Abstract

Typical femtosecond pulse compression of deep ultraviolet radiation consists of prism or diffraction grating pair chirp compensation but, both techniques introduce higher-order dispersion, spatial-spectral beam distortion and poor transmission. While negatively chirped dielectric mirrors have been used to compress near infrared and visible pulses to <10 fs, there has been no extension of this technique below 300 nm. We demonstrate the use of Gires-Tournois interferometer (GTI) negative dispersion multilayer dielectric mirrors designed for pulse compression in the deep ultraviolet region. GTI mirror designs are more robust than chirped mirrors and, can provide sufficient bandwidth for the compression of sub-30-fs pulses in the UV wavelength range. Compression of a 5 nm (FWHM) pulse centered between 266 and 271 nm to 30 fs has been achieved with less pulse broadening due to high-order dispersion and no noticeable spatial deformation, thereby improving the resolution of ultrafast techniques used to study problems such as fast photochemical reaction dynamics.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Yamashita, M. Ishikawa, K. Torizuka, and T. Sato, “Femtosecond-pulse laser chirp compensated by cavity-mirror dispersion,” Opt. Lett. 11(8), 504–506 (1986).
    [CrossRef] [PubMed]
  2. P. Dombi, P. Rácz, M. Lenner, V. Pervak, and F. Krausz, “Dispersion management in femtosecond laser oscillators with highly dispersive mirrors,” Opt. Express 17(22), 20598–20604 (2009).
    [CrossRef] [PubMed]
  3. X. Chen, L. Canova, A. Malvache, A. Jullien, R. Lopez-Martens, C. Durfee, D. Papadopoulos, and F. Druon, “1-mJ, sub-5-fs carrier-envelope phase-locked pulses,” Appl. Phys. B 99(1-2), 149–157 (2010).
    [CrossRef]
  4. C. F. Dutin, A. Dubrouil, S. Petit, E. Mével, E. Constant, and D. Descamps, “Post-compression of high-energy femtosecond pulses using gas ionization,” Opt. Lett. 35(2), 253–255 (2010).
    [CrossRef] [PubMed]
  5. R. Szipocs, K. Ferencz, C. Spielmann, and F. Krausz, “Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,” Opt. Lett. 19(3), 201–203 (1994).
    [CrossRef] [PubMed]
  6. I. Matsuda, K. Misawa, and R. Lang, “Femtosecond chirp-variable apparatus using a chirped mirror pair for quantum coherent control,” Opt. Commun. 239(1-3), 181–186 (2004).
    [CrossRef]
  7. V. Pervak, F. Krausz, and A. Apolonski, “Dispersion control over the ultraviolet-visible-near-infrared spectral range with HfO2/SiO2-chirped dielectric multilayers,” Opt. Lett. 32(9), 1183–1185 (2007).
    [CrossRef] [PubMed]
  8. Y. Kida, S. Zaitsu, and T. Imasaka, “Generation of intense 11-fs ultraviolet pulses using phase modulation by two types of coherent molecular motions,” Opt. Express 16(18), 13492–13498 (2008).
    [CrossRef] [PubMed]
  9. A. S. Morlens, P. Balcou, P. Zeitoun, C. Valentin, V. Laude, and S. Kazamias, “Compression of attosecond harmonic pulses by extreme-ultraviolet chirped mirrors,” Opt. Lett. 30(12), 1554–1556 (2005).
    [CrossRef] [PubMed]
  10. C. G. Durfee Iii, S. Backus, M. M. Murnane, and H. C. Kapteyn, “Ultrabroadband phase-matched optical parametric generation in the ultraviolet by use of guided waves,” Opt. Lett. 22(20), 1565–1567 (1997).
    [CrossRef]
  11. C. G. Durfee, S. Backus, H. C. Kapteyn, and M. M. Murnane, “Intense 8-fs pulse generation in the deep ultraviolet,” Opt. Lett. 24(10), 697–699 (1999).
