Abstract

To improve the output power of a photomixer used as a THz source, we propose a four-leaf-clover-shaped antenna structure composed of a highly resonant radiation element and a stable DC feed element. The resonance characteristics of the proposed structure were first investigated on a half-infinite substrate as a simplified radiation environment to reduce the computation time. Based on the antenna characteristics on that half-infinite substrate, the antenna structure was designed to have a maximum total efficiency and a maximum directivity on an extended hemispherical lens. The input resistance of this structure was six times that of a full-wavelength dipole, significantly improving the mismatch efficiency between a photomixer and the antenna. The terahertz output power from this structure is expected to be 2.7 times that of a full-wavelength dipole.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Markelz, S. Whitmire, J. Hillebrecht, and R. Birge, “THz time domain spectroscopy of biomolecular conformational modes,” Phys. Med. Biol. 47(21), 3797–3805 (2002).
    [CrossRef] [PubMed]
  2. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20(16), 1716–1718 (1995).
    [CrossRef] [PubMed]
  3. T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, and M. Koch, “Audio signal transmission over THz communication channel using semiconductor modulator,” Electron. Lett. 40(2), 124–126 (2004).
    [CrossRef]
  4. D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photo-conducting hertzian dipoles,” Appl. Phys. Lett. 45(3), 284–286 (1984).
    [CrossRef]
  5. B. B. Hu, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Free-space radiation from electro-optic crystals,” Appl. Phys. Lett. 56(6), 506–508 (1990).
    [CrossRef]
  6. E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” J. Appl. Phys. 73(3), 1480–1484 (1993).
    [CrossRef]
  7. E. Bründermann, E. E. Haller, and A. V. Muravjov, “Terahertz emission of population-inverted hot-holes in single-crystalline silicon,” Appl. Phys. Lett. 73(6), 723–725 (1998).
    [CrossRef]
  8. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
    [CrossRef] [PubMed]
  9. E. Linfield, “Terahertz application: A source of fresh hope,” Nat. Photonics 1(5), 257–258 (2007).
    [CrossRef]
  10. R. E. Miles, X.-C. Zhang, H. Eisele, and A. Krotkus, Terahertz Frequency Detection and Identification of Materials and Objects, (Springer, Berlin, Germany, 2007), pp. 167–184.
  11. O. Morikawa, M. Tonouchi, M. Tani, K. Sakai, and M. Hangyo, “Sub-THz emission properties of photoconductive antennas excited with multimode laser diode,” Jpn. J. Appl. Phys. 38(Part 1, No. 3A), 1388–1389 (1999).
    [CrossRef]
  12. K. Chen, Y. T. Li, M. H. Yang, W. Y. Cheung, C. L. Pan, and K. T. Chan, “Comparison of continuous-wave terahertz wave generation and bias-field-dependent saturation in GaAs:O and LT-GaAs antennas,” Opt. Lett. 34(7), 935–937 (2009).
    [CrossRef] [PubMed]
  13. S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microw. Theory Tech. 49(6), 1032–1038 (2001).
    [CrossRef]
  14. K. Moon, H. Han, and I. Park, “Terahertz folded half-wavelength dipole antenna for high output power,” in Topical Meeting on Microwave Photonics, (Seoul, Korea, 2005), pp. 301–304.
  15. K. Han, T. K. Nguyen, I. Park, and H. Han, “Terahertz Yagi-Uda antenna for high input resistance,” J. Infrared Milli Terahz Waves 31, 441–454 (2010).
  16. U. D. Keil, D. R. Dykaar, A. F. J. Levi, R. F. Kopf, L. N. Pfeiffer, S. B. Darack, and K. W. West, “High-speed coplanar transmission line,” IEEE J. Quantum Electron. 28(10), 2333–2342 (1992).
    [CrossRef]
  17. S. Y. Chou, Y. Liu, and P. B. Fischer, “Tera-hertz metal-semiconductor-metal photodetectors with 25-nm finger spacing and finger width,” Appl. Phys. Lett. 61(4), 477–479 (1992).
    [CrossRef]
  18. M. Kominami, D. M. Pozar, and D. H. Schaubert, “Dipole and slot elements and arrays on semi-infinite substrate,” IEEE Trans. Antenn. Propag. 33(6), 600–607 (1985).
    [CrossRef]
  19. C. A. Balanis, Antenna Theory: Analysis and Design, (Wiley, New York, 1997), pp. 60–61.
  20. K. Moon, “Highly resonant antennas for terahertz photomixers,” Ph. D. dissertation, POSTECH, pp. 59–73, 2007.
  21. K. J. Button, Infrared and Millimeter Waves, vol. 10, (Academic Press, New York, 1983), pp.1–90.
  22. D. F. Filipovic, S. S. Gearhart, and G. M. Rebeiz, “Double-slot antennas on extended hemispherical and elliptical silicon dielectric lenses,” IEEE Trans. Microw. Theory Tech. 41(10), 1738–1749 (1993).
    [CrossRef]
  23. M. J. M. van der Vorst, P. J. I. de Maagt, and M. H. A. Herben, “Effect on internal reflection on the radiation properties and input admittance of integrated lens antennas,” IEEE Trans. Microw. Theory Tech. 47(9), 1696–1704 (1999).
    [CrossRef]

