Abstract

We propose and demonstrate a multi-channel tunable optical dispersion compensator (TODC) that consists of an arrayed-waveguide grating (AWG) and liquid crystal on silicon (LCOS). By utilizing the AWG with a large angular dispersion and the LCOS with a flexible phase setting, we can construct a compact and flexible TODC that has a wide tuning range of chromatic dispersion. We confirmed experimentally that the TODC could realize channel-by-channel CD compensation for six WDM channels with a ± 800 ps/nm range and a 3 dB bandwidth of 24 GHz. We believe that the multi-channel operation of this TODC will help to reduce the cost and power consumption of high-speed optical transmission systems.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Takiguchi, K. Okamoto, and K. Moriwaki, “Planar Lightwave Circuit Dispersion Equalizer,” J. Lightwave Technol. 14(9), 2003–2011 (1996).
    [CrossRef]
  2. Y. Painchaud, M. Lapointe, F. Trepanier, R. L. Lachance, C. Paquet, and M. Guy, “Recent Progress on FBG-based Tunable Dispersion Compensators for 40 Gb/s Applications,” in Proceedings of Optical Fiber Communication Conference and Exposition (Optical Society of America, 2007), paper OThP3.
  3. C. R. Doerr, L. W. Stulz, S. Chandrasekhar, and R. Pafchek, “Colorless Tunable Dispersion Compensator with 400-ps/nm Range Integrated With a Tunable Noise Filter,” IEEE Photon. Technol. Lett. 15(9), 1258–1260 (2003).
    [CrossRef]
  4. M. Shirasaki, and S. Cao, “Compensation of Chromatic Dispersion and Dispersion Slope Using a Virtually Imaged Phased Array,” in Proceedings of Optical Fiber Communication Conference and Exposition (Optical Society of America, 2001), paper TuS1.
  5. C. R. Doerr, “Polarization-Independent Tunable Dispersion Compensator Comprised of a Silica Arrayed Waveguide Grating and a Polymer Slab,” in Proceedings of Optical Fiber Communication Conference and Exposition (Optical Society of America, 2006), paper PDP9.
  6. D. M. Marom, C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and S. Chandrasekhar, “Compact Colorless Tunable Dispersion Compensator With 1000-ps/nm Tuning Range for 40-Gb/s Data Rates,” J. Lightwave Technol. 24(1), 237–241 (2006).
    [CrossRef]
  7. G.-H. Lee, S. Xiao, and A. M. Weiner, “Optical Dispersion Compensator With >4000-ps/nm Tuning Range Using a Virtually Imaged Phased Array (VIPA) and Spatial Light Modulator (SLM),” IEEE Photon. Technol. Lett. 18(17), 1819–1821 (2006).
    [CrossRef]
  8. T. Sano, T. Iwashima, M. Kitayama, T. Kanie, M. Harumoto, M. Shigehara, H. Suganuma, and M. Nishimura, “Novel Multichannel Tunable Chromatic Dispersion Compensator Based on MEMS and Diffraction Grating,” IEEE Photon. Technol. Lett. 15(8), 1109–1110 (2003).
    [CrossRef]
  9. D. T. Neilson, R. Ryf, F. Pardo, V. A. Aksyuk, M. E. Simon, D. O. Lopez, D. M. Marom, and S. Chandrasekhar, “MEMS-Based Channelized Dispersion Compensator With Flat Passbands,” J. Lightwave Technol. 22(1), 101–105 (2004).