    [CrossRef]
  12. N. Krebs, R. A. Probst, and E. Riedle, “Sub-20 fs pulses shaped directly in the UV by an acousto-optic programmable dispersive filter,” Opt. Express 18(6), 6164–6171 (2010).
    [CrossRef] [PubMed]
  13. K. Kosma, S. A. Trushin, W. E. Schmid, and W. Fuss, “Vacuum ultraviolet pulses of 11 fs from fifth-harmonic generation of a Ti:sapphire laser,” Opt. Lett. 33(7), 723–725 (2008).
    [CrossRef] [PubMed]
  14. S. A. Trushin, W. Fuss, K. Kosma, and W. E. Schmid, “Widely tunable ultraviolet sub-30-fs pulses from supercontinuum for transient spectroscopy,” Appl. Phys. B 85(1), 1–5 (2006).
    [CrossRef]
  15. S. A. Trushin, K. Kosma, W. Fuss, and W. E. Schmid, “Sub-10-fs supercontinuum radiation generated by filamentation of few-cycle 800 nm pulses in argon,” Opt. Lett. 32(16), 2432–2434 (2007).
    [CrossRef] [PubMed]
  16. M. Beutler, M. Ghotbi, F. Noack, D. Brida, C. Manzoni, and G. Cerullo, “Generation of high-energy sub-20 fs pulses tunable in the 250-310 nm region by frequency doubling of a high-power noncollinear optical parametric amplifier,” Opt. Lett. 34(6), 710–712 (2009).
    [CrossRef] [PubMed]
  17. I. Walmsley, L. Waxer, and C. Dorrer, “The role of dispersion in ultrafast optics,” Rev. Sci. Instrum. 72(1), 1–29 (2001).
    [CrossRef]
  18. A. E. Jailaubekov and S. E. Bradforth, “Tunable 30-femtosecond pulses across the deep ultraviolet,” Appl. Phys. Lett. 87(2), 021107 (2005).
    [CrossRef]
  19. C. H. Brito Cruz, P. C. Becker, R. L. Fork, and C. V. Shank, “Phase correction of femtosecond optical pulses using a combination of prisms and gratings,” Opt. Lett. 13(2), 123–125 (1988).
    [CrossRef] [PubMed]
  20. B. J. Pearson and T. C. Weinacht, “Shaped ultrafast laser pulses in the deep ultraviolet,” Opt. Express 15(7), 4385–4388 (2007).
    [CrossRef] [PubMed]
  21. C. H. Tseng, S. Matsika, and T. C. Weinacht, “Two-dimensional ultrafast fourier transform spectroscopy in the deep ultraviolet,” Opt. Express 17(21), 18788–18793 (2009).
    [CrossRef]
  22. G. Steinmeyer, “Dispersion compensation by microstructured optical devices in ultrafast optics,” Appl. Phys., A Mater. Sci. Process. 79(7), 1663–1671 (2004).
  23. G. Steinmeyer, “Femtosecond dispersion compensation with multilayer coatings: toward the optical octave,” Appl. Opt. 45(7), 1484–1490 (2006).
    [CrossRef] [PubMed]
  24. M. J. Tauber, R. A. Mathies, X. Y. Chen, and S. E. Bradforth, “Flowing liquid sample jet for resonance Raman and ultrafast optical spectroscopy,” Rev. Sci. Instrum. 74(11), 4958–4960 (2003).
    [CrossRef]
  25. A. W. Snyder, and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).
  26. A. C. Moskun, A. E. Jailaubekov, S. E. Bradforth, G. H. Tao, and R. M. Stratt, “Rotational coherence and a sudden breakdown in linear response seen in room-temperature liquids,” Science 311(5769), 1907–1911 (2006).
    [CrossRef] [PubMed]
  27. Z. Y. Li, D. Abramavicius, W. Zhuang, and S. Mukamel, “Two-dimensional electronic correlation spectroscopy of the n pi* and pi pi* protein backbone transitions: A simulation study,” Chem. Phys. 341(1-3), 29–36 (2007).
    [CrossRef]
  28. D. Abramavicius, J. Jiang, B. M. Bulheller, J. D. Hirst, and S. Mukamel, “Simulation study of chiral two-dimensional ultraviolet spectroscopy of the protein backbone,” J. Am. Chem. Soc. 132(22), 7769–7775 (2010).
    [CrossRef] [PubMed]

