Abstract

We have demonstrated an actively Q-switched tapered double-clad fiber laser capable of single-shot generation of 1.6-mJ, 64-ns pulses. The active medium based on tapered double-clad fiber is shown to exhibit a reduced level of amplified spontaneous emission which allows for high-energy pulse extraction at extremely low repetition rates.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Schmidt, J. Rothhardt, F. Röser, S. Linke, T. Schreiber, K. Rademaker, J. Limpert, S. Ermeneux, P. Yvernault, F. Salin, and A. Tünnermann, “Millijoule pulse energy Q-switched short-length fiber laser,” Opt. Lett. 32(11), 1551–1553 (2007).
    [CrossRef] [PubMed]
  2. F. Di Teodoro, and C. Brooks, “Multi-MW peak power, single transverse mode operation of a 100 micron core diameter, Yb-doped photonic crystal rod amplifier”, Fiber Lasers IV: Technology, Systems, and Applications, Proc. of SPIE vol. 6453, 645318, (2007).
  3. L. Michaille, D. M. Taylor, C. R. Bennett, T. J. Shepherd, and B. G. Ward, “Characteristics of a Q-switched multicore photonic crystal fiber laser with a very large mode field area,” Opt. Lett. 33(1), 71–73 (2008).
    [CrossRef]
  4. J. A. Alvarez-Chavez, H. L. Offerhaus, J. Nilsson, P. W. Turner, W. A. Clarkson, and D. J. Richardson, “High-energy, high-power ytterbium-doped Q-switched fiber laser,” Opt. Lett. 25(1), 37–39 (2000).
    [CrossRef]
  5. C. C. Renaud, H. L. Offerhaus, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, D. J. Richardson, and A. B. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber designs,” IEEE J. Quantum Electron. 37(2), 199–206 (2001).
    [CrossRef]
  6. J. A. Alvarez-Chavez, A. B. Grudinin, J. Nilsson, P. W. Turner, and W. A. Clarkson, “Mode selection in high power cladding pumped fiber lasers with tapered section”, Conf. Lasers and Electro-Optics, OSA Technical Digest, pp. 247 - 248, 1999.
  7. V. Filippov, Y. Chamorovskii, J. Kerttula, A. Kholodkov, and O. G. Okhotnikov, “Single-mode 212 W tapered fiber laser pumped by a low-brightness source,” Opt. Lett. 33(13), 1416–1418 (2008).
    [CrossRef] [PubMed]
  8. V. Filippov, Y. Chamorovskii, J. Kerttula, A. Kholodkov, and O. G. Okhotnikov, “600 W power scalable single transverse mode tapered double-clad fiber laser,” Opt. Express 17(3), 1203–1214 (2009).
    [CrossRef] [PubMed]
  9. V. Filippov, Y. Chamorovskii, J. Kerttula, K. Golant, and O. G. Okhotnikov, “750 W double-clad ytterbium tapered fiber laser with nearly theoretical limited efficiency,” Fiber Lasers VII: Technology, Systems and Applications, Proc. of SPIE vol. 7580, 758017 (2010).
  10. V. Filippov, Y. Chamorovskii, J. Kerttula, K. Golant, M. Pessa, and O. G. Okhotnikov, “Double clad tapered fiber for high power applications,” Opt. Express 16(3), 1929–1944 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-3-1929 .
    [CrossRef] [PubMed]
  11. K. M. Golant, “Surface plasma chemical vapor deposition: 20 years of application in glass synthesis for lightguides (a review)”, XXI International Congress on Glass, Strasbourg, Proc. on CD ROM,paper L13 (2007).
  12. S. Maryashin, A. Unt, and V. P. Gapontsev, “10-mJ pulse energy and 200 W average power Yb-doped fiber laser” Fiber Laser III: Technology, Systems and Applications, Proc. of SPIE vol. 6102, 6102O–1 (2006).
  13. Rare-earth-doped fiber lasers and amplifiers Second edition, Michel J. F. Digonnet, ed., (Marcel Dekker, Inc., 2001).
  14. J. R. Marciante and J. D. Zuegel, “High-gain, polarization-preserving, Yb-doped fiber amplifier for low-duty-cycle pulse amplification,” Appl. Opt. 45(26), 6798–6804 (2006), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-26-6798 .
    [CrossRef] [PubMed]
  15. J. Nilsson, R. Paschotta, J. E. Caplen, and D. C. Hanna, “Yb(3+)-ring-doped fiber for high-energy pulse amplification,” Opt. Lett. 22(14), 1092–1094 (1997), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-22-14-1092 .
    [CrossRef] [PubMed]
  16. M. E. Fermann, “Single-mode excitation of multimode fibers with ultrashort pulses,” Opt. Lett. 23(1), 52–54 (1998), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-23-1-52 .
    [CrossRef]
  17. K. Shiraki, M. Ohashi, and M. Tateda, “Suppression of stimulated Brillouin scattering in a fiber by changing the core radius,” Electron. Lett. 31(8), 668–669 (1995).
    [CrossRef]
  18. A. Liu, “Suppressing stimulated Brillouin scattering in fiber amplifiers using nonuniform fiber and temperature gradient,” Opt. Express 15(3), 977–984 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-3-977 .
    [CrossRef] [PubMed]