    [CrossRef]
  10. M. A. F. Roelens, S. Frisken, J. A. Bolger, D. Abakoumov, G. Baxter, S. Poole, and B. J. Eggleton, “Dispersion Trimming in a Reconfigurable Wavelength Selective Switch,” J. Lightwave Technol. 26(1), 73–78 (2008).
    [CrossRef]
  11. M. Shirasaki, A. N. Akhter, and C. Lin, “Virtually Imaged Phased Array with Graded Reflectivity,” IEEE Photon. Technol. Lett. 11(11), 1443–1445 (1999).
    [CrossRef]
  12. H. Takenouchi, T. Ishii, and T. Goh, “8 THz Bandwidth Dispersion-Slope Compensator Module for Multiband 4Gbit/s WDM Transmission Systems Using an AWG and Spatial Phase Filter,” Electron. Lett. 37(12), 777–778 (2001).
    [CrossRef]
  13. K. Seno, N. Ooba, K. Suzuki, K. Watanabe, M. Ishii, and S. Mino, “Tunable Dispersion Compensator Consisting of Simple Optics with Arrayed-Waveguide Grating and Flat Mirror,” in Proceedings of IEEE Lasers and Electro-Optics Society Annual Meeting, (Academic, Newport Beach, CA., 2008), WE1.
  14. K. Takada, M. Abe, T. Shibata, and K. Okamoto, “1-GHz-spaced 16-channel Arrayed-Waveguide Grating for a Wavelength Reference Standard in DWDM Network Systems,” J. Lightwave Technol. 20(5), 850–853 (2002).
    [CrossRef]
  15. K. Seno, K. Suzuki, K. Watanabe, N. Ooba, M. Ishii, and S. Mino, “Channel-by-Channel Tunable Optical Dispersion Compensator Consisting of Arrayed-Waveguide Grating and Liquid Crystal on Silicon,” in Proceedings of Optical Fiber Communication Conference and Exposition (Optical Society of America, 2008), paper OWP4.
  16. K. Okamoto, Fundamentals of Optical Waveguides, 2nd ed., (Elsevier, 2006), Chap. 9, Sec. 9.3.1.
  17. A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, KM Okamoto, A Itoh, Himeno, and Y Ohmori, “Very Low Insertion Loss Arrayed-Waveguide Grating with Vertically Tapered Waveguides,” IEEE Photon. Technol. Lett. 12(9), 1180–1182 (2000).
    [CrossRef]
  18. K. Suzuki, N. Ooba, M. Ishii, K. Seno, T. Shibata, and S. Mino, “40-Wavelength Channelized Tunable Optical Dispersion Compensator with Increased Bandwidth Consisting of Arrayed Waveguide Gratings and Liquid Crystal on Silicon,” in Proceedings of Optical Fiber Communication Conference and Exposition (Optical Society of America, 2009), paper OThB3.
  19. K. Seno, K. Suzuki, N. Ooba, T. Watanabe, M. Itoh, S. Mino, and T. Sakamoto, “50-Wavelength Channel-by-Channel Tunable Optical Dispersion Compensator Using Combination of Arrayed-Waveguide and Bulk Gratings,” in Proceedings of Optical Fiber Communication Conference and Exposition (Optical Society of America, 2010), paper OMT7.
  20. D. Sinefeld, C. R. Doerr, and D. M. Marom, “Photonic Spectral Processor Employing Two-Dimensional WDM Channel Separation and a Phase LCoS Modulator,” in Proceedings of Optical Fiber Communication Conference and Exposition (Optical Society of America, 2010), paper OMP5.