2010

X. Chen, L. Canova, A. Malvache, A. Jullien, R. Lopez-Martens, C. Durfee, D. Papadopoulos, and F. Druon, “1-mJ, sub-5-fs carrier-envelope phase-locked pulses,” Appl. Phys. B 99(1-2), 149–157 (2010).
[CrossRef]

C. F. Dutin, A. Dubrouil, S. Petit, E. Mével, E. Constant, and D. Descamps, “Post-compression of high-energy femtosecond pulses using gas ionization,” Opt. Lett. 35(2), 253–255 (2010).
[CrossRef] [PubMed]

N. Krebs, R. A. Probst, and E. Riedle, “Sub-20 fs pulses shaped directly in the UV by an acousto-optic programmable dispersive filter,” Opt. Express 18(6), 6164–6171 (2010).
[CrossRef] [PubMed]

D. Abramavicius, J. Jiang, B. M. Bulheller, J. D. Hirst, and S. Mukamel, “Simulation study of chiral two-dimensional ultraviolet spectroscopy of the protein backbone,” J. Am. Chem. Soc. 132(22), 7769–7775 (2010).
[CrossRef] [PubMed]

2009

2008

2007

2006

A. C. Moskun, A. E. Jailaubekov, S. E. Bradforth, G. H. Tao, and R. M. Stratt, “Rotational coherence and a sudden breakdown in linear response seen in room-temperature liquids,” Science 311(5769), 1907–1911 (2006).
[CrossRef] [PubMed]

G. Steinmeyer, “Femtosecond dispersion compensation with multilayer coatings: toward the optical octave,” Appl. Opt. 45(7), 1484–1490 (2006).
[CrossRef] [PubMed]

S. A. Trushin, W. Fuss, K. Kosma, and W. E. Schmid, “Widely tunable ultraviolet sub-30-fs pulses from supercontinuum for transient spectroscopy,” Appl. Phys. B 85(1), 1–5 (2006).
[CrossRef]

2005

2004

I. Matsuda, K. Misawa, and R. Lang, “Femtosecond chirp-variable apparatus using a chirped mirror pair for quantum coherent control,” Opt. Commun. 239(1-3), 181–186 (2004).
[CrossRef]

G. Steinmeyer, “Dispersion compensation by microstructured optical devices in ultrafast optics,” Appl. Phys., A Mater. Sci. Process. 79(7), 1663–1671 (2004).

2003

M. J. Tauber, R. A. Mathies, X. Y. Chen, and S. E. Bradforth, “Flowing liquid sample jet for resonance Raman and ultrafast optical spectroscopy,” Rev. Sci. Instrum. 74(11), 4958–4960 (2003).
[CrossRef]

2001

I. Walmsley, L. Waxer, and C. Dorrer, “The role of dispersion in ultrafast optics,” Rev. Sci. Instrum. 72(1), 1–29 (2001).
[CrossRef]

1999

1997

1994

1988

1986

Abramavicius, D.

D. Abramavicius, J. Jiang, B. M. Bulheller, J. D. Hirst, and S. Mukamel, “Simulation study of chiral two-dimensional ultraviolet spectroscopy of the protein backbone,” J. Am. Chem. Soc. 132(22), 7769–7775 (2010).
[CrossRef] [PubMed]

Z. Y. Li, D. Abramavicius, W. Zhuang, and S. Mukamel, “Two-dimensional electronic correlation spectroscopy of the n pi* and pi pi* protein backbone transitions: A simulation study,” Chem. Phys. 341(1-3), 29–36 (2007).
[CrossRef]

Apolonski, A.

