Abstract

A clinical ultrasound scanner and 14 MHz linear array collected real-time photoacoustic images (PAI) during an injection of gold nanorods (GNRs) near the region of a mature PC-3 prostate tumor in mice implanted with a skin flap window chamber. Three dimensional spectroscopic PAI (690-900nm) was also performed to investigate absorption changes near the tumor and enhance specific detection of GNRs. Whereas GNRs improved PAI contrast ( + 18 dB), the photoacoustic spectrum was consistent with the elevated near infrared absorption of GNRs. The versatile imaging platform potentially accelerates development of photoacoustic contrast agents and drug delivery for cancer imaging and therapy.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Jemal, R. Siegel, E. Ward, Y. P. Hao, J. Q. Xu, and M. J. Thun, “Cancer statistics, 2009,” CA Cancer J. Clin. 59(4), 225–249 (2009).
    [CrossRef] [PubMed]
  2. E. D. Agdeppa and M. E. Spilker, “A review of imaging agent development,” AAPS J. 11(2), 286–299 (2009).
    [CrossRef] [PubMed]
  3. G. H. Algire and F. Y. Legallais, “Recent developments in the transparent-chamber technique as adapted to the mouse,” J. Natl. Cancer Inst. 10(2), 225–253, 8 (1949).
    [PubMed]
  4. G. H. Algire and J. U. Schlegel, “Circulatory reactions in photodynamic action,” J. Cell. Comp. Physiol. 35(1), 95–110 (1950).
    [CrossRef]
  5. Q. Huang, S. Q. Shan, R. D. Braun, J. Lanzen, G. Anyrhambatla, G. H. Kong, M. Borelli, P. Corry, M. W. Dewhirst, and C. Y. Li, “Noninvasive visualization of tumors in rodent dorsal skin window chambers,” Nat. Biotechnol. 17(10), 1033–1035 (1999).
    [CrossRef] [PubMed]
  6. L. Y. Chen, L. S. Gobar, N. G. Knowles, D. W. Wilson, and H. H. Barrett, “Direct Charged-Particle Imaging System Using an Ultra-Thin Phosphor: Physical Characterization and Dynamic Applications,” IEEE Trans. Nucl. Sci. 56(5), 2628–2635 (2009).
    [CrossRef]
  7. M. W. Dewhirst, E. T. Ong, R. D. Braun, B. Smith, B. Klitzman, S. M. Evans, and D. Wilson, “Quantification of longitudinal tissue pO2 gradients in window chamber tumours: impact on tumour hypoxia,” Br. J. Cancer 79(11/12), 1717–1722 (1999).
    [CrossRef] [PubMed]
  8. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett. 33(13), 1530–1532 (2008).
    [CrossRef] [PubMed]
  9. R. A. Gatenby, E. T. Gawlinski, A. F. Gmitro, B. Kaylor, and R. J. Gillies, “Acid-mediated tumor invasion: a multidisciplinary study,” Cancer Res. 66(10), 5216–5223 (2006).
    [CrossRef] [PubMed]
  10. A. F. Gmitro, Y. Lin, and M. Farrokh, “A System for Multi-Modality Optical and MR Imaging of Implanted Window Chambers,” Novel Techniques in Microscopy (NTM), NWD4 (2009).
  11. C. H. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54(19), R59–R97 (2009).
    [CrossRef] [PubMed]
  12. J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: Synthesis, characterization and applications,” Coord. Chem. Rev. 249(17-18), 1870–1901 (2005).
    [CrossRef]
  13. A. Agarwal, S. W. Huang, M. O'Donnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys. 102(6), 064701 (2007).
    [CrossRef]
  14. S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett. 9(8), 2825–2831 (2009).
    [CrossRef] [PubMed]
  15. K. Kim, A. Agarwal, A. M. McDonald, R. M. Moore, D. D. Myers, R. S. Witte, S. W. Huang, S. Ashkenazi, M. J. Kaplan, T. W. Wakefield, M. O'Donnell, and N. A. Kotov, “In vivo imaging of inflammatory responses by photoacoustics using cell-targeted gold nanorods (GNR) as contrast agent,” Proc. SPIE 2008 6856, 68560H (2008).
  16. C. K. Liao, S. W. Huang, C. W. Wei, and P. C. Li, “Nanorod-based flow estimation using a high-frame-rate photoacoustic imaging system,” J. Biomed. Opt. 12(6), 064006 (2007).
    [CrossRef]
  17. D. R. Bauer, R. Olafsson, L. G. Montilla, and R. S. Witte, “In vivo multi-modality photoacoustic and pulse echo tracking of prostate tumor growth using a window chamber,” Proc. SPIE 2010 7564, 75643B (2010).
  18. Laser Institute of America, “American national standard for safe use of lasers Z136.1” (2000).