2008 (1)

2006 (2)

D. M. Marom, C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and S. Chandrasekhar, “Compact Colorless Tunable Dispersion Compensator With 1000-ps/nm Tuning Range for 40-Gb/s Data Rates,” J. Lightwave Technol. 24(1), 237–241 (2006).
[CrossRef]

G.-H. Lee, S. Xiao, and A. M. Weiner, “Optical Dispersion Compensator With >4000-ps/nm Tuning Range Using a Virtually Imaged Phased Array (VIPA) and Spatial Light Modulator (SLM),” IEEE Photon. Technol. Lett. 18(17), 1819–1821 (2006).
[CrossRef]

2004 (1)

2003 (2)

T. Sano, T. Iwashima, M. Kitayama, T. Kanie, M. Harumoto, M. Shigehara, H. Suganuma, and M. Nishimura, “Novel Multichannel Tunable Chromatic Dispersion Compensator Based on MEMS and Diffraction Grating,” IEEE Photon. Technol. Lett. 15(8), 1109–1110 (2003).
[CrossRef]

C. R. Doerr, L. W. Stulz, S. Chandrasekhar, and R. Pafchek, “Colorless Tunable Dispersion Compensator with 400-ps/nm Range Integrated With a Tunable Noise Filter,” IEEE Photon. Technol. Lett. 15(9), 1258–1260 (2003).
[CrossRef]

2002 (1)

K. Takada, M. Abe, T. Shibata, and K. Okamoto, “1-GHz-spaced 16-channel Arrayed-Waveguide Grating for a Wavelength Reference Standard in DWDM Network Systems,” J. Lightwave Technol. 20(5), 850–853 (2002).
[CrossRef]

2001 (1)

H. Takenouchi, T. Ishii, and T. Goh, “8 THz Bandwidth Dispersion-Slope Compensator Module for Multiband 4Gbit/s WDM Transmission Systems Using an AWG and Spatial Phase Filter,” Electron. Lett. 37(12), 777–778 (2001).
[CrossRef]

2000 (1)

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, KM Okamoto, A Itoh, Himeno, and Y Ohmori, “Very Low Insertion Loss Arrayed-Waveguide Grating with Vertically Tapered Waveguides,” IEEE Photon. Technol. Lett. 12(9), 1180–1182 (2000).
[CrossRef]

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, KM Okamoto, A Itoh, Himeno, and Y Ohmori, “Very Low Insertion Loss Arrayed-Waveguide Grating with Vertically Tapered Waveguides,” IEEE Photon. Technol. Lett. 12(9), 1180–1182 (2000).
[CrossRef]

1999 (1)

M. Shirasaki, A. N. Akhter, and C. Lin, “Virtually Imaged Phased Array with Graded Reflectivity,” IEEE Photon. Technol. Lett. 11(11), 1443–1445 (1999).
[CrossRef]

1996 (1)

K. Takiguchi, K. Okamoto, and K. Moriwaki, “Planar Lightwave Circuit Dispersion Equalizer,” J. Lightwave Technol. 14(9), 2003–2011 (1996).
[CrossRef]

Abakoumov, D.

Abe, M.

K. Takada, M. Abe, T. Shibata, and K. Okamoto, “1-GHz-spaced 16-channel Arrayed-Waveguide Grating for a Wavelength Reference Standard in DWDM Network Systems,” J. Lightwave Technol. 20(5), 850–853 (2002).
[CrossRef]

Akhter, A. N.

M. Shirasaki, A. N. Akhter, and C. Lin, “Virtually Imaged Phased Array with Graded Reflectivity,” IEEE Photon. Technol. Lett. 11(11), 1443–1445 (1999).
[CrossRef]

Aksyuk, V. A.

Baxter, G.

Bolger, J. A.

Cappuzzo, M. A.

Chandrasekhar, S.

Chen, E. Y.

Doerr, C. R.

D. M. Marom, C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, and S. Chandrasekhar, “Compact Colorless Tunable Dispersion Compensator With 1000-ps/nm Tuning Range for 40-Gb/s Data Rates,” J. Lightwave Technol. 24(1), 237–241 (2006).
[CrossRef]

C. R. Doerr, L. W. Stulz, S. Chandrasekhar, and R. Pafchek, “Colorless Tunable Dispersion Compensator with 400-ps/nm Range Integrated With a Tunable Noise Filter,” IEEE Photon. Technol. Lett. 15(9), 1258–1260 (2003).
[CrossRef]

Eggleton, B. J.

Frisken, S.

Goh, T.

H. Takenouchi, T. Ishii, and T. Goh, “8 THz Bandwidth Dispersion-Slope Compensator Module for Multiband 4Gbit/s WDM Transmission Systems Using an AWG and Spatial Phase Filter,” Electron. Lett. 37(12), 777–778 (2001).
[CrossRef]

Gomez, L. T.

Harumoto, M.

