Abstract

We demonstrate the design, fabrication and experimental characterization of a submicron-scale silicon waveguide that is fabricated by local oxidation of silicon. The use of local oxidation process allows defining the waveguide geometry and obtaining smooth sidewalls. The process can be tuned to precisely control the shape and the dimensions of the waveguide. The fabricated waveguides are measured using near field scanning optical microscope at 1550 nm wavelength. These measurements show mode width of 0.4 µm and effective refractive index of 2.54. Finally, we demonstrate the low loss characteristics of our waveguide by imaging the light scattering using an infrared camera.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO(2) waveguides by roughness reduction,” Opt. Lett. 26(23), 1888–1890 (2001).
    [CrossRef]
  2. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
    [CrossRef]
  3. R. Pafchek, R. Tummidi, J. Li, M. A. Webster, E. Chen, and T. L. Koch, “Low-loss silicon-on-insulator shallow-ridge TE and TM waveguides formed using thermal oxidation,” Appl. Opt. 48(5), 958–963 (2009).
    [CrossRef] [PubMed]
  4. F. Y. Gardes, G. T. Reed, A. P. Knights, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonics formed via the Local Oxidation of Silicon (LOCOS),” Proc. SPIE 6898, 68980R (2008).
    [CrossRef]
  5. R. Pafchek, R. Tummidi, J. Li, M. A. Webster, E. Chen, and T. L. Koch, “Low-loss silicon-on-insulator shallow-ridge TE and TM waveguides formed using thermal oxidation,” Appl. Opt. 48(5), 958–963 (2009).
    [CrossRef] [PubMed]
  6. L. K. Rowe, M. Elsey, N. G. Tarr, A. P. Knights, and E. Post, “CMOS-compatible optical rib waveguides defined by local oxidation of silicon,” Electron. Lett. 43(7), 392 (2007).
    [CrossRef]
  7. M. M. Milošević, G. Z. Mashanovich, F. Y. Gardes, Y. Hu, A. P. Knights, N. G. Tarr, and G. T. Reed, “Athermal and low loss ridge silicon waveguides,” Proc. SPIE, 76 061A (2010).
  8. J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, “Low loss etchless silicon photonic waveguides,” Opt. Express 17(6), 4752–4757 (2009).
    [CrossRef] [PubMed]
  9. N. Sherwood-Droz, A. Gondarenko, and M. Lipson, “Oxidized silicon-on-insulator (OxSOI) from bulk silicon: a new photonic platform,” Opt. Express 18(6), 5785–5790 (2010).
    [CrossRef] [PubMed]
  10. S. Franssila, Introduction to Microfabrication, (Wiley, 2004).
  11. D. F. Clark and M. S. Iqbal, “Simple extension to the Fabry-Perot technique for accurate measurement of losses in semiconductor waveguides,” Opt. Lett. 15(22), 1291–1293 (1990).
    [CrossRef] [PubMed]

2010 (1)

2009 (3)

2008 (1)

F. Y. Gardes, G. T. Reed, A. P. Knights, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonics formed via the Local Oxidation of Silicon (LOCOS),” Proc. SPIE 6898, 68980R (2008).
[CrossRef]

2007 (2)

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

L. K. Rowe, M. Elsey, N. G. Tarr, A. P. Knights, and E. Post, “CMOS-compatible optical rib waveguides defined by local oxidation of silicon,” Electron. Lett. 43(7), 392 (2007).
[CrossRef]

2001 (1)

1990 (1)

Bruce, D.

F. Y. Gardes, G. T. Reed, A. P. Knights, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonics formed via the Local Oxidation of Silicon (LOCOS),” Proc. SPIE 6898, 68980R (2008).
[CrossRef]

Cardenas, J.

Cerrina, F.

Chen, E.

Chen, L.

Clark, D. F.

Elsey, M.

L. K. Rowe, M. Elsey, N. G. Tarr, A. P. Knights, and E. Post, “CMOS-compatible optical rib waveguides defined by local oxidation of silicon,” Electron. Lett. 43(7), 392 (2007).
[CrossRef]

Gardes, F. Y.

F. Y. Gardes, G. T. Reed, A. P. Knights, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonics formed via the Local Oxidation of Silicon (LOCOS),” Proc. SPIE 6898, 68980R (2008).
[CrossRef]

Gondarenko, A.

Iqbal, M. S.

Jessop, P. E.

F. Y. Gardes, G. T. Reed, A. P. Knights, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonics formed via the Local Oxidation of Silicon (LOCOS),” Proc. SPIE 6898, 68980R (2008).
[CrossRef]

Kimerling, L. C.

Knights, A. P.