2009 (5)

A. Jemal, R. Siegel, E. Ward, Y. P. Hao, J. Q. Xu, and M. J. Thun, “Cancer statistics, 2009,” CA Cancer J. Clin. 59(4), 225–249 (2009).
[CrossRef] [PubMed]

E. D. Agdeppa and M. E. Spilker, “A review of imaging agent development,” AAPS J. 11(2), 286–299 (2009).
[CrossRef] [PubMed]

L. Y. Chen, L. S. Gobar, N. G. Knowles, D. W. Wilson, and H. H. Barrett, “Direct Charged-Particle Imaging System Using an Ultra-Thin Phosphor: Physical Characterization and Dynamic Applications,” IEEE Trans. Nucl. Sci. 56(5), 2628–2635 (2009).
[CrossRef]

C. H. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54(19), R59–R97 (2009).
[CrossRef] [PubMed]

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett. 9(8), 2825–2831 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (2)

C. K. Liao, S. W. Huang, C. W. Wei, and P. C. Li, “Nanorod-based flow estimation using a high-frame-rate photoacoustic imaging system,” J. Biomed. Opt. 12(6), 064006 (2007).
[CrossRef]

A. Agarwal, S. W. Huang, M. O'Donnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys. 102(6), 064701 (2007).
[CrossRef]

2006 (1)

R. A. Gatenby, E. T. Gawlinski, A. F. Gmitro, B. Kaylor, and R. J. Gillies, “Acid-mediated tumor invasion: a multidisciplinary study,” Cancer Res. 66(10), 5216–5223 (2006).
[CrossRef] [PubMed]

2005 (1)

J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: Synthesis, characterization and applications,” Coord. Chem. Rev. 249(17-18), 1870–1901 (2005).
[CrossRef]

1999 (2)

M. W. Dewhirst, E. T. Ong, R. D. Braun, B. Smith, B. Klitzman, S. M. Evans, and D. Wilson, “Quantification of longitudinal tissue pO2 gradients in window chamber tumours: impact on tumour hypoxia,” Br. J. Cancer 79(11/12), 1717–1722 (1999).
[CrossRef] [PubMed]

Q. Huang, S. Q. Shan, R. D. Braun, J. Lanzen, G. Anyrhambatla, G. H. Kong, M. Borelli, P. Corry, M. W. Dewhirst, and C. Y. Li, “Noninvasive visualization of tumors in rodent dorsal skin window chambers,” Nat. Biotechnol. 17(10), 1033–1035 (1999).
[CrossRef] [PubMed]

1950 (1)

G. H. Algire and J. U. Schlegel, “Circulatory reactions in photodynamic action,” J. Cell. Comp. Physiol. 35(1), 95–110 (1950).
[CrossRef]

1949 (1)

G. H. Algire and F. Y. Legallais, “Recent developments in the transparent-chamber technique as adapted to the mouse,” J. Natl. Cancer Inst. 10(2), 225–253, 8 (1949).
[PubMed]

Agarwal, A.

A. Agarwal, S. W. Huang, M. O'Donnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys. 102(6), 064701 (2007).
[CrossRef]

Agdeppa, E. D.

E. D. Agdeppa and M. E. Spilker, “A review of imaging agent development,” AAPS J. 11(2), 286–299 (2009).
[CrossRef] [PubMed]

Algire, G. H.