T. Sano, T. Iwashima, M. Kitayama, T. Kanie, M. Harumoto, M. Shigehara, H. Suganuma, and M. Nishimura, “Novel Multichannel Tunable Chromatic Dispersion Compensator Based on MEMS and Diffraction Grating,” IEEE Photon. Technol. Lett. 15(8), 1109–1110 (2003).
[CrossRef]

Himeno,

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, KM Okamoto, A Itoh, Himeno, and Y Ohmori, “Very Low Insertion Loss Arrayed-Waveguide Grating with Vertically Tapered Waveguides,” IEEE Photon. Technol. Lett. 12(9), 1180–1182 (2000).
[CrossRef]

Himeno, A.

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, KM Okamoto, A Itoh, Himeno, and Y Ohmori, “Very Low Insertion Loss Arrayed-Waveguide Grating with Vertically Tapered Waveguides,” IEEE Photon. Technol. Lett. 12(9), 1180–1182 (2000).
[CrossRef]

Ishii, T.

H. Takenouchi, T. Ishii, and T. Goh, “8 THz Bandwidth Dispersion-Slope Compensator Module for Multiband 4Gbit/s WDM Transmission Systems Using an AWG and Spatial Phase Filter,” Electron. Lett. 37(12), 777–778 (2001).
[CrossRef]

Itoh, A

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, KM Okamoto, A Itoh, Himeno, and Y Ohmori, “Very Low Insertion Loss Arrayed-Waveguide Grating with Vertically Tapered Waveguides,” IEEE Photon. Technol. Lett. 12(9), 1180–1182 (2000).
[CrossRef]

Itoh, M.

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, KM Okamoto, A Itoh, Himeno, and Y Ohmori, “Very Low Insertion Loss Arrayed-Waveguide Grating with Vertically Tapered Waveguides,” IEEE Photon. Technol. Lett. 12(9), 1180–1182 (2000).
[CrossRef]

Iwashima, T.

T. Sano, T. Iwashima, M. Kitayama, T. Kanie, M. Harumoto, M. Shigehara, H. Suganuma, and M. Nishimura, “Novel Multichannel Tunable Chromatic Dispersion Compensator Based on MEMS and Diffraction Grating,” IEEE Photon. Technol. Lett. 15(8), 1109–1110 (2003).
[CrossRef]

Kaneko, A.

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, KM Okamoto, A Itoh, Himeno, and Y Ohmori, “Very Low Insertion Loss Arrayed-Waveguide Grating with Vertically Tapered Waveguides,” IEEE Photon. Technol. Lett. 12(9), 1180–1182 (2000).
[CrossRef]

Kanie, T.

T. Sano, T. Iwashima, M. Kitayama, T. Kanie, M. Harumoto, M. Shigehara, H. Suganuma, and M. Nishimura, “Novel Multichannel Tunable Chromatic Dispersion Compensator Based on MEMS and Diffraction Grating,” IEEE Photon. Technol. Lett. 15(8), 1109–1110 (2003).
[CrossRef]

Kitayama, M.

T. Sano, T. Iwashima, M. Kitayama, T. Kanie, M. Harumoto, M. Shigehara, H. Suganuma, and M. Nishimura, “Novel Multichannel Tunable Chromatic Dispersion Compensator Based on MEMS and Diffraction Grating,” IEEE Photon. Technol. Lett. 15(8), 1109–1110 (2003).
[CrossRef]

Lee, G.-H.

G.-H. Lee, S. Xiao, and A. M. Weiner, “Optical Dispersion Compensator With >4000-ps/nm Tuning Range Using a Virtually Imaged Phased Array (VIPA) and Spatial Light Modulator (SLM),” IEEE Photon. Technol. Lett. 18(17), 1819–1821 (2006).
[CrossRef]

Lin, C.

M. Shirasaki, A. N. Akhter, and C. Lin, “Virtually Imaged Phased Array with Graded Reflectivity,” IEEE Photon. Technol. Lett. 11(11), 1443–1445 (1999).
[CrossRef]

Lopez, D. O.

Marom, D. M.

Moriwaki, K.

K. Takiguchi, K. Okamoto, and K. Moriwaki, “Planar Lightwave Circuit Dispersion Equalizer,” J. Lightwave Technol. 14(9), 2003–2011 (1996).
[CrossRef]

Neilson, D. T.