2009

2008

2007

2006

2001

C. C. Renaud, H. L. Offerhaus, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, D. J. Richardson, and A. B. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber designs,” IEEE J. Quantum Electron. 37(2), 199–206 (2001).
[CrossRef]

2000

1998

1997

1995

K. Shiraki, M. Ohashi, and M. Tateda, “Suppression of stimulated Brillouin scattering in a fiber by changing the core radius,” Electron. Lett. 31(8), 668–669 (1995).
[CrossRef]

Alvarez-Chavez, J. A.

C. C. Renaud, H. L. Offerhaus, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, D. J. Richardson, and A. B. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber designs,” IEEE J. Quantum Electron. 37(2), 199–206 (2001).
[CrossRef]

J. A. Alvarez-Chavez, H. L. Offerhaus, J. Nilsson, P. W. Turner, W. A. Clarkson, and D. J. Richardson, “High-energy, high-power ytterbium-doped Q-switched fiber laser,” Opt. Lett. 25(1), 37–39 (2000).
[CrossRef]

Bennett, C. R.

Caplen, J. E.

Chamorovskii, Y.

Clarkson, W. A.

C. C. Renaud, H. L. Offerhaus, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, D. J. Richardson, and A. B. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber designs,” IEEE J. Quantum Electron. 37(2), 199–206 (2001).
[CrossRef]

J. A. Alvarez-Chavez, H. L. Offerhaus, J. Nilsson, P. W. Turner, W. A. Clarkson, and D. J. Richardson, “High-energy, high-power ytterbium-doped Q-switched fiber laser,” Opt. Lett. 25(1), 37–39 (2000).
[CrossRef]

Ermeneux, S.

Fermann, M. E.

Filippov, V.

Golant, K.

Grudinin, A. B.

C. C. Renaud, H. L. Offerhaus, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, D. J. Richardson, and A. B. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber designs,” IEEE J. Quantum Electron. 37(2), 199–206 (2001).
[CrossRef]

Hanna, D. C.

Kerttula, J.

Kholodkov, A.

Limpert, J.

Linke, S.

Liu, A.

Marciante, J. R.

Michaille, L.

Nilsson, J.

Offerhaus, H. L.

C. C. Renaud, H. L. Offerhaus, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, D. J. Richardson, and A. B. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber designs,” IEEE J. Quantum Electron. 37(2), 199–206 (2001).
[CrossRef]

J. A. Alvarez-Chavez, H. L. Offerhaus, J. Nilsson, P. W. Turner, W. A. Clarkson, and D. J. Richardson, “High-energy, high-power ytterbium-doped Q-switched fiber laser,” Opt. Lett. 25(1), 37–39 (2000).
[CrossRef]

Ohashi, M.

K. Shiraki, M. Ohashi, and M. Tateda, “Suppression of stimulated Brillouin scattering in a fiber by changing the core radius,” Electron. Lett. 31(8), 668–669 (1995).
[CrossRef]

Okhotnikov, O. G.

Paschotta, R.

Pessa, M.

Rademaker, K.

Renaud, C. C.

C. C. Renaud, H. L. Offerhaus, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, D. J. Richardson, and A. B. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber designs,” IEEE J. Quantum Electron. 37(2), 199–206 (2001).
[CrossRef]

Richardson, D. J.

C. C. Renaud, H. L. Offerhaus, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, D. J. Richardson, and A. B. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber designs,” IEEE J. Quantum Electron. 37(2), 199–206 (2001).
[CrossRef]

J. A. Alvarez-Chavez, H. L. Offerhaus, J. Nilsson, P. W. Turner, W. A. Clarkson, and D. J. Richardson, “High-energy, high-power ytterbium-doped Q-switched fiber laser,” Opt. Lett. 25(1), 37–39 (2000).
[CrossRef]

Röser, F.