G. H. Algire and J. U. Schlegel, “Circulatory reactions in photodynamic action,” J. Cell. Comp. Physiol. 35(1), 95–110 (1950).
[CrossRef]

G. H. Algire and F. Y. Legallais, “Recent developments in the transparent-chamber technique as adapted to the mouse,” J. Natl. Cancer Inst. 10(2), 225–253, 8 (1949).
[PubMed]

Anyrhambatla, G.

Q. Huang, S. Q. Shan, R. D. Braun, J. Lanzen, G. Anyrhambatla, G. H. Kong, M. Borelli, P. Corry, M. W. Dewhirst, and C. Y. Li, “Noninvasive visualization of tumors in rodent dorsal skin window chambers,” Nat. Biotechnol. 17(10), 1033–1035 (1999).
[CrossRef] [PubMed]

Ashkenazi, S.

A. Agarwal, S. W. Huang, M. O'Donnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys. 102(6), 064701 (2007).
[CrossRef]

Barrett, H. H.

L. Y. Chen, L. S. Gobar, N. G. Knowles, D. W. Wilson, and H. H. Barrett, “Direct Charged-Particle Imaging System Using an Ultra-Thin Phosphor: Physical Characterization and Dynamic Applications,” IEEE Trans. Nucl. Sci. 56(5), 2628–2635 (2009).
[CrossRef]

Borelli, M.

Q. Huang, S. Q. Shan, R. D. Braun, J. Lanzen, G. Anyrhambatla, G. H. Kong, M. Borelli, P. Corry, M. W. Dewhirst, and C. Y. Li, “Noninvasive visualization of tumors in rodent dorsal skin window chambers,” Nat. Biotechnol. 17(10), 1033–1035 (1999).
[CrossRef] [PubMed]

Braun, R. D.

M. W. Dewhirst, E. T. Ong, R. D. Braun, B. Smith, B. Klitzman, S. M. Evans, and D. Wilson, “Quantification of longitudinal tissue pO2 gradients in window chamber tumours: impact on tumour hypoxia,” Br. J. Cancer 79(11/12), 1717–1722 (1999).
[CrossRef] [PubMed]

Q. Huang, S. Q. Shan, R. D. Braun, J. Lanzen, G. Anyrhambatla, G. H. Kong, M. Borelli, P. Corry, M. W. Dewhirst, and C. Y. Li, “Noninvasive visualization of tumors in rodent dorsal skin window chambers,” Nat. Biotechnol. 17(10), 1033–1035 (1999).
[CrossRef] [PubMed]

Cable, A.

Chen, L. Y.

L. Y. Chen, L. S. Gobar, N. G. Knowles, D. W. Wilson, and H. H. Barrett, “Direct Charged-Particle Imaging System Using an Ultra-Thin Phosphor: Physical Characterization and Dynamic Applications,” IEEE Trans. Nucl. Sci. 56(5), 2628–2635 (2009).
[CrossRef]

Corry, P.

Q. Huang, S. Q. Shan, R. D. Braun, J. Lanzen, G. Anyrhambatla, G. H. Kong, M. Borelli, P. Corry, M. W. Dewhirst, and C. Y. Li, “Noninvasive visualization of tumors in rodent dorsal skin window chambers,” Nat. Biotechnol. 17(10), 1033–1035 (1999).
[CrossRef] [PubMed]

Day, K. C.

A. Agarwal, S. W. Huang, M. O'Donnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys. 102(6), 064701 (2007).
[CrossRef]

Day, M.

A. Agarwal, S. W. Huang, M. O'Donnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys. 102(6), 064701 (2007).
[CrossRef]

Dewhirst, M. W.