Nishimura, M.

T. Sano, T. Iwashima, M. Kitayama, T. Kanie, M. Harumoto, M. Shigehara, H. Suganuma, and M. Nishimura, “Novel Multichannel Tunable Chromatic Dispersion Compensator Based on MEMS and Diffraction Grating,” IEEE Photon. Technol. Lett. 15(8), 1109–1110 (2003).
[CrossRef]

Ohmori, Y

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, KM Okamoto, A Itoh, Himeno, and Y Ohmori, “Very Low Insertion Loss Arrayed-Waveguide Grating with Vertically Tapered Waveguides,” IEEE Photon. Technol. Lett. 12(9), 1180–1182 (2000).
[CrossRef]

Ohmori, Y.

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, KM Okamoto, A Itoh, Himeno, and Y Ohmori, “Very Low Insertion Loss Arrayed-Waveguide Grating with Vertically Tapered Waveguides,” IEEE Photon. Technol. Lett. 12(9), 1180–1182 (2000).
[CrossRef]

Okamoto, K.

K. Takada, M. Abe, T. Shibata, and K. Okamoto, “1-GHz-spaced 16-channel Arrayed-Waveguide Grating for a Wavelength Reference Standard in DWDM Network Systems,” J. Lightwave Technol. 20(5), 850–853 (2002).
[CrossRef]

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, KM Okamoto, A Itoh, Himeno, and Y Ohmori, “Very Low Insertion Loss Arrayed-Waveguide Grating with Vertically Tapered Waveguides,” IEEE Photon. Technol. Lett. 12(9), 1180–1182 (2000).
[CrossRef]

K. Takiguchi, K. Okamoto, and K. Moriwaki, “Planar Lightwave Circuit Dispersion Equalizer,” J. Lightwave Technol. 14(9), 2003–2011 (1996).
[CrossRef]

Okamoto, M

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, KM Okamoto, A Itoh, Himeno, and Y Ohmori, “Very Low Insertion Loss Arrayed-Waveguide Grating with Vertically Tapered Waveguides,” IEEE Photon. Technol. Lett. 12(9), 1180–1182 (2000).
[CrossRef]

Pafchek, R.

C. R. Doerr, L. W. Stulz, S. Chandrasekhar, and R. Pafchek, “Colorless Tunable Dispersion Compensator with 400-ps/nm Range Integrated With a Tunable Noise Filter,” IEEE Photon. Technol. Lett. 15(9), 1258–1260 (2003).
[CrossRef]

Pardo, F.

Poole, S.

Roelens, M. A. F.

Ryf, R.

Sano, T.

T. Sano, T. Iwashima, M. Kitayama, T. Kanie, M. Harumoto, M. Shigehara, H. Suganuma, and M. Nishimura, “Novel Multichannel Tunable Chromatic Dispersion Compensator Based on MEMS and Diffraction Grating,” IEEE Photon. Technol. Lett. 15(8), 1109–1110 (2003).
[CrossRef]

Shibata, T.

K. Takada, M. Abe, T. Shibata, and K. Okamoto, “1-GHz-spaced 16-channel Arrayed-Waveguide Grating for a Wavelength Reference Standard in DWDM Network Systems,” J. Lightwave Technol. 20(5), 850–853 (2002).
[CrossRef]

Shigehara, M.

T. Sano, T. Iwashima, M. Kitayama, T. Kanie, M. Harumoto, M. Shigehara, H. Suganuma, and M. Nishimura, “Novel Multichannel Tunable Chromatic Dispersion Compensator Based on MEMS and Diffraction Grating,” IEEE Photon. Technol. Lett. 15(8), 1109–1110 (2003).
[CrossRef]

Shirasaki, M.

M. Shirasaki, A. N. Akhter, and C. Lin, “Virtually Imaged Phased Array with Graded Reflectivity,” IEEE Photon. Technol. Lett. 11(11), 1443–1445 (1999).
[CrossRef]

Simon, M. E.