2010 (1)

K. Han, T. K. Nguyen, I. Park, and H. Han, “Terahertz Yagi-Uda antenna for high input resistance,” J. Infrared Milli Terahz Waves 31, 441–454 (2010).

2009 (1)

2007 (1)

E. Linfield, “Terahertz application: A source of fresh hope,” Nat. Photonics 1(5), 257–258 (2007).
[CrossRef]

2004 (1)

T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, and M. Koch, “Audio signal transmission over THz communication channel using semiconductor modulator,” Electron. Lett. 40(2), 124–126 (2004).
[CrossRef]

2002 (2)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[CrossRef] [PubMed]

A. Markelz, S. Whitmire, J. Hillebrecht, and R. Birge, “THz time domain spectroscopy of biomolecular conformational modes,” Phys. Med. Biol. 47(21), 3797–3805 (2002).
[CrossRef] [PubMed]

2001 (1)

S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microw. Theory Tech. 49(6), 1032–1038 (2001).
[CrossRef]

1999 (2)

O. Morikawa, M. Tonouchi, M. Tani, K. Sakai, and M. Hangyo, “Sub-THz emission properties of photoconductive antennas excited with multimode laser diode,” Jpn. J. Appl. Phys. 38(Part 1, No. 3A), 1388–1389 (1999).
[CrossRef]

M. J. M. van der Vorst, P. J. I. de Maagt, and M. H. A. Herben, “Effect on internal reflection on the radiation properties and input admittance of integrated lens antennas,” IEEE Trans. Microw. Theory Tech. 47(9), 1696–1704 (1999).
[CrossRef]

1998 (1)

E. Bründermann, E. E. Haller, and A. V. Muravjov, “Terahertz emission of population-inverted hot-holes in single-crystalline silicon,” Appl. Phys. Lett. 73(6), 723–725 (1998).
[CrossRef]

1995 (1)

1993 (2)

D. F. Filipovic, S. S. Gearhart, and G. M. Rebeiz, “Double-slot antennas on extended hemispherical and elliptical silicon dielectric lenses,” IEEE Trans. Microw. Theory Tech. 41(10), 1738–1749 (1993).
[CrossRef]

E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” J. Appl. Phys. 73(3), 1480–1484 (1993).
[CrossRef]

1992 (2)

U. D. Keil, D. R. Dykaar, A. F. J. Levi, R. F. Kopf, L. N. Pfeiffer, S. B. Darack, and K. W. West, “High-speed coplanar transmission line,” IEEE J. Quantum Electron. 28(10), 2333–2342 (1992).
[CrossRef]

S. Y. Chou, Y. Liu, and P. B. Fischer, “Tera-hertz metal-semiconductor-metal photodetectors with 25-nm finger spacing and finger width,” Appl. Phys. Lett. 61(4), 477–479 (1992).
[CrossRef]

1990 (1)

B. B. Hu, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Free-space radiation from electro-optic crystals,” Appl. Phys. Lett. 56(6), 506–508 (1990).
[CrossRef]

1985 (1)

M. Kominami, D. M. Pozar, and D. H. Schaubert, “Dipole and slot elements and arrays on semi-infinite substrate,” IEEE Trans. Antenn. Propag. 33(6), 600–607 (1985).
[CrossRef]

1984 (1)

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photo-conducting hertzian dipoles,” Appl. Phys. Lett. 45(3), 284–286 (1984).
[CrossRef]

Auston, D. H.

