Simon, J. Fatome, C. Finot, and J. L. Oudar, “170 Gbit/s bit error rate assessment of regeneration using a saturable absorber and a nonlinear fiber based power limiter,” IEEE Photon. Technol. Lett. 22(3), 158–160 (2010).
[CrossRef]

Pan, Z.

Z. Pan, C. Yu, and A. E. Willner, “Optical performance monitoring for the next generation optical communication networks,” Opt. Fiber Technol. 16(1), 20–45 (2010).
[CrossRef]

Patel, K. M.

M. C. Gross, M. Hanna, K. M. Patel, and S. E. Ralph, “Spectral method for the simultaneous determination of uncorrelated and correlated amplitude and timing jitter,” Appl. Phys. Lett. 80(20), 3694–3696 (2002).
[CrossRef]

Pelusi, M. D.

Petit, M.

J. Fatome, J. Garnier, S. Pitois, M. Petit, G. Millot, M. Gay, B. Clouet, L. Bramerie, and J. C. Simon, “All-optical measurements of background, amplitude, and timing jitters for high speed pulse trains or PRBS sequences using autocorrelation function,” Opt. Fiber Technol. 14(1), 84–91 (2008).
[CrossRef]

Petropoulos, P.

Pitois, S.

J. Fatome, J. Garnier, S. Pitois, M. Petit, G. Millot, M. Gay, B. Clouet, L. Bramerie, and J. C. Simon, “All-optical measurements of background, amplitude, and timing jitters for high speed pulse trains or PRBS sequences using autocorrelation function,” Opt. Fiber Technol. 14(1), 84–91 (2008).
[CrossRef]

Provost, L. A.

Ralph, S. E.

M. C. Gross, M. Hanna, K. M. Patel, and S. E. Ralph, “Spectral method for the simultaneous determination of uncorrelated and correlated amplitude and timing jitter,” Appl. Phys. Lett. 80(20), 3694–3696 (2002).
[CrossRef]

Richardson, D. J.

Rochette, M.

M. Rochette, L. B. Fu, V. G. Ta'eed, D. J. Moss, and B. J. Eggleton, “2R optical regeneration: an all-optical solution for BER improvement,” IEEE J. Sel. Top. Quantum Electron. 12(4), 736–744 (2006).
[CrossRef]

Salem, R.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

Sato, K.

M. Asobe, A. Hirano, Y. Miyamoto, K. Sato, K. Hagimoto, and Y. Yamabayashi, “Noise reduction of 20 Gbit/s pulse train using spectrally filtered optical solitons,” Electron. Lett. 34(11), 1135–1136 (1998).
[CrossRef]

Schröder, J.

Simon, J. C.

M. Gay, M. Costa e Silva, T. N. Nguyen, L. Bramerie, T. Chartier, M. Joindot, J. C. Simon, J. Fatome, C. Finot, and J. L. Oudar, “170 Gbit/s bit error rate assessment of regeneration using a saturable absorber and a nonlinear fiber based power limiter,” IEEE Photon. Technol. Lett. 22(3), 158–160 (2010).
[CrossRef]

J. Fatome, J. Garnier, S. Pitois, M. Petit, G. Millot, M. Gay, B. Clouet, L. Bramerie, and J. C. Simon, “All-optical measurements of background, amplitude, and timing jitters for high speed pulse trains or PRBS sequences using autocorrelation function,” Opt. Fiber Technol. 14(1), 84–91 (2008).
[CrossRef]

Ta'eed, V. G.

M. Rochette, L. B. Fu, V. G. Ta'eed, D. J. Moss, and B. J. Eggleton, “2R optical regeneration: an all-optical solution for BER improvement,” IEEE J. Sel. Top. Quantum Electron. 12(4), 736–744 (2006).
[CrossRef]

Takara, H.

T. Ohara, H. Takara, S. Kawanishi, T. Yamada, and M. M. Fejer, “160 Gb/s all-optical limiter based on spectrally filtered optical solitons,” IEEE Photon. Technol. Lett. 16(10), 2311–2313 (2004).
[CrossRef]

Turitsyn, S. K.

S. Boscolo, S. K. Turitsyn, and K. J. Blow, “Nonlinear loop mirror-based all-optical signal processing in fiber-optic communications,” Opt. Fiber Technol. 14(4), 299–316 (2008).
[CrossRef]

Turner, A. C.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

Vo, T. D.

Von der Linde, D.

D. Von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39(4), 201–217 (1986).
[CrossRef]

Willner, A. E.

Z. Pan, C. Yu, and A. E. Willner, “Optical performance monitoring for the next generation optical communication networks,” Opt. Fiber Technol. 16(1), 20–45 (2010).
[CrossRef]

Yamabayashi, Y.

M. Asobe, A. Hirano, Y. Miyamoto, K. Sato, K. Hagimoto, and Y. Yamabayashi, “Noise reduction of 20 Gbit/s pulse train using spectrally filtered optical solitons,” Electron. Lett. 34(11), 1135–1136 (1998).
[CrossRef]

Yamada, T.

T. Ohara, H. Takara, S. Kawanishi, T. Yamada, and M. M. Fejer, “160 Gb/s all-optical limiter based on spectrally filtered optical solitons,” IEEE Photon. Technol. Lett. 16(10), 2311–2313 (2004).
[CrossRef]

Yu, C.