Stulz, L. W.

C. R. Doerr, L. W. Stulz, S. Chandrasekhar, and R. Pafchek, “Colorless Tunable Dispersion Compensator with 400-ps/nm Range Integrated With a Tunable Noise Filter,” IEEE Photon. Technol. Lett. 15(9), 1258–1260 (2003).
[CrossRef]

Suganuma, H.

T. Sano, T. Iwashima, M. Kitayama, T. Kanie, M. Harumoto, M. Shigehara, H. Suganuma, and M. Nishimura, “Novel Multichannel Tunable Chromatic Dispersion Compensator Based on MEMS and Diffraction Grating,” IEEE Photon. Technol. Lett. 15(8), 1109–1110 (2003).
[CrossRef]

Sugita, A.

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, KM Okamoto, A Itoh, Himeno, and Y Ohmori, “Very Low Insertion Loss Arrayed-Waveguide Grating with Vertically Tapered Waveguides,” IEEE Photon. Technol. Lett. 12(9), 1180–1182 (2000).
[CrossRef]

Takada, K.

K. Takada, M. Abe, T. Shibata, and K. Okamoto, “1-GHz-spaced 16-channel Arrayed-Waveguide Grating for a Wavelength Reference Standard in DWDM Network Systems,” J. Lightwave Technol. 20(5), 850–853 (2002).
[CrossRef]

Takenouchi, H.

H. Takenouchi, T. Ishii, and T. Goh, “8 THz Bandwidth Dispersion-Slope Compensator Module for Multiband 4Gbit/s WDM Transmission Systems Using an AWG and Spatial Phase Filter,” Electron. Lett. 37(12), 777–778 (2001).
[CrossRef]

Takiguchi, K.

K. Takiguchi, K. Okamoto, and K. Moriwaki, “Planar Lightwave Circuit Dispersion Equalizer,” J. Lightwave Technol. 14(9), 2003–2011 (1996).
[CrossRef]

Weiner, A. M.

G.-H. Lee, S. Xiao, and A. M. Weiner, “Optical Dispersion Compensator With >4000-ps/nm Tuning Range Using a Virtually Imaged Phased Array (VIPA) and Spatial Light Modulator (SLM),” IEEE Photon. Technol. Lett. 18(17), 1819–1821 (2006).
[CrossRef]

Wong-Foy, A.

Xiao, S.

G.-H. Lee, S. Xiao, and A. M. Weiner, “Optical Dispersion Compensator With >4000-ps/nm Tuning Range Using a Virtually Imaged Phased Array (VIPA) and Spatial Light Modulator (SLM),” IEEE Photon. Technol. Lett. 18(17), 1819–1821 (2006).
[CrossRef]

Electron. Lett. (1)

H. Takenouchi, T. Ishii, and T. Goh, “8 THz Bandwidth Dispersion-Slope Compensator Module for Multiband 4Gbit/s WDM Transmission Systems Using an AWG and Spatial Phase Filter,” Electron. Lett. 37(12), 777–778 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

M. Shirasaki, A. N. Akhter, and C. Lin, “Virtually Imaged Phased Array with Graded Reflectivity,” IEEE Photon. Technol. Lett. 11(11), 1443–1445 (1999).
[CrossRef]

A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori, KM Okamoto, A Itoh, Himeno, and Y Ohmori, “Very Low Insertion Loss Arrayed-Waveguide Grating with Vertically Tapered Waveguides,” IEEE Photon. Technol. Lett. 12(9), 1180–1182 (2000).
[CrossRef]

C. R. Doerr, L. W. Stulz, S. Chandrasekhar, and R. Pafchek, “Colorless Tunable Dispersion Compensator with 400-ps/nm Range Integrated With a Tunable Noise Filter,” IEEE Photon. Technol. Lett. 15(9), 1258–1260 (2003).
[CrossRef]

G.-H. Lee, S. Xiao, and A. M. Weiner, “Optical Dispersion Compensator With >4000-ps/nm Tuning Range Using a Virtually Imaged Phased Array (VIPA) and Spatial Light Modulator (SLM),” IEEE Photon. Technol. Lett. 18(17), 1819–1821 (2006).
[CrossRef]