Backus, S.

Balcou, P.

Becker, P. C.

Beutler, M.

Bradforth, S. E.

A. C. Moskun, A. E. Jailaubekov, S. E. Bradforth, G. H. Tao, and R. M. Stratt, “Rotational coherence and a sudden breakdown in linear response seen in room-temperature liquids,” Science 311(5769), 1907–1911 (2006).
[CrossRef] [PubMed]

A. E. Jailaubekov and S. E. Bradforth, “Tunable 30-femtosecond pulses across the deep ultraviolet,” Appl. Phys. Lett. 87(2), 021107 (2005).
[CrossRef]

M. J. Tauber, R. A. Mathies, X. Y. Chen, and S. E. Bradforth, “Flowing liquid sample jet for resonance Raman and ultrafast optical spectroscopy,” Rev. Sci. Instrum. 74(11), 4958–4960 (2003).
[CrossRef]

Brida, D.

Brito Cruz, C. H.

Bulheller, B. M.

D. Abramavicius, J. Jiang, B. M. Bulheller, J. D. Hirst, and S. Mukamel, “Simulation study of chiral two-dimensional ultraviolet spectroscopy of the protein backbone,” J. Am. Chem. Soc. 132(22), 7769–7775 (2010).
[CrossRef] [PubMed]

Canova, L.

X. Chen, L. Canova, A. Malvache, A. Jullien, R. Lopez-Martens, C. Durfee, D. Papadopoulos, and F. Druon, “1-mJ, sub-5-fs carrier-envelope phase-locked pulses,” Appl. Phys. B 99(1-2), 149–157 (2010).
[CrossRef]

Cerullo, G.

Chen, X.

X. Chen, L. Canova, A. Malvache, A. Jullien, R. Lopez-Martens, C. Durfee, D. Papadopoulos, and F. Druon, “1-mJ, sub-5-fs carrier-envelope phase-locked pulses,” Appl. Phys. B 99(1-2), 149–157 (2010).
[CrossRef]

Chen, X. Y.

M. J. Tauber, R. A. Mathies, X. Y. Chen, and S. E. Bradforth, “Flowing liquid sample jet for resonance Raman and ultrafast optical spectroscopy,” Rev. Sci. Instrum. 74(11), 4958–4960 (2003).
[CrossRef]

Constant, E.

Descamps, D.

Dombi, P.

Dorrer, C.

I. Walmsley, L. Waxer, and C. Dorrer, “The role of dispersion in ultrafast optics,” Rev. Sci. Instrum. 72(1), 1–29 (2001).
[CrossRef]

Druon, F.

X. Chen, L. Canova, A. Malvache, A. Jullien, R. Lopez-Martens, C. Durfee, D. Papadopoulos, and F. Druon, “1-mJ, sub-5-fs carrier-envelope phase-locked pulses,” Appl. Phys. B 99(1-2), 149–157 (2010).
[CrossRef]

Dubrouil, A.

Durfee, C.

X. Chen, L. Canova, A. Malvache, A. Jullien, R. Lopez-Martens, C. Durfee, D. Papadopoulos, and F. Druon, “1-mJ, sub-5-fs carrier-envelope phase-locked pulses,” Appl. Phys. B 99(1-2), 149–157 (2010).
[CrossRef]

Durfee, C. G.

Durfee Iii, C. G.

Dutin, C. F.

Ferencz, K.

Fork, R. L.

Fuss, W.

Ghotbi, M.

Hirst, J. D.

D. Abramavicius, J. Jiang, B. M. Bulheller, J. D. Hirst, and S. Mukamel, “Simulation study of chiral two-dimensional ultraviolet spectroscopy of the protein backbone,” J. Am. Chem. Soc. 132(22), 7769–7775 (2010).
[CrossRef] [PubMed]

Imasaka, T.

Ishikawa, M.