Z. Pan, C. Yu, and A. E. Willner, “Optical performance monitoring for the next generation optical communication networks,” Opt. Fiber Technol. 16(1), 20–45 (2010).
[CrossRef]

Appl. Phys. B (1)

D. Von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39(4), 201–217 (1986).
[CrossRef]

Appl. Phys. Lett. (1)

M. C. Gross, M. Hanna, K. M. Patel, and S. E. Ralph, “Spectral method for the simultaneous determination of uncorrelated and correlated amplitude and timing jitter,” Appl. Phys. Lett. 80(20), 3694–3696 (2002).
[CrossRef]

Electron. Lett. (1)

M. Asobe, A. Hirano, Y. Miyamoto, K. Sato, K. Hagimoto, and Y. Yamabayashi, “Noise reduction of 20 Gbit/s pulse train using spectrally filtered optical solitons,” Electron. Lett. 34(11), 1135–1136 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

M. Rochette, L. B. Fu, V. G. Ta'eed, D. J. Moss, and B. J. Eggleton, “2R optical regeneration: an all-optical solution for BER improvement,” IEEE J. Sel. Top. Quantum Electron. 12(4), 736–744 (2006).
[CrossRef]

S. Oda and A. Maruta, “Two-bit all-optical analog-to-digital conversion by filtering broadened and split spectrum induced by soliton effect or self-phase modulation in fiber,” IEEE J. Sel. Top. Quantum Electron. 12(2), 307–314 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

T. Ohara, H. Takara, S. Kawanishi, T. Yamada, and M. M. Fejer, “160 Gb/s all-optical limiter based on spectrally filtered optical solitons,” IEEE Photon. Technol. Lett. 16(10), 2311–2313 (2004).
[CrossRef]

M. Gay, M. Costa e Silva, T. N. Nguyen, L. Bramerie, T. Chartier, M. Joindot, J. C. Simon, J. Fatome, C. Finot, and J. L. Oudar, “170 Gbit/s bit error rate assessment of regeneration using a saturable absorber and a nonlinear fiber based power limiter,” IEEE Photon. Technol. Lett. 22(3), 158–160 (2010).
[CrossRef]

J. Lightw. Technol. (1)

J. Fatome and C. Finot, “Scaling guidelines of a soliton-based power limiter for 2R-optical regeneration applications,” J. Lightw. Technol. DOI: (2010).
[CrossRef]

Nat. Photonics (1)

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

Opt. Express (2)

Opt. Fiber Technol. (3)

S. Boscolo, S. K. Turitsyn, and K. J. Blow, “Nonlinear loop mirror-based all-optical signal processing in fiber-optic communications,” Opt. Fiber Technol. 14(4), 299–316 (2008).
[CrossRef]

Z. Pan, C. Yu, and A. E. Willner, “Optical performance monitoring for the next generation optical communication networks,” Opt. Fiber Technol. 16(1), 20–45 (2010).
[CrossRef]

J. Fatome, J. Garnier, S. Pitois, M. Petit, G. Millot, M. Gay, B. Clouet, L. Bramerie, and J. C. Simon, “All-optical measurements of background, amplitude, and timing jitters for high speed pulse trains or PRBS sequences using autocorrelation function,” Opt. Fiber Technol. 14(1), 84–91 (2008).
[CrossRef]

Other (1)

P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” in European Conference on Optical Communication, ECOC'98, 1998), 475–476.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental set-up

Fig. 2
Fig. 2

(a) TF of the device and associated parameters. Inset: optical spectrum at the local minimum of the TF before the OBPF (black line) compared with the OBPF (green line). (b) Pulse train with 1% initial relative amplitude jitter: SUT (b1) is compared to the pulse train obtained after optical magnification (b2). (c) Comparison of the TF based on the peak-powers of the incoming and outcoming pulses (red curve) with the TF relying on pulse energy (blue curve) or average pulse energy when the train exhibits 5% relative fluctuations (dotted black line). (d) Probability distribution of the output parameter (peak-power: red ; pulse energy: blue) compared to the distribution of the initial peak-powers magnified by a factor 10 (dotted black line). The initial distribution of the peak powers is plotted in solid black-line.

Fig. 3
Fig. 3

(a) Experimental transfer function of the device (black circles) compared to the numerical simulations (blue line). Subplots (a1) and (a2) illustrate the statistical distribution of the peak powers of the input and output pulse trains respectively (subplot (a1) is partly impaired by the electronic noise contribution). (b) Evolution of the magnification factor according to the working average power (an initial jitter of 4 percent is superimposed on the modelocked train). Experimental results (black circles) are compared with the results of numerical simulations (blue line) (c) Relative output jitter versus input jitter (rms values).

Fig. 4
Fig. 4

Signal recorded before (subplots 1) and after (subplots 2) the optical jitter magnifier. SUT may be impaired by the electrical noise contribution of the oscilloscope (leading to a relative amplitude jitter estimated to 1%). Eye-diagrams and associated histograms of a pulse train modulated by a low frequency sinusoidal wave or by a low frequency periodic triangular wave are plotted on subplots a and subplots b, respectively. Results dealing with a 40-GHz pulse train made of four time-interleaved 10 GHz pulse trains are given on subplots (c).

Metrics