Rothhardt, J.

Salin, F.

Schmidt, O.

Schreiber, T.

Shepherd, T. J.

Shiraki, K.

K. Shiraki, M. Ohashi, and M. Tateda, “Suppression of stimulated Brillouin scattering in a fiber by changing the core radius,” Electron. Lett. 31(8), 668–669 (1995).
[CrossRef]

Tateda, M.

K. Shiraki, M. Ohashi, and M. Tateda, “Suppression of stimulated Brillouin scattering in a fiber by changing the core radius,” Electron. Lett. 31(8), 668–669 (1995).
[CrossRef]

Taylor, D. M.

Tünnermann, A.

Turner, P. W.

C. C. Renaud, H. L. Offerhaus, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, D. J. Richardson, and A. B. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber designs,” IEEE J. Quantum Electron. 37(2), 199–206 (2001).
[CrossRef]

J. A. Alvarez-Chavez, H. L. Offerhaus, J. Nilsson, P. W. Turner, W. A. Clarkson, and D. J. Richardson, “High-energy, high-power ytterbium-doped Q-switched fiber laser,” Opt. Lett. 25(1), 37–39 (2000).
[CrossRef]

Ward, B. G.

Yvernault, P.

Zuegel, J. D.

Appl. Opt.

Electron. Lett.

K. Shiraki, M. Ohashi, and M. Tateda, “Suppression of stimulated Brillouin scattering in a fiber by changing the core radius,” Electron. Lett. 31(8), 668–669 (1995).
[CrossRef]

IEEE J. Quantum Electron.

C. C. Renaud, H. L. Offerhaus, J. A. Alvarez-Chavez, J. Nilsson, W. A. Clarkson, P. W. Turner, D. J. Richardson, and A. B. Grudinin, “Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber designs,” IEEE J. Quantum Electron. 37(2), 199–206 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

Other

F. Di Teodoro, and C. Brooks, “Multi-MW peak power, single transverse mode operation of a 100 micron core diameter, Yb-doped photonic crystal rod amplifier”, Fiber Lasers IV: Technology, Systems, and Applications, Proc. of SPIE vol. 6453, 645318, (2007).

V. Filippov, Y. Chamorovskii, J. Kerttula, K. Golant, and O. G. Okhotnikov, “750 W double-clad ytterbium tapered fiber laser with nearly theoretical limited efficiency,” Fiber Lasers VII: Technology, Systems and Applications, Proc. of SPIE vol. 7580, 758017 (2010).

J. A. Alvarez-Chavez, A. B. Grudinin, J. Nilsson, P. W. Turner, and W. A. Clarkson, “Mode selection in high power cladding pumped fiber lasers with tapered section”, Conf. Lasers and Electro-Optics, OSA Technical Digest, pp. 247 - 248, 1999.

K. M. Golant, “Surface plasma chemical vapor deposition: 20 years of application in glass synthesis for lightguides (a review)”, XXI International Congress on Glass, Strasbourg, Proc. on CD ROM,paper L13 (2007).

S. Maryashin, A. Unt, and V. P. Gapontsev, “10-mJ pulse energy and 200 W average power Yb-doped fiber laser” Fiber Laser III: Technology, Systems and Applications, Proc. of SPIE vol. 6102, 6102O–1 (2006).

Rare-earth-doped fiber lasers and amplifiers Second edition, Michel J. F. Digonnet, ed., (Marcel Dekker, Inc., 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the Q-switched laser setup, a micrograph of the wide fiber end, and the longitudinal profile of the T-DCF.

Fig. 2
Fig. 2

Pulse energy and average power (including ASE) versus repetition rate at a constant pump power. The output beam profile with M2 = 2.7 is shown as an inset.

Fig. 3
Fig. 3

Pulse energy and peak power versus absorbed pump power at a constant repetition rate of 5 Hz.

Fig. 4
Fig. 4

(a) 1.6-mJ pulse before (black) and after (red) the onset of SBS-induced pulse breakdown; (b) pulse width versus repetition rate at constant pump power.

Fig. 5
Fig. 5

Optical spectra of the Q-switched T-DCF laser at 500 Hz repetition rate with 0.1 mJ (black) and 1.6 mJ pulse energy (red, FWHM = 14 nm), and without lasing when the cavity is blocked (blue).

Metrics