B. B. Hu, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Free-space radiation from electro-optic crystals,” Appl. Phys. Lett. 56(6), 506–508 (1990).
[CrossRef]

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photo-conducting hertzian dipoles,” Appl. Phys. Lett. 45(3), 284–286 (1984).
[CrossRef]

Beere, H. E.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Beltram, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Birge, R.

A. Markelz, S. Whitmire, J. Hillebrecht, and R. Birge, “THz time domain spectroscopy of biomolecular conformational modes,” Phys. Med. Biol. 47(21), 3797–3805 (2002).
[CrossRef] [PubMed]

Brown, E. R.

E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” J. Appl. Phys. 73(3), 1480–1484 (1993).
[CrossRef]

Bründermann, E.

E. Bründermann, E. E. Haller, and A. V. Muravjov, “Terahertz emission of population-inverted hot-holes in single-crystalline silicon,” Appl. Phys. Lett. 73(6), 723–725 (1998).
[CrossRef]

Chan, K. T.

Chen, K.

Cheung, K. P.

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photo-conducting hertzian dipoles,” Appl. Phys. Lett. 45(3), 284–286 (1984).
[CrossRef]

Cheung, W. Y.

Chou, S. Y.

S. Y. Chou, Y. Liu, and P. B. Fischer, “Tera-hertz metal-semiconductor-metal photodetectors with 25-nm finger spacing and finger width,” Appl. Phys. Lett. 61(4), 477–479 (1992).
[CrossRef]

Darack, S. B.

U. D. Keil, D. R. Dykaar, A. F. J. Levi, R. F. Kopf, L. N. Pfeiffer, S. B. Darack, and K. W. West, “High-speed coplanar transmission line,” IEEE J. Quantum Electron. 28(10), 2333–2342 (1992).
[CrossRef]

Davies, A. G.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Dawson, P.

T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, and M. Koch, “Audio signal transmission over THz communication channel using semiconductor modulator,” Electron. Lett. 40(2), 124–126 (2004).
[CrossRef]

de Maagt, P. J. I.

M. J. M. van der Vorst, P. J. I. de Maagt, and M. H. A. Herben, “Effect on internal reflection on the radiation properties and input admittance of integrated lens antennas,” IEEE Trans. Microw. Theory Tech. 47(9), 1696–1704 (1999).
[CrossRef]

Duffy, S. M.

S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microw. Theory Tech. 49(6), 1032–1038 (2001).
[CrossRef]

Dykaar, D. R.

U. D. Keil, D. R. Dykaar, A. F. J. Levi, R. F. Kopf, L. N. Pfeiffer, S. B. Darack, and K. W. West, “High-speed coplanar transmission line,” IEEE J. Quantum Electron. 28(10), 2333–2342 (1992).
[CrossRef]

Filipovic, D. F.

D. F. Filipovic, S. S. Gearhart, and G. M. Rebeiz, “Double-slot antennas on extended hemispherical and elliptical silicon dielectric lenses,” IEEE Trans. Microw. Theory Tech. 41(10), 1738–1749 (1993).
[CrossRef]

Fischer, P. B.

S. Y. Chou, Y. Liu, and P. B. Fischer, “Tera-hertz metal-semiconductor-metal photodetectors with 25-nm finger spacing and finger width,” Appl. Phys. Lett. 61(4), 477–479 (1992).
[CrossRef]

Gearhart, S. S.

D. F. Filipovic, S. S. Gearhart, and G. M. Rebeiz, “Double-slot antennas on extended hemispherical and elliptical silicon dielectric lenses,” IEEE Trans. Microw. Theory Tech. 41(10), 1738–1749 (1993).
[CrossRef]

Gossard, A. C.

S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microw. Theory Tech. 49(6), 1032–1038 (2001).
[CrossRef]

Haller, E. E.

E. Bründermann, E. E. Haller, and A. V. Muravjov, “Terahertz emission of population-inverted hot-holes in single-crystalline silicon,” Appl. Phys. Lett. 73(6), 723–725 (1998).
[CrossRef]

Han, H.

K. Han, T. K. Nguyen, I. Park, and H. Han, “Terahertz Yagi-Uda antenna for high input resistance,” J. Infrared Milli Terahz Waves 31, 441–454 (2010).

Han, K.