T. Sano, T. Iwashima, M. Kitayama, T. Kanie, M. Harumoto, M. Shigehara, H. Suganuma, and M. Nishimura, “Novel Multichannel Tunable Chromatic Dispersion Compensator Based on MEMS and Diffraction Grating,” IEEE Photon. Technol. Lett. 15(8), 1109–1110 (2003).
[CrossRef]

J. Lightwave Technol. (5)

Other (9)

K. Seno, K. Suzuki, K. Watanabe, N. Ooba, M. Ishii, and S. Mino, “Channel-by-Channel Tunable Optical Dispersion Compensator Consisting of Arrayed-Waveguide Grating and Liquid Crystal on Silicon,” in Proceedings of Optical Fiber Communication Conference and Exposition (Optical Society of America, 2008), paper OWP4.

K. Okamoto, Fundamentals of Optical Waveguides, 2nd ed., (Elsevier, 2006), Chap. 9, Sec. 9.3.1.

K. Seno, N. Ooba, K. Suzuki, K. Watanabe, M. Ishii, and S. Mino, “Tunable Dispersion Compensator Consisting of Simple Optics with Arrayed-Waveguide Grating and Flat Mirror,” in Proceedings of IEEE Lasers and Electro-Optics Society Annual Meeting, (Academic, Newport Beach, CA., 2008), WE1.

K. Suzuki, N. Ooba, M. Ishii, K. Seno, T. Shibata, and S. Mino, “40-Wavelength Channelized Tunable Optical Dispersion Compensator with Increased Bandwidth Consisting of Arrayed Waveguide Gratings and Liquid Crystal on Silicon,” in Proceedings of Optical Fiber Communication Conference and Exposition (Optical Society of America, 2009), paper OThB3.

K. Seno, K. Suzuki, N. Ooba, T. Watanabe, M. Itoh, S. Mino, and T. Sakamoto, “50-Wavelength Channel-by-Channel Tunable Optical Dispersion Compensator Using Combination of Arrayed-Waveguide and Bulk Gratings,” in Proceedings of Optical Fiber Communication Conference and Exposition (Optical Society of America, 2010), paper OMT7.

D. Sinefeld, C. R. Doerr, and D. M. Marom, “Photonic Spectral Processor Employing Two-Dimensional WDM Channel Separation and a Phase LCoS Modulator,” in Proceedings of Optical Fiber Communication Conference and Exposition (Optical Society of America, 2010), paper OMP5.

Y. Painchaud, M. Lapointe, F. Trepanier, R. L. Lachance, C. Paquet, and M. Guy, “Recent Progress on FBG-based Tunable Dispersion Compensators for 40 Gb/s Applications,” in Proceedings of Optical Fiber Communication Conference and Exposition (Optical Society of America, 2007), paper OThP3.

M. Shirasaki, and S. Cao, “Compensation of Chromatic Dispersion and Dispersion Slope Using a Virtually Imaged Phased Array,” in Proceedings of Optical Fiber Communication Conference and Exposition (Optical Society of America, 2001), paper TuS1.

C. R. Doerr, “Polarization-Independent Tunable Dispersion Compensator Comprised of a Silica Arrayed Waveguide Grating and a Polymer Slab,” in Proceedings of Optical Fiber Communication Conference and Exposition (Optical Society of America, 2006), paper PDP9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

(a) Schematic diagram of tunable optical dispersion compensator consisting of AWG and LCOS, and (b) phase shift setting of LCOS.

Fig. 2
Fig. 2

Calculated relationship between 3-dB bandwidth and chromatic dispersion when the ratio of the beam spot sizes on the LCOS and LCOS pixel pitch (overlap) is (a) 4. A large 3 dB bandwidth with a large dispersion setting can be obtained by an order of a spectrometer. And (b) the overlap is 8. A comparison of (a) and (b) shows that a small overlap also improves the bandwidth.