Jailaubekov, A. E.

A. C. Moskun, A. E. Jailaubekov, S. E. Bradforth, G. H. Tao, and R. M. Stratt, “Rotational coherence and a sudden breakdown in linear response seen in room-temperature liquids,” Science 311(5769), 1907–1911 (2006).
[CrossRef] [PubMed]

A. E. Jailaubekov and S. E. Bradforth, “Tunable 30-femtosecond pulses across the deep ultraviolet,” Appl. Phys. Lett. 87(2), 021107 (2005).
[CrossRef]

Jiang, J.

D. Abramavicius, J. Jiang, B. M. Bulheller, J. D. Hirst, and S. Mukamel, “Simulation study of chiral two-dimensional ultraviolet spectroscopy of the protein backbone,” J. Am. Chem. Soc. 132(22), 7769–7775 (2010).
[CrossRef] [PubMed]

Jullien, A.

X. Chen, L. Canova, A. Malvache, A. Jullien, R. Lopez-Martens, C. Durfee, D. Papadopoulos, and F. Druon, “1-mJ, sub-5-fs carrier-envelope phase-locked pulses,” Appl. Phys. B 99(1-2), 149–157 (2010).
[CrossRef]

Kapteyn, H. C.

Kazamias, S.

Kida, Y.

Kosma, K.

Krausz, F.

Krebs, N.

Lang, R.

I. Matsuda, K. Misawa, and R. Lang, “Femtosecond chirp-variable apparatus using a chirped mirror pair for quantum coherent control,” Opt. Commun. 239(1-3), 181–186 (2004).
[CrossRef]

Laude, V.

Lenner, M.

Li, Z. Y.

Z. Y. Li, D. Abramavicius, W. Zhuang, and S. Mukamel, “Two-dimensional electronic correlation spectroscopy of the n pi* and pi pi* protein backbone transitions: A simulation study,” Chem. Phys. 341(1-3), 29–36 (2007).
[CrossRef]

Lopez-Martens, R.

X. Chen, L. Canova, A. Malvache, A. Jullien, R. Lopez-Martens, C. Durfee, D. Papadopoulos, and F. Druon, “1-mJ, sub-5-fs carrier-envelope phase-locked pulses,” Appl. Phys. B 99(1-2), 149–157 (2010).
[CrossRef]

Malvache, A.

X. Chen, L. Canova, A. Malvache, A. Jullien, R. Lopez-Martens, C. Durfee, D. Papadopoulos, and F. Druon, “1-mJ, sub-5-fs carrier-envelope phase-locked pulses,” Appl. Phys. B 99(1-2), 149–157 (2010).
[CrossRef]

Manzoni, C.

Mathies, R. A.

M. J. Tauber, R. A. Mathies, X. Y. Chen, and S. E. Bradforth, “Flowing liquid sample jet for resonance Raman and ultrafast optical spectroscopy,” Rev. Sci. Instrum. 74(11), 4958–4960 (2003).
[CrossRef]

Matsika, S.

Matsuda, I.

I. Matsuda, K. Misawa, and R. Lang, “Femtosecond chirp-variable apparatus using a chirped mirror pair for quantum coherent control,” Opt. Commun. 239(1-3), 181–186 (2004).
[CrossRef]

Mével, E.

Misawa, K.

I. Matsuda, K. Misawa, and R. Lang, “Femtosecond chirp-variable apparatus using a chirped mirror pair for quantum coherent control,” Opt. Commun. 239(1-3), 181–186 (2004).
[CrossRef]

Morlens, A. S.

Moskun, A. C.

A. C. Moskun, A. E. Jailaubekov, S. E. Bradforth, G. H. Tao, and R. M. Stratt, “Rotational coherence and a sudden breakdown in linear response seen in room-temperature liquids,” Science 311(5769), 1907–1911 (2006).
[CrossRef] [PubMed]

Mukamel, S.