Q. Huang, S. Q. Shan, R. D. Braun, J. Lanzen, G. Anyrhambatla, G. H. Kong, M. Borelli, P. Corry, M. W. Dewhirst, and C. Y. Li, “Noninvasive visualization of tumors in rodent dorsal skin window chambers,” Nat. Biotechnol. 17(10), 1033–1035 (1999).
[CrossRef] [PubMed]

M. W. Dewhirst, E. T. Ong, R. D. Braun, B. Smith, B. Klitzman, S. M. Evans, and D. Wilson, “Quantification of longitudinal tissue pO2 gradients in window chamber tumours: impact on tumour hypoxia,” Br. J. Cancer 79(11/12), 1717–1722 (1999).
[CrossRef] [PubMed]

Emelianov, S.

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett. 9(8), 2825–2831 (2009).
[CrossRef] [PubMed]

Evans, S. M.

M. W. Dewhirst, E. T. Ong, R. D. Braun, B. Smith, B. Klitzman, S. M. Evans, and D. Wilson, “Quantification of longitudinal tissue pO2 gradients in window chamber tumours: impact on tumour hypoxia,” Br. J. Cancer 79(11/12), 1717–1722 (1999).
[CrossRef] [PubMed]

Gatenby, R. A.

R. A. Gatenby, E. T. Gawlinski, A. F. Gmitro, B. Kaylor, and R. J. Gillies, “Acid-mediated tumor invasion: a multidisciplinary study,” Cancer Res. 66(10), 5216–5223 (2006).
[CrossRef] [PubMed]

Gawlinski, E. T.

R. A. Gatenby, E. T. Gawlinski, A. F. Gmitro, B. Kaylor, and R. J. Gillies, “Acid-mediated tumor invasion: a multidisciplinary study,” Cancer Res. 66(10), 5216–5223 (2006).
[CrossRef] [PubMed]

Gillies, R. J.

R. A. Gatenby, E. T. Gawlinski, A. F. Gmitro, B. Kaylor, and R. J. Gillies, “Acid-mediated tumor invasion: a multidisciplinary study,” Cancer Res. 66(10), 5216–5223 (2006).
[CrossRef] [PubMed]

Gmitro, A. F.

R. A. Gatenby, E. T. Gawlinski, A. F. Gmitro, B. Kaylor, and R. J. Gillies, “Acid-mediated tumor invasion: a multidisciplinary study,” Cancer Res. 66(10), 5216–5223 (2006).
[CrossRef] [PubMed]

Gobar, L. S.

L. Y. Chen, L. S. Gobar, N. G. Knowles, D. W. Wilson, and H. H. Barrett, “Direct Charged-Particle Imaging System Using an Ultra-Thin Phosphor: Physical Characterization and Dynamic Applications,” IEEE Trans. Nucl. Sci. 56(5), 2628–2635 (2009).
[CrossRef]

Hao, Y. P.

A. Jemal, R. Siegel, E. Ward, Y. P. Hao, J. Q. Xu, and M. J. Thun, “Cancer statistics, 2009,” CA Cancer J. Clin. 59(4), 225–249 (2009).
[CrossRef] [PubMed]

Huang, Q.

Q. Huang, S. Q. Shan, R. D. Braun, J. Lanzen, G. Anyrhambatla, G. H. Kong, M. Borelli, P. Corry, M. W. Dewhirst, and C. Y. Li, “Noninvasive visualization of tumors in rodent dorsal skin window chambers,” Nat. Biotechnol. 17(10), 1033–1035 (1999).
[CrossRef] [PubMed]

Huang, S. W.

A. Agarwal, S. W. Huang, M. O'Donnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys. 102(6), 064701 (2007).
[CrossRef]

C. K. Liao, S. W. Huang, C. W. Wei, and P. C. Li, “Nanorod-based flow estimation using a high-frame-rate photoacoustic imaging system,” J. Biomed. Opt. 12(6), 064006 (2007).
[CrossRef]

Jemal, A.

A. Jemal, R. Siegel, E. Ward, Y. P. Hao, J. Q. Xu, and M. J. Thun, “Cancer statistics, 2009,” CA Cancer J. Clin. 59(4), 225–249 (2009).
[CrossRef] [PubMed]

Jiang, J.

Joshi, P. P.

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett. 9(8), 2825–2831 (2009).
[CrossRef] [PubMed]

Karpiouk, A.

