Abstract

Abstract: We demonstrate a unique solution to use a one-pulse control to achieve simultaneous two-channel all-optical demultiplexing that usually requires a two-pulse control or a two-step operation based on the conventional approaches. By applying a dispersion asymmetric nonlinear optical loop mirror (DA-NOLM) to introduce cross phase modulation (XPM) in both the clockwise (CW) and the counter clockwise (CCW) propagating branches, we have demonstrated reconfigurable, error-free 40-to-10 Gb/s two-channel demultiplexing (DEMUX) for OTDM OOK signals. Switchable operation between two-channel and single-channel DEMUX is also realized based on the proposed all-optical DEMUX configuration.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Watanabe, “Optical signal processing using nonlinear fibers,” J. Opt. Fiber Commun. Rep. 3(1), 1–24 (2006).
    [CrossRef]
  2. S. Boscolo, S. K. Turitsyn, and K. J. Blow, “Nonlinear loop mirror-based all-optical signal processing in fiber-optic communications,” Opt. Fiber Technol. 14(4), 299–316 (2008).
    [CrossRef]
  3. T. Yamamoto, E. Yoshida, and M. Nakazawa, “Ultrafast nonlinear optical loop mirror for demultiplexing 640 Gbit/s TDM signals,” Electron. Lett. 34(10), 1013–1014 (1998).
    [CrossRef]
  4. I. D. Phillips, A. Gloag, P. N. Kean, N. J. Doran, I. Bennion, and A. D. Ellis, “Simultaneous demultiplexing, data regeneration, and clock recovery with a single semiconductor optical amplifier based nonlinear-optical loop mirror,” Opt. Lett. 22(17), 1326–1328 (1997).
    [CrossRef]
  5. J. H. Lee, T. Tanemura, K. Kikuchi, T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, “Use of 1-m Bi2O3 nonlinear fiber for 160-Gbit/s optical time-division demultiplexing based on polarization rotation and a wavelength shift induced by cross-phase modulation,” Opt. Lett. 30(11), 1267–1269 (2005).
    [CrossRef] [PubMed]
  6. M. Roelens, J. A. Bolger, D. Williams, S. Frisken, G. W. Baxter, A. M. Clarke, and B. J. Eggleton, “Flexible and Reconfigurable Time-Domain De-Multiplexing of Optical Signals at 160 Gbit/s,” IEEE Photon. Technol. Lett. 21(10), 618–620 (2009).
    [CrossRef]
  7. N. Chi, L. Xu, K. S. Berg, T. Tokle, and P. Jeppesen, “All-optical wavelength conversion and multichannel 2R regeneration based on highly nonlinear dispersion-imbalanced loop mirror,” IEEE Photon. Technol. Lett. 14, 469–471 (2002).
  8. M. P. Fok and C. Shu, “Delay-asymmetric nonlinear loop mirror for DPSK demodulation,” Opt. Lett. 33(23), 2845–2847 (2008).
    [CrossRef] [PubMed]

2009

M. Roelens, J. A. Bolger, D. Williams, S. Frisken, G. W. Baxter, A. M. Clarke, and B. J. Eggleton, “Flexible and Reconfigurable Time-Domain De-Multiplexing of Optical Signals at 160 Gbit/s,” IEEE Photon. Technol. Lett. 21(10), 618–620 (2009).
[CrossRef]

2008

M. P. Fok and C. Shu, “Delay-asymmetric nonlinear loop mirror for DPSK demodulation,” Opt. Lett. 33(23), 2845–2847 (2008).
[CrossRef] [PubMed]

S. Boscolo, S. K. Turitsyn, and K. J. Blow, “Nonlinear loop mirror-based all-optical signal processing in fiber-optic communications,” Opt. Fiber Technol. 14(4), 299–316 (2008).
[CrossRef]

2006

S. Watanabe, “Optical signal processing using nonlinear fibers,” J. Opt. Fiber Commun. Rep. 3(1), 1–24 (2006).
[CrossRef]

2005

2002

N. Chi, L. Xu, K. S. Berg, T. Tokle, and P. Jeppesen, “All-optical wavelength conversion and multichannel 2R regeneration based on highly nonlinear dispersion-imbalanced loop mirror,” IEEE Photon. Technol. Lett. 14, 469–471 (2002).

1998

T. Yamamoto, E. Yoshida, and M. Nakazawa, “Ultrafast nonlinear optical loop mirror for demultiplexing 640 Gbit/s TDM signals,” Electron. Lett. 34(10), 1013–1014 (1998).
[CrossRef]

1997

Baxter, G. W.

M. Roelens, J. A. Bolger, D. Williams, S. Frisken, G. W. Baxter, A. M. Clarke, and B. J. Eggleton, “Flexible and Reconfigurable Time-Domain De-Multiplexing of Optical Signals at 160 Gbit/s,” IEEE Photon. Technol. Lett. 21(10), 618–620 (2009).
[CrossRef]

Bennion, I.

Berg, K. S.

N. Chi, L. Xu, K. S. Berg, T. Tokle, and P. Jeppesen, “All-optical wavelength conversion and multichannel 2R regeneration based on highly nonlinear dispersion-imbalanced loop mirror,” IEEE Photon. Technol. Lett. 14, 469–471 (2002).

Blow, K. J.

S. Boscolo, S. K. Turitsyn, and K. J. Blow, “Nonlinear loop mirror-based all-optical signal processing in fiber-optic communications,” Opt. Fiber Technol. 14(4), 299–316 (2008).
[CrossRef]

Bolger, J. A.

M. Roelens, J. A. Bolger, D. Williams, S. Frisken, G. W. Baxter, A. M. Clarke, and B. J. Eggleton, “Flexible and Reconfigurable Time-Domain De-Multiplexing of Optical Signals at 160 Gbit/s,” IEEE Photon. Technol. Lett. 21(10), 618–620 (2009).
[CrossRef]

Boscolo, S.

S. Boscolo, S. K. Turitsyn, and K. J. Blow, “Nonlinear loop mirror-based all-optical signal processing in fiber-optic communications,” Opt. Fiber Technol. 14(4), 299–316 (2008).
[CrossRef]

Chi, N.

N. Chi, L. Xu, K. S. Berg, T. Tokle, and P. Jeppesen, “All-optical wavelength conversion and multichannel 2R regeneration based on highly nonlinear dispersion-imbalanced loop mirror,” IEEE Photon. Technol. Lett. 14, 469–471 (2002).

Clarke, A. M.

M. Roelens, J. A. Bolger, D. Williams, S. Frisken, G. W. Baxter, A. M. Clarke, and B. J. Eggleton, “Flexible and Reconfigurable Time-Domain De-Multiplexing of Optical Signals at 160 Gbit/s,” IEEE Photon. Technol. Lett. 21(10), 618–620 (2009).
[CrossRef]

Doran, N. J.

Eggleton, B. J.

M. Roelens, J. A. Bolger, D. Williams, S. Frisken, G. W. Baxter, A. M. Clarke, and B. J. Eggleton, “Flexible and Reconfigurable Time-Domain De-Multiplexing of Optical Signals at 160 Gbit/s,” IEEE Photon. Technol. Lett. 21(10), 618–620 (2009).
[CrossRef]

Ellis, A. D.

Fok, M. P.

Frisken, S.

M. Roelens, J. A. Bolger, D. Williams, S. Frisken, G. W. Baxter, A. M. Clarke, and B. J. Eggleton, “Flexible and Reconfigurable Time-Domain De-Multiplexing of Optical Signals at 160 Gbit/s,” IEEE Photon. Technol. Lett. 21(10), 618–620 (2009).
[CrossRef]

Gloag, A.

Hasegawa, T.

Jeppesen, P.

N. Chi, L. Xu, K. S. Berg, T. Tokle, and P. Jeppesen, “All-optical wavelength conversion and multichannel 2R regeneration based on highly nonlinear dispersion-imbalanced loop mirror,” IEEE Photon. Technol. Lett. 14, 469–471 (2002).

Kean, P. N.

Kikuchi, K.

Lee, J. H.

Nagashima, T.

Nakazawa, M.

T. Yamamoto, E. Yoshida, and M. Nakazawa, “Ultrafast nonlinear optical loop mirror for demultiplexing 640 Gbit/s TDM signals,” Electron. Lett. 34(10), 1013–1014 (1998).
[CrossRef]

Ohara, S.

Phillips, I. D.

Roelens, M.

M. Roelens, J. A. Bolger, D. Williams, S. Frisken, G. W. Baxter, A. M. Clarke, and B. J. Eggleton, “Flexible and Reconfigurable Time-Domain De-Multiplexing of Optical Signals at 160 Gbit/s,” IEEE Photon. Technol. Lett. 21(10), 618–620 (2009).
[CrossRef]

Shu, C.

Sugimoto, N.

Tanemura, T.

Tokle, T.

N. Chi, L. Xu, K. S. Berg, T. Tokle, and P. Jeppesen, “All-optical wavelength conversion and multichannel 2R regeneration based on highly nonlinear dispersion-imbalanced loop mirror,” IEEE Photon. Technol. Lett. 14, 469–471 (2002).

Turitsyn, S. K.

S. Boscolo, S. K. Turitsyn, and K. J. Blow, “Nonlinear loop mirror-based all-optical signal processing in fiber-optic communications,” Opt. Fiber Technol. 14(4), 299–316 (2008).
[CrossRef]

Watanabe, S.

S. Watanabe, “Optical signal processing using nonlinear fibers,” J. Opt. Fiber Commun. Rep. 3(1), 1–24 (2006).
[CrossRef]

Williams, D.

M. Roelens, J. A. Bolger, D. Williams, S. Frisken, G. W. Baxter, A. M. Clarke, and B. J. Eggleton, “Flexible and Reconfigurable Time-Domain De-Multiplexing of Optical Signals at 160 Gbit/s,” IEEE Photon. Technol. Lett. 21(10), 618–620 (2009).
[CrossRef]

Xu, L.

N. Chi, L. Xu, K. S. Berg, T. Tokle, and P. Jeppesen, “All-optical wavelength conversion and multichannel 2R regeneration based on highly nonlinear dispersion-imbalanced loop mirror,” IEEE Photon. Technol. Lett. 14, 469–471 (2002).

Yamamoto, T.

T. Yamamoto, E. Yoshida, and M. Nakazawa, “Ultrafast nonlinear optical loop mirror for demultiplexing 640 Gbit/s TDM signals,” Electron. Lett. 34(10), 1013–1014 (1998).
[CrossRef]

Yoshida, E.

T. Yamamoto, E. Yoshida, and M. Nakazawa, “Ultrafast nonlinear optical loop mirror for demultiplexing 640 Gbit/s TDM signals,” Electron. Lett. 34(10), 1013–1014 (1998).
[CrossRef]

Electron. Lett.

T. Yamamoto, E. Yoshida, and M. Nakazawa, “Ultrafast nonlinear optical loop mirror for demultiplexing 640 Gbit/s TDM signals,” Electron. Lett. 34(10), 1013–1014 (1998).
[CrossRef]

IEEE Photon. Technol. Lett.

M. Roelens, J. A. Bolger, D. Williams, S. Frisken, G. W. Baxter, A. M. Clarke, and B. J. Eggleton, “Flexible and Reconfigurable Time-Domain De-Multiplexing of Optical Signals at 160 Gbit/s,” IEEE Photon. Technol. Lett. 21(10), 618–620 (2009).
[CrossRef]

N. Chi, L. Xu, K. S. Berg, T. Tokle, and P. Jeppesen, “All-optical wavelength conversion and multichannel 2R regeneration based on highly nonlinear dispersion-imbalanced loop mirror,” IEEE Photon. Technol. Lett. 14, 469–471 (2002).

J. Opt. Fiber Commun. Rep.

S. Watanabe, “Optical signal processing using nonlinear fibers,” J. Opt. Fiber Commun. Rep. 3(1), 1–24 (2006).
[CrossRef]

Opt. Fiber Technol.

S. Boscolo, S. K. Turitsyn, and K. J. Blow, “Nonlinear loop mirror-based all-optical signal processing in fiber-optic communications,” Opt. Fiber Technol. 14(4), 299–316 (2008).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic illustration of the DA-NOLM for two-channel OTDM DEMUX. GVD: group velocity dispersion; CW: clockwise; CCW: counter clockwise.

Fig. 2
Fig. 2

(a) Setup for the generation of 10-GHz control pulse and 40-Gb/s OTDM OOK signal; (b) Setup for two-channel DEMUX based on the dispersion asymmetric NOLM. ODL: optical delay line; BPF: band pass filter; ISO: isolator; PD: photodetector; VOA: variable optical attenuator.

Fig. 3
Fig. 3

Measured optical spectrum of the 10-GHz control pulse after SPM in the HNLF-1. The lower curve shows a spectrally sliced output.

Fig. 4
Fig. 4

(a) Spectra showing different wavelength spacings between the control pulse and the OTDM signal for two-channel DEMUX; (b) Eye diagrams of the two corresponding demultiplexed channels.

Fig. 5
Fig. 5

Eye diagrams obtained from two-channel and single-channel switchable DEMUX.

Fig. 6
Fig. 6

BER measurement results of the DA-NOLM based DEMUX.

Tables (1)

Tables Icon

Table 1 Reconfigurable DEMUX based on tunable delay obtained with a GVD of 10 ps/nm

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P o u t = 1 2 P i n ( 1 cos Δ φ )
Δ φ 1 = | Δ φ 1 c w Δ φ 1 c c w | = | γ L ( P 1 c w P 1 c c w ) |
Δ φ 2 = | Δ φ 2 c c w Δ φ 2 c w | = | γ L ( P 2 c c w P 2 c w ) |

Metrics