D. Abramavicius, J. Jiang, B. M. Bulheller, J. D. Hirst, and S. Mukamel, “Simulation study of chiral two-dimensional ultraviolet spectroscopy of the protein backbone,” J. Am. Chem. Soc. 132(22), 7769–7775 (2010).
[CrossRef] [PubMed]

Z. Y. Li, D. Abramavicius, W. Zhuang, and S. Mukamel, “Two-dimensional electronic correlation spectroscopy of the n pi* and pi pi* protein backbone transitions: A simulation study,” Chem. Phys. 341(1-3), 29–36 (2007).
[CrossRef]

Murnane, M. M.

Noack, F.

Papadopoulos, D.

X. Chen, L. Canova, A. Malvache, A. Jullien, R. Lopez-Martens, C. Durfee, D. Papadopoulos, and F. Druon, “1-mJ, sub-5-fs carrier-envelope phase-locked pulses,” Appl. Phys. B 99(1-2), 149–157 (2010).
[CrossRef]

Pearson, B. J.

Pervak, V.

Petit, S.

Probst, R. A.

Rácz, P.

Riedle, E.

Sato, T.

Schmid, W. E.

Shank, C. V.

Spielmann, C.

Steinmeyer, G.

G. Steinmeyer, “Femtosecond dispersion compensation with multilayer coatings: toward the optical octave,” Appl. Opt. 45(7), 1484–1490 (2006).
[CrossRef] [PubMed]

G. Steinmeyer, “Dispersion compensation by microstructured optical devices in ultrafast optics,” Appl. Phys., A Mater. Sci. Process. 79(7), 1663–1671 (2004).

Stratt, R. M.

A. C. Moskun, A. E. Jailaubekov, S. E. Bradforth, G. H. Tao, and R. M. Stratt, “Rotational coherence and a sudden breakdown in linear response seen in room-temperature liquids,” Science 311(5769), 1907–1911 (2006).
[CrossRef] [PubMed]

Szipocs, R.

Tao, G. H.

A. C. Moskun, A. E. Jailaubekov, S. E. Bradforth, G. H. Tao, and R. M. Stratt, “Rotational coherence and a sudden breakdown in linear response seen in room-temperature liquids,” Science 311(5769), 1907–1911 (2006).
[CrossRef] [PubMed]

Tauber, M. J.

M. J. Tauber, R. A. Mathies, X. Y. Chen, and S. E. Bradforth, “Flowing liquid sample jet for resonance Raman and ultrafast optical spectroscopy,” Rev. Sci. Instrum. 74(11), 4958–4960 (2003).
[CrossRef]

Torizuka, K.

Trushin, S. A.

Tseng, C. H.

Valentin, C.

Walmsley, I.

I. Walmsley, L. Waxer, and C. Dorrer, “The role of dispersion in ultrafast optics,” Rev. Sci. Instrum. 72(1), 1–29 (2001).
[CrossRef]

Waxer, L.

I. Walmsley, L. Waxer, and C. Dorrer, “The role of dispersion in ultrafast optics,” Rev. Sci. Instrum. 72(1), 1–29 (2001).
[CrossRef]

Weinacht, T. C.

Yamashita, M.

Zaitsu, S.

Zeitoun, P.

Zhuang, W.

Z. Y. Li, D. Abramavicius, W. Zhuang, and S. Mukamel, “Two-dimensional electronic correlation spectroscopy of the n pi* and pi pi* protein backbone transitions: A simulation study,” Chem. Phys. 341(1-3), 29–36 (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. B

X. Chen, L. Canova, A. Malvache, A. Jullien, R. Lopez-Martens, C. Durfee, D. Papadopoulos, and F. Druon, “1-mJ, sub-5-fs carrier-envelope phase-locked pulses,” Appl. Phys. B 99(1-2), 149–157 (2010).
[CrossRef]

S. A. Trushin, W. Fuss, K. Kosma, and W. E. Schmid, “Widely tunable ultraviolet sub-30-fs pulses from supercontinuum for transient spectroscopy,” Appl. Phys. B 85(1), 1–5 (2006).
[CrossRef]

Appl. Phys. Lett.