K. Han, T. K. Nguyen, I. Park, and H. Han, “Terahertz Yagi-Uda antenna for high input resistance,” J. Infrared Milli Terahz Waves 31, 441–454 (2010).

Hangyo, M.

O. Morikawa, M. Tonouchi, M. Tani, K. Sakai, and M. Hangyo, “Sub-THz emission properties of photoconductive antennas excited with multimode laser diode,” Jpn. J. Appl. Phys. 38(Part 1, No. 3A), 1388–1389 (1999).
[CrossRef]

Hein, G.

T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, and M. Koch, “Audio signal transmission over THz communication channel using semiconductor modulator,” Electron. Lett. 40(2), 124–126 (2004).
[CrossRef]

Herben, M. H. A.

M. J. M. van der Vorst, P. J. I. de Maagt, and M. H. A. Herben, “Effect on internal reflection on the radiation properties and input admittance of integrated lens antennas,” IEEE Trans. Microw. Theory Tech. 47(9), 1696–1704 (1999).
[CrossRef]

Hillebrecht, J.

A. Markelz, S. Whitmire, J. Hillebrecht, and R. Birge, “THz time domain spectroscopy of biomolecular conformational modes,” Phys. Med. Biol. 47(21), 3797–3805 (2002).
[CrossRef] [PubMed]

Hu, B. B.

B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20(16), 1716–1718 (1995).
[CrossRef] [PubMed]

B. B. Hu, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Free-space radiation from electro-optic crystals,” Appl. Phys. Lett. 56(6), 506–508 (1990).
[CrossRef]

Iotti, R. C.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Jackson, A.

S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microw. Theory Tech. 49(6), 1032–1038 (2001).
[CrossRef]

Keil, U. D.

U. D. Keil, D. R. Dykaar, A. F. J. Levi, R. F. Kopf, L. N. Pfeiffer, S. B. Darack, and K. W. West, “High-speed coplanar transmission line,” IEEE J. Quantum Electron. 28(10), 2333–2342 (1992).
[CrossRef]

Kleine-Ostmann, T.

T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, and M. Koch, “Audio signal transmission over THz communication channel using semiconductor modulator,” Electron. Lett. 40(2), 124–126 (2004).
[CrossRef]

Koch, M.

T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, and M. Koch, “Audio signal transmission over THz communication channel using semiconductor modulator,” Electron. Lett. 40(2), 124–126 (2004).
[CrossRef]

Köhler, R.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Kominami, M.

M. Kominami, D. M. Pozar, and D. H. Schaubert, “Dipole and slot elements and arrays on semi-infinite substrate,” IEEE Trans. Antenn. Propag. 33(6), 600–607 (1985).
[CrossRef]

Kopf, R. F.

U. D. Keil, D. R. Dykaar, A. F. J. Levi, R. F. Kopf, L. N. Pfeiffer, S. B. Darack, and K. W. West, “High-speed coplanar transmission line,” IEEE J. Quantum Electron. 28(10), 2333–2342 (1992).
[CrossRef]

Levi, A. F. J.

U. D. Keil, D. R. Dykaar, A. F. J. Levi, R. F. Kopf, L. N. Pfeiffer, S. B. Darack, and K. W. West, “High-speed coplanar transmission line,” IEEE J. Quantum Electron. 28(10), 2333–2342 (1992).
[CrossRef]

Li, Y. T.

Linfield, E.

E. Linfield, “Terahertz application: A source of fresh hope,” Nat. Photonics 1(5), 257–258 (2007).
[CrossRef]

Linfield, E. H.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Liu, Y.

S. Y. Chou, Y. Liu, and P. B. Fischer, “Tera-hertz metal-semiconductor-metal photodetectors with 25-nm finger spacing and finger width,” Appl. Phys. Lett. 61(4), 477–479 (1992).
[CrossRef]

Markelz, A.

A. Markelz, S. Whitmire, J. Hillebrecht, and R. Birge, “THz time domain spectroscopy of biomolecular conformational modes,” Phys. Med. Biol. 47(21), 3797–3805 (2002).
[CrossRef] [PubMed]

Matsuura, S.

S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microw. Theory Tech. 49(6), 1032–1038 (2001).
[CrossRef]

McIntosh, K. A.

S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microw. Theory Tech. 49(6), 1032–1038 (2001).
[CrossRef]

E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” J. Appl. Phys. 73(3), 1480–1484 (1993).
[CrossRef]

Morikawa, O.