F. Y. Gardes, G. T. Reed, A. P. Knights, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonics formed via the Local Oxidation of Silicon (LOCOS),” Proc. SPIE 6898, 68980R (2008).
[CrossRef]

L. K. Rowe, M. Elsey, N. G. Tarr, A. P. Knights, and E. Post, “CMOS-compatible optical rib waveguides defined by local oxidation of silicon,” Electron. Lett. 43(7), 392 (2007).
[CrossRef]

Koch, T. L.

Lee, K. K.

Li, J.

Lim, D. R.

Lipson, M.

Mashanovich, G.

F. Y. Gardes, G. T. Reed, A. P. Knights, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonics formed via the Local Oxidation of Silicon (LOCOS),” Proc. SPIE 6898, 68980R (2008).
[CrossRef]

McFaul, S.

F. Y. Gardes, G. T. Reed, A. P. Knights, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonics formed via the Local Oxidation of Silicon (LOCOS),” Proc. SPIE 6898, 68980R (2008).
[CrossRef]

Pafchek, R.

Poitras, C. B.

Post, E.

L. K. Rowe, M. Elsey, N. G. Tarr, A. P. Knights, and E. Post, “CMOS-compatible optical rib waveguides defined by local oxidation of silicon,” Electron. Lett. 43(7), 392 (2007).
[CrossRef]

Preston, K.

Reed, G. T.

F. Y. Gardes, G. T. Reed, A. P. Knights, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonics formed via the Local Oxidation of Silicon (LOCOS),” Proc. SPIE 6898, 68980R (2008).
[CrossRef]

Robinson, J. T.

Rowe, L.

F. Y. Gardes, G. T. Reed, A. P. Knights, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonics formed via the Local Oxidation of Silicon (LOCOS),” Proc. SPIE 6898, 68980R (2008).
[CrossRef]

Rowe, L. K.

L. K. Rowe, M. Elsey, N. G. Tarr, A. P. Knights, and E. Post, “CMOS-compatible optical rib waveguides defined by local oxidation of silicon,” Electron. Lett. 43(7), 392 (2007).
[CrossRef]

Sekaric, L.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Sherwood-Droz, N.

Shin, J.

Tarr, N. G.

F. Y. Gardes, G. T. Reed, A. P. Knights, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonics formed via the Local Oxidation of Silicon (LOCOS),” Proc. SPIE 6898, 68980R (2008).
[CrossRef]

L. K. Rowe, M. Elsey, N. G. Tarr, A. P. Knights, and E. Post, “CMOS-compatible optical rib waveguides defined by local oxidation of silicon,” Electron. Lett. 43(7), 392 (2007).
[CrossRef]

Tummidi, R.

Vlasov, Y.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Webster, M. A.

Xia, F.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Appl. Opt. (2)

Electron. Lett. (1)

L. K. Rowe, M. Elsey, N. G. Tarr, A. P. Knights, and E. Post, “CMOS-compatible optical rib waveguides defined by local oxidation of silicon,” Electron. Lett. 43(7), 392 (2007).
[CrossRef]

Nat. Photonics (1)

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Proc. SPIE (1)

F. Y. Gardes, G. T. Reed, A. P. Knights, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonics formed via the Local Oxidation of Silicon (LOCOS),” Proc. SPIE 6898, 68980R (2008).
[CrossRef]

Other (2)

S. Franssila, Introduction to Microfabrication, (Wiley, 2004).

M. M. Milošević, G. Z. Mashanovich, F. Y. Gardes, Y. Hu, A. P. Knights, N. G. Tarr, and G. T. Reed, “Athermal and low loss ridge silicon waveguides,” Proc. SPIE, 76 061A (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Simulated process of a square-like LOCOS waveguide, obtained by numerical finite-element calculations. a) Silicon on insulator wafer with deposited nitride layer. b) Patterning of silicon nitride. c) Wet oxidation. d) Removing of silicon nitride

Fig. 2
Fig. 2

SEM micrograph of square-like LOCOS waveguide. False color is used to highlight the silicon region.

Fig. 3
Fig. 3

a) Simulated profile of round-like LOCOS waveguide. b) SEM micrograph of round-like LOCOS waveguide.

Fig. 4
Fig. 4

Simulated intensity of optical mode in the LOCOS waveguide. The black solid lines represent the waveguide geometry

Fig. 5
Fig. 5

NSOM characterization of LOCOS waveguide. a) Optical intensity collected by the NSOM probe. b) Comparison between simulated mode profile before (dotted red) and after (dotted black) convolution with the NSOM tip and the measured cross-section data (blue solid line). The gray shaded zone represents the dimensions of the fabricated waveguide after the removal of the surrounding oxide layer.

Fig. 6
Fig. 6

Infrared top image of: a) LOCOS waveguide. b) Strip waveguide. The waveguides are bounded within the area defined by the dashed red lines.

Metrics