Fig. 3
Fig. 3

Calculated dependence of the overlap and bandwidth when the diffraction order is 200. BW clearly decreases as the overlap increases.

Fig. 4
Fig. 4

Calculated dependence of group delay ripple and 3-dB bandwidth on overlap. Here, WSLM is the radius of the incident Gaussian beam, and T is the pixel pitch of the LCOS. A small overlap provides a large bandwidth. However, the group delay ripple degrades with a small overlap.

Fig. 5
Fig. 5

(a) Measured transmission characteristics and (b) group delay characteristics in channel 3 of the TODC. The TODC has a tuning range of ± 800 ps/nm with a 3-dB bandwidth of 24 GHz.

Fig. 6
Fig. 6

Relation between 3-dB bandwidth and chromatic dispersion setting. The 3-dB bandwidth is proportional to the chromatic dispersion. The CD*BW relation is detailed in the Appendix. The measured and the calculated results agree. When the decrease in the 3-dB bandwidth caused by transmission ripples is taken into consideration, the results will probably exhibit even better agreement.

Fig. 7
Fig. 7

(a) Measured transmission spectrum when the CD setting is zero, and (b) channel-by-channel TODC operation. Six channels operated independently. The dispersion settings were + 83, + 402, −479, 0, −782 and + 766 ps/nm, respectively. Each channel had the characteristic shown in Sec. 3.1.

Fig. 8
Fig. 8

(a) Measured and calculated transmission characteristics of TODC and (b) quadratic phase function with dispersion settings of (a). Two kinds of frequencies exist with the possibility of ripple generation. Point A is that frequency corresponds to the phase setting of π. In contrast, there is a possibility that ripples are caused in the phase-folding, and these are defined as point B.

Fig. 9
Fig. 9

(a) Phase setup for evaluating 2π folding dependence on setting errors, and (b) GDR dependence on phase detuning from 2π. (c) In this experiment, GDR induced by the phase-folding was not confirmed. Therefore, the ripples are caused by the unwanted reflection from the gaps between pixels.

Fig. 10
Fig. 10

Simulated TODC spectra with different reflectance on the pixel gaps. Low reflectance can suppress an unwanted diffraction. The transmission spectra consequentially become parabolic, and the group delay spectra become almost linear.

Fig. 11
Fig. 11

Calculated dependence of (a) GDR, and transmittance ripple on reflectance of LCOS gaps. To obtain a GDR of 5 ps or less needed in a 40G system, the reflectance should be more than 50%.

Fig. 12
Fig. 12

(a) Phase setting of 3rd order dispersion (b) the measured group delay spectra. Setting a high-order phase function of LCOS, we can obtain a flexible dispersion compensation.

Fig. 13
Fig. 13

Schematic diagram of a quadratic phase function and a concomitant angular displacement of a beam.

Tables (1)

Tables Icon

Table 1 AWG Parameters Used in this Calculation

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

τ ( λ ) = d Φ S L M ( x ) d ω = 1 2 π λ 2 c d Φ S L M ( x ) d λ ,
C D ( λ ) = d τ ( λ ) d λ = λ 2 2 π c ( d x d λ ) 2 d 2 d x 2 Φ S L M ( x ) .
d x d λ = n g f Δ L d λ 0 ,
B W = 2 π D 3 10 log e ( d x d λ ) 1 W S L M .
W S L M = λ f π W o u t
ϕ ( x ) = A e x 2 ω 2 ,
φ ( x ) = A e x 2 ω 2 × e j θ S L M ( x ) ,
Φ ( λ ) = arg { ϕ ( x ) φ * ( x ) d x } .
τ ( λ ) = d Φ d ω = 1 2 π λ 2 c d Φ d λ
F . F . = T S T × 100 ,
Φ ( x ) = α 2 x 2 ,
θ = λ 2 π d Φ ( x ) d x = λ α 2 π x .
x = β λ ,
η = exp ( π 2 θ 2 λ 2 W S L M 2 ) .
C D * B W = 2 π 3 10 log e ( d x d λ ) 1 W S L M .

Metrics