A. E. Jailaubekov and S. E. Bradforth, “Tunable 30-femtosecond pulses across the deep ultraviolet,” Appl. Phys. Lett. 87(2), 021107 (2005).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

G. Steinmeyer, “Dispersion compensation by microstructured optical devices in ultrafast optics,” Appl. Phys., A Mater. Sci. Process. 79(7), 1663–1671 (2004).

Chem. Phys.

Z. Y. Li, D. Abramavicius, W. Zhuang, and S. Mukamel, “Two-dimensional electronic correlation spectroscopy of the n pi* and pi pi* protein backbone transitions: A simulation study,” Chem. Phys. 341(1-3), 29–36 (2007).
[CrossRef]

J. Am. Chem. Soc.

D. Abramavicius, J. Jiang, B. M. Bulheller, J. D. Hirst, and S. Mukamel, “Simulation study of chiral two-dimensional ultraviolet spectroscopy of the protein backbone,” J. Am. Chem. Soc. 132(22), 7769–7775 (2010).
[CrossRef] [PubMed]

Opt. Commun.

I. Matsuda, K. Misawa, and R. Lang, “Femtosecond chirp-variable apparatus using a chirped mirror pair for quantum coherent control,” Opt. Commun. 239(1-3), 181–186 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

C. H. Brito Cruz, P. C. Becker, R. L. Fork, and C. V. Shank, “Phase correction of femtosecond optical pulses using a combination of prisms and gratings,” Opt. Lett. 13(2), 123–125 (1988).
[CrossRef] [PubMed]

A. S. Morlens, P. Balcou, P. Zeitoun, C. Valentin, V. Laude, and S. Kazamias, “Compression of attosecond harmonic pulses by extreme-ultraviolet chirped mirrors,” Opt. Lett. 30(12), 1554–1556 (2005).
[CrossRef] [PubMed]

C. G. Durfee Iii, S. Backus, M. M. Murnane, and H. C. Kapteyn, “Ultrabroadband phase-matched optical parametric generation in the ultraviolet by use of guided waves,” Opt. Lett. 22(20), 1565–1567 (1997).
[CrossRef]

C. G. Durfee, S. Backus, H. C. Kapteyn, and M. M. Murnane, “Intense 8-fs pulse generation in the deep ultraviolet,” Opt. Lett. 24(10), 697–699 (1999).
[CrossRef]

M. Yamashita, M. Ishikawa, K. Torizuka, and T. Sato, “Femtosecond-pulse laser chirp compensated by cavity-mirror dispersion,” Opt. Lett. 11(8), 504–506 (1986).
[CrossRef] [PubMed]

C. F. Dutin, A. Dubrouil, S. Petit, E. Mével, E. Constant, and D. Descamps, “Post-compression of high-energy femtosecond pulses using gas ionization,” Opt. Lett. 35(2), 253–255 (2010).
[CrossRef] [PubMed]

R. Szipocs, K. Ferencz, C. Spielmann, and F. Krausz, “Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,” Opt. Lett. 19(3), 201–203 (1994).
[CrossRef] [PubMed]

K. Kosma, S. A. Trushin, W. E. Schmid, and W. Fuss, “Vacuum ultraviolet pulses of 11 fs from fifth-harmonic generation of a Ti:sapphire laser,” Opt. Lett. 33(7), 723–725 (2008).
[CrossRef] [PubMed]

V. Pervak, F. Krausz, and A. Apolonski, “Dispersion control over the ultraviolet-visible-near-infrared spectral range with HfO2/SiO2-chirped dielectric multilayers,” Opt. Lett. 32(9), 1183–1185 (2007).
[CrossRef] [PubMed]