O. Morikawa, M. Tonouchi, M. Tani, K. Sakai, and M. Hangyo, “Sub-THz emission properties of photoconductive antennas excited with multimode laser diode,” Jpn. J. Appl. Phys. 38(Part 1, No. 3A), 1388–1389 (1999).
[CrossRef]

Muravjov, A. V.

E. Bründermann, E. E. Haller, and A. V. Muravjov, “Terahertz emission of population-inverted hot-holes in single-crystalline silicon,” Appl. Phys. Lett. 73(6), 723–725 (1998).
[CrossRef]

Nguyen, T. K.

K. Han, T. K. Nguyen, I. Park, and H. Han, “Terahertz Yagi-Uda antenna for high input resistance,” J. Infrared Milli Terahz Waves 31, 441–454 (2010).

Nuss, M. C.

Pan, C. L.

Park, I.

K. Han, T. K. Nguyen, I. Park, and H. Han, “Terahertz Yagi-Uda antenna for high input resistance,” J. Infrared Milli Terahz Waves 31, 441–454 (2010).

Pfeiffer, L. N.

U. D. Keil, D. R. Dykaar, A. F. J. Levi, R. F. Kopf, L. N. Pfeiffer, S. B. Darack, and K. W. West, “High-speed coplanar transmission line,” IEEE J. Quantum Electron. 28(10), 2333–2342 (1992).
[CrossRef]

Pierz, K.

T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, and M. Koch, “Audio signal transmission over THz communication channel using semiconductor modulator,” Electron. Lett. 40(2), 124–126 (2004).
[CrossRef]

Pozar, D. M.

M. Kominami, D. M. Pozar, and D. H. Schaubert, “Dipole and slot elements and arrays on semi-infinite substrate,” IEEE Trans. Antenn. Propag. 33(6), 600–607 (1985).
[CrossRef]

Rebeiz, G. M.

D. F. Filipovic, S. S. Gearhart, and G. M. Rebeiz, “Double-slot antennas on extended hemispherical and elliptical silicon dielectric lenses,” IEEE Trans. Microw. Theory Tech. 41(10), 1738–1749 (1993).
[CrossRef]

Ritchie, D. A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Rossi, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Sakai, K.

O. Morikawa, M. Tonouchi, M. Tani, K. Sakai, and M. Hangyo, “Sub-THz emission properties of photoconductive antennas excited with multimode laser diode,” Jpn. J. Appl. Phys. 38(Part 1, No. 3A), 1388–1389 (1999).
[CrossRef]

Schaubert, D. H.

M. Kominami, D. M. Pozar, and D. H. Schaubert, “Dipole and slot elements and arrays on semi-infinite substrate,” IEEE Trans. Antenn. Propag. 33(6), 600–607 (1985).
[CrossRef]

Smith, F. W.

E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” J. Appl. Phys. 73(3), 1480–1484 (1993).
[CrossRef]

Smith, P. R.

B. B. Hu, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Free-space radiation from electro-optic crystals,” Appl. Phys. Lett. 56(6), 506–508 (1990).
[CrossRef]

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photo-conducting hertzian dipoles,” Appl. Phys. Lett. 45(3), 284–286 (1984).
[CrossRef]

Tani, M.

O. Morikawa, M. Tonouchi, M. Tani, K. Sakai, and M. Hangyo, “Sub-THz emission properties of photoconductive antennas excited with multimode laser diode,” Jpn. J. Appl. Phys. 38(Part 1, No. 3A), 1388–1389 (1999).
[CrossRef]

Tonouchi, M.

O. Morikawa, M. Tonouchi, M. Tani, K. Sakai, and M. Hangyo, “Sub-THz emission properties of photoconductive antennas excited with multimode laser diode,” Jpn. J. Appl. Phys. 38(Part 1, No. 3A), 1388–1389 (1999).
[CrossRef]

Tredicucci, A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[CrossRef] [PubMed]

van der Vorst, M. J. M.

M. J. M. van der Vorst, P. J. I. de Maagt, and M. H. A. Herben, “Effect on internal reflection on the radiation properties and input admittance of integrated lens antennas,” IEEE Trans. Microw. Theory Tech. 47(9), 1696–1704 (1999).
[CrossRef]

Verghese, S.

S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