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett. 9(8), 2825–2831 (2009).
[CrossRef] [PubMed]

Kaylor, B.

R. A. Gatenby, E. T. Gawlinski, A. F. Gmitro, B. Kaylor, and R. J. Gillies, “Acid-mediated tumor invasion: a multidisciplinary study,” Cancer Res. 66(10), 5216–5223 (2006).
[CrossRef] [PubMed]

Khurana, M.

Klitzman, B.

M. W. Dewhirst, E. T. Ong, R. D. Braun, B. Smith, B. Klitzman, S. M. Evans, and D. Wilson, “Quantification of longitudinal tissue pO2 gradients in window chamber tumours: impact on tumour hypoxia,” Br. J. Cancer 79(11/12), 1717–1722 (1999).
[CrossRef] [PubMed]

Knowles, N. G.

L. Y. Chen, L. S. Gobar, N. G. Knowles, D. W. Wilson, and H. H. Barrett, “Direct Charged-Particle Imaging System Using an Ultra-Thin Phosphor: Physical Characterization and Dynamic Applications,” IEEE Trans. Nucl. Sci. 56(5), 2628–2635 (2009).
[CrossRef]

Kong, G. H.

Q. Huang, S. Q. Shan, R. D. Braun, J. Lanzen, G. Anyrhambatla, G. H. Kong, M. Borelli, P. Corry, M. W. Dewhirst, and C. Y. Li, “Noninvasive visualization of tumors in rodent dorsal skin window chambers,” Nat. Biotechnol. 17(10), 1033–1035 (1999).
[CrossRef] [PubMed]

Kotov, N.

A. Agarwal, S. W. Huang, M. O'Donnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys. 102(6), 064701 (2007).
[CrossRef]

Lanzen, J.

Q. Huang, S. Q. Shan, R. D. Braun, J. Lanzen, G. Anyrhambatla, G. H. Kong, M. Borelli, P. Corry, M. W. Dewhirst, and C. Y. Li, “Noninvasive visualization of tumors in rodent dorsal skin window chambers,” Nat. Biotechnol. 17(10), 1033–1035 (1999).
[CrossRef] [PubMed]

Larson, T.

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett. 9(8), 2825–2831 (2009).
[CrossRef] [PubMed]

Legallais, F. Y.

G. H. Algire and F. Y. Legallais, “Recent developments in the transparent-chamber technique as adapted to the mouse,” J. Natl. Cancer Inst. 10(2), 225–253, 8 (1949).
[PubMed]

Leung, M. K. K.

Li, C. H.

C. H. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54(19), R59–R97 (2009).
[CrossRef] [PubMed]

Li, C. Y.

Q. Huang, S. Q. Shan, R. D. Braun, J. Lanzen, G. Anyrhambatla, G. H. Kong, M. Borelli, P. Corry, M. W. Dewhirst, and C. Y. Li, “Noninvasive visualization of tumors in rodent dorsal skin window chambers,” Nat. Biotechnol. 17(10), 1033–1035 (1999).
[CrossRef] [PubMed]

Li, P. C.

C. K. Liao, S. W. Huang, C. W. Wei, and P. C. Li, “Nanorod-based flow estimation using a high-frame-rate photoacoustic imaging system,” J. Biomed. Opt. 12(6), 064006 (2007).
[CrossRef]

Liao, C. K.

C. K. Liao, S. W. Huang, C. W. Wei, and P. C. Li, “Nanorod-based flow estimation using a high-frame-rate photoacoustic imaging system,” J. Biomed. Opt. 12(6), 064006 (2007).
[CrossRef]

Liz-Marzan, L. M.

J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: Synthesis, characterization and applications,” Coord. Chem. Rev. 249(17-18), 1870–1901 (2005).
[CrossRef]

Mallidi, S.

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett. 9(8), 2825–2831 (2009).
[CrossRef] [PubMed]

Mariampillai, A.

Moriyama, E. H.

Mulvaney, P.

J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: Synthesis, characterization and applications,” Coord. Chem. Rev. 249(17-18), 1870–1901 (2005).
[CrossRef]

Munce, N. R.

O'Donnell, M.

A. Agarwal, S. W. Huang, M. O'Donnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys. 102(6), 064701 (2007).
[CrossRef]

Ong, E. T.

M. W. Dewhirst, E. T. Ong, R. D. Braun, B. Smith, B. Klitzman, S. M. Evans, and D. Wilson, “Quantification of longitudinal tissue pO2 gradients in window chamber tumours: impact on tumour hypoxia,” Br. J. Cancer 79(11/12), 1717–1722 (1999).
[CrossRef] [PubMed]

Pastoriza-Santos, I.

J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: Synthesis, characterization and applications,” Coord. Chem. Rev. 249(17-18), 1870–1901 (2005).
[CrossRef]

Perez-Juste, J.

J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: Synthesis, characterization and applications,” Coord. Chem. Rev. 249(17-18), 1870–1901 (2005).
[CrossRef]

Schlegel, J. U.

G. H. Algire and J. U. Schlegel, “Circulatory reactions in photodynamic action,” J. Cell. Comp. Physiol. 35(1), 95–110 (1950).
[CrossRef]

Shan, S. Q.

Q. Huang, S. Q. Shan, R. D. Braun, J. Lanzen, G. Anyrhambatla, G. H. Kong, M. Borelli, P. Corry, M. W. Dewhirst, and C. Y. Li, “Noninvasive visualization of tumors in rodent dorsal skin window chambers,” Nat. Biotechnol. 17(10), 1033–1035 (1999).
[CrossRef] [PubMed]

Siegel, R.

A. Jemal, R. Siegel, E. Ward, Y. P. Hao, J. Q. Xu, and M. J. Thun, “Cancer statistics, 2009,” CA Cancer J. Clin. 59(4), 225–249 (2009).
[CrossRef] [PubMed]

Smith, B.

M. W. Dewhirst, E. T. Ong, R. D. Braun, B. Smith, B. Klitzman, S. M. Evans, and D. Wilson, “Quantification of longitudinal tissue pO2 gradients in window chamber tumours: impact on tumour hypoxia,” Br. J. Cancer 79(11/12), 1717–1722 (1999).
[CrossRef] [PubMed]

Sokolov, K.

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett. 9(8), 2825–2831 (2009).
[CrossRef] [PubMed]

Spilker, M. E.

E. D. Agdeppa and M. E. Spilker, “A review of imaging agent development,” AAPS J. 11(2), 286–299 (2009).
[CrossRef] [PubMed]

Standish, B. A.

Tam, J.

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett. 9(8), 2825–2831 (2009).
[CrossRef] [PubMed]

Thun, M. J.

A. Jemal, R. Siegel, E. Ward, Y. P. Hao, J. Q. Xu, and M. J. Thun, “Cancer statistics, 2009,” CA Cancer J. Clin. 59(4), 225–249 (2009).
[CrossRef] [PubMed]

Vitkin, I. A.

Wang, L. V.

C. H. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54(19), R59–R97 (2009).
[CrossRef] [PubMed]

Ward, E.

A. Jemal, R. Siegel, E. Ward, Y. P. Hao, J. Q. Xu, and M. J. Thun, “Cancer statistics, 2009,” CA Cancer J. Clin. 59(4), 225–249 (2009).
[CrossRef] [PubMed]

Wei, C. W.

C. K. Liao, S. W. Huang, C. W. Wei, and P. C. Li, “Nanorod-based flow estimation using a high-frame-rate photoacoustic imaging system,” J. Biomed. Opt. 12(6), 064006 (2007).
[CrossRef]

Wilson, B. C.

Wilson, D.

M. W. Dewhirst, E. T. Ong, R. D. Braun, B. Smith, B. Klitzman, S. M. Evans, and D. Wilson, “Quantification of longitudinal tissue pO2 gradients in window chamber tumours: impact on tumour hypoxia,” Br. J. Cancer 79(11/12), 1717–1722 (1999).
[CrossRef] [PubMed]

Wilson, D. W.

L. Y. Chen, L. S. Gobar, N. G. Knowles, D. W. Wilson, and H. H. Barrett, “Direct Charged-Particle Imaging System Using an Ultra-Thin Phosphor: Physical Characterization and Dynamic Applications,” IEEE Trans. Nucl. Sci. 56(5), 2628–2635 (2009).
[CrossRef]

Xu, J. Q.

A. Jemal, R. Siegel, E. Ward, Y. P. Hao, J. Q. Xu, and M. J. Thun, “Cancer statistics, 2009,” CA Cancer J. Clin. 59(4), 225–249 (2009).
[CrossRef] [PubMed]

Yang, V. X. D.

AAPS J. (1)

E. D. Agdeppa and M. E. Spilker, “A review of imaging agent development,” AAPS J. 11(2), 286–299 (2009).
[CrossRef] [PubMed]

Br. J. Cancer (1)

M. W. Dewhirst, E. T. Ong, R. D. Braun, B. Smith, B. Klitzman, S. M. Evans, and D. Wilson, “Quantification of longitudinal tissue pO2 gradients in window chamber tumours: impact on tumour hypoxia,” Br. J. Cancer 79(11/12), 1717–1722 (1999).
[CrossRef] [PubMed]

CA Cancer J. Clin. (1)

A. Jemal, R. Siegel, E. Ward, Y. P. Hao, J. Q. Xu, and M. J. Thun, “Cancer statistics, 2009,” CA Cancer J. Clin. 59(4), 225–249 (2009).
[CrossRef] [PubMed]

Cancer Res. (1)

R. A. Gatenby, E. T. Gawlinski, A. F. Gmitro, B. Kaylor, and R. J. Gillies, “Acid-mediated tumor invasion: a multidisciplinary study,” Cancer Res. 66(10), 5216–5223 (2006).
[CrossRef] [PubMed]

Coord. Chem. Rev. (1)

J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: Synthesis, characterization and applications,” Coord. Chem. Rev. 249(17-18), 1870–1901 (2005).
[CrossRef]

IEEE Trans. Nucl. Sci. (1)

L. Y. Chen, L. S. Gobar, N. G. Knowles, D. W. Wilson, and H. H. Barrett, “Direct Charged-Particle Imaging System Using an Ultra-Thin Phosphor: Physical Characterization and Dynamic Applications,” IEEE Trans. Nucl. Sci. 56(5), 2628–2635 (2009).
[CrossRef]

J. Appl. Phys. (1)

A. Agarwal, S. W. Huang, M. O'Donnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys. 102(6), 064701 (2007).
[CrossRef]

J. Biomed. Opt. (1)

C. K. Liao, S. W. Huang, C. W. Wei, and P. C. Li, “Nanorod-based flow estimation using a high-frame-rate photoacoustic imaging system,” J. Biomed. Opt. 12(6), 064006 (2007).
[CrossRef]

J. Cell. Comp. Physiol. (1)

G. H. Algire and J. U. Schlegel, “Circulatory reactions in photodynamic action,” J. Cell. Comp. Physiol. 35(1), 95–110 (1950).
[CrossRef]

J. Natl. Cancer Inst. (1)

G. H. Algire and F. Y. Legallais, “Recent developments in the transparent-chamber technique as adapted to the mouse,” J. Natl. Cancer Inst. 10(2), 225–253, 8 (1949).
[PubMed]

Nano Lett. (1)

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett. 9(8), 2825–2831 (2009).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

Q. Huang, S. Q. Shan, R. D. Braun, J. Lanzen, G. Anyrhambatla, G. H. Kong, M. Borelli, P. Corry, M. W. Dewhirst, and C. Y. Li, “Noninvasive visualization of tumors in rodent dorsal skin window chambers,” Nat. Biotechnol. 17(10), 1033–1035 (1999).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Med. Biol. (1)

C. H. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54(19), R59–R97 (2009).
[CrossRef] [PubMed]

Other (4)

D. R. Bauer, R. Olafsson, L. G. Montilla, and R. S. Witte, “In vivo multi-modality photoacoustic and pulse echo tracking of prostate tumor growth using a window chamber,” Proc. SPIE 2010 7564, 75643B (2010).

Laser Institute of America, “American national standard for safe use of lasers Z136.1” (2000).

K. Kim, A. Agarwal, A. M. McDonald, R. M. Moore, D. D. Myers, R. S. Witte, S. W. Huang, S. Ashkenazi, M. J. Kaplan, T. W. Wakefield, M. O'Donnell, and N. A. Kotov, “In vivo imaging of inflammatory responses by photoacoustics using cell-targeted gold nanorods (GNR) as contrast agent,” Proc. SPIE 2008 6856, 68560H (2008).

A. F. Gmitro, Y. Lin, and M. Farrokh, “A System for Multi-Modality Optical and MR Imaging of Implanted Window Chambers,” Novel Techniques in Microscopy (NTM), NWD4 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for fast, contrast enhanced photoacoustic imaging in the mouse window chamber. a) A side view illustration with the L14-5 linear array (Zonare Medical Systems). The mouse rests on its side with the dorsal skin flap window chamber situated under a custom plastic tank. The window chamber was illuminated from below through the cover slip with near infrared (NIR) light of wavelength λ. Ultrasound and photoacoustic imaging was performed through the skin flap. Gold nanorods were manually injected into the tumor on Day 23. b) Top view of the window chamber. The mouse lies below the tank with only the window chamber skin flap exposed. c) A photograph of the L14-5 linear array positioned in the water tank above the skin flap.

Fig. 2
Fig. 2

Example: tracking tumor progression during 3 weeks using multiple modalities. (left column) Fluorescent (Fluor) and (middle left column) optical transillumination (Optical) microscope images acquired on the same day as the pulse echo (PE) and photoacoustic (PA) images. (middle column) lateral maximum intensity projection PA images. (middle right column) lateral PA slices superimposed on PE slices. (right column) PA cross sections superimposed on PE. The horizontal green arrows correspond to the depth of the lateral slices in the middle right column. PE images are grayscale while PA are superimposed in hot scale. These images were acquired with a high resolution single element 25 MHz transducer. The white scale bar is 1 mm.

Fig. 3
Fig. 3

Photoacoustic data acquired during injection of gold nanorods. a) An image captured 100 msec after the start of the GNR injection. The pink arrow illustrates the shaft of the needle used for the injection. This image corresponds to the red dashed rectangle in the grayscale pulse echo image b) The green arrow (top) points to the TegadermTM acoustic window. The bottom of the skin (bottom) is sagging because the glass coverslip was removed to permit access for the injection needle. The 30 dB dynamic range and the hot colorscale are the same as in Fig. 4. Image c) is a depth vs. time (M-mode) PA image illustrating the evolution of the PA signal at the location of the vertical green dotted line in image a). The plot in d) is the signal intensity as a function of time along the horizontal green line in image c).

Fig. 4
Fig. 4

Example: Orthogonal planes from a three dimensional photoacoustic data set of nanorods injected into a tumor acquired with the real-time clinical scanner and 14 MHz clinical array using 700 nm illumination. The three orthogonal images were selected in the region near the tumor and site of GNR injection.

Fig. 5
Fig. 5

Lateral slices form a multispectral 3D photoacoustic data set acquired with the clinical linear array. Photoacoustic slices were acquired before (top row) and after (bottom row) the injection of GNRs. Each column represents images taken at a particular excitation wavelength (four representative wavelengths displayed). The horizontal green dashed line corresponds to the image cross section shown in Fig. 3.

Fig. 6
Fig. 6

Optical absorption spectrum of GNRs before the injection and changes in the photoacoustic spectrum in the region of interest following the injection of GNRs. The plot with the black squares on the right is the gain in average image intensity within the green rectangle in Fig. 5 primarily due to the nanorods. The green line represents the absorption spectrum of the nanorods measured with a commercial spectrometer.

Metrics