S. A. Trushin, K. Kosma, W. Fuss, and W. E. Schmid, “Sub-10-fs supercontinuum radiation generated by filamentation of few-cycle 800 nm pulses in argon,” Opt. Lett. 32(16), 2432–2434 (2007).
[CrossRef] [PubMed]

M. Beutler, M. Ghotbi, F. Noack, D. Brida, C. Manzoni, and G. Cerullo, “Generation of high-energy sub-20 fs pulses tunable in the 250-310 nm region by frequency doubling of a high-power noncollinear optical parametric amplifier,” Opt. Lett. 34(6), 710–712 (2009).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

I. Walmsley, L. Waxer, and C. Dorrer, “The role of dispersion in ultrafast optics,” Rev. Sci. Instrum. 72(1), 1–29 (2001).
[CrossRef]

M. J. Tauber, R. A. Mathies, X. Y. Chen, and S. E. Bradforth, “Flowing liquid sample jet for resonance Raman and ultrafast optical spectroscopy,” Rev. Sci. Instrum. 74(11), 4958–4960 (2003).
[CrossRef]

Science

A. C. Moskun, A. E. Jailaubekov, S. E. Bradforth, G. H. Tao, and R. M. Stratt, “Rotational coherence and a sudden breakdown in linear response seen in room-temperature liquids,” Science 311(5769), 1907–1911 (2006).
[CrossRef] [PubMed]

Other

A. W. Snyder, and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup. Third harmonic light is generated in a hollow core fiber and auto-correlated in a thin film water jet as described in 17. DMA and DMB correspond to the dispersive mirror pair and M4 to the 0° low dispersion dielectric mirror that makes up the compressor. DMA and M4 can be translated to control the number of bounces per dispersive mirror and the angle of the DM setup can also be varied. W is a pair of Suprasil optical wedges. CHR is a curved low dispersion dielectric high reflector (f = 35 cm). M1, M2 and M3 are low dispersion 0° and 45° dielectric high reflectors.

Fig. 2
Fig. 2

Dispersive mirror GDD curves designed (thick black) and manufactured (red) for optimal reflectivity at 7° AOI. Typical 266.5 and 271.5 nm spectra (thin black) with 4.9 and 5.2 nm FWHM respectively produced from FWM in an argon-filled hollow core fiber.

Fig. 3
Fig. 3

Dispersive mirror GDD curves for optimal 7° AOI based on the measured transmission spectrum (black) and simulated curve at 26° AOI (red) for s-polarized light.

Fig. 4
Fig. 4

(a) Autocorrelation of 266.5 nm pulse after DM compression (black) and prism compression (red). The transform limit is calculated to be 21 fs from the corresponding spectral bandwidth assuming a Gaussian shape. (b) Detailed comparison on a log scale showing the deviation of the DM and prism compressed pulses from Gaussian (black dashed).

Fig. 5
Fig. 5

(a) Comparison of measured 266.5 nm pulse autocorrelation (black curve) after 24 bounces and 1.0 mm of Suprasil (corresponding to ~22 bounces) and 271.5 nm pulse autocorrelation (blue curve) after 24 bounces and 0.9 mm of wedge. Also shown is the simulated 266.5 nm pulse (red curve) compressed by 26 bounces off of the 26° AOI DM dispersion curve of Fig. 3. (b) Comparison of the measured deconvoluted pulse width as a function of the number of DM reflections for 266.5 nm pulses (experimental, black circles), 271.5 nm pulses (experimental, blue squares) and 266.5 nm pulses (simulated, red curve).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

G D D = τ T L 2 4 ln 2 ( τ o τ T L ) 2 1 ,
E ( t ) = e 2 ln 2 ( t Δ t ) 2 e i ω o t ,
E i n ( ω ) = cfft ( E ( t ) ) e i φ G D D 2 π 2 ( ω ω o ) 2 e i φ T O D 4 π 3 3 ( ω ω o ) 3 .
E o u t ( ω ) = E i n ( ω ) e i φ D M ( ω ω o ) N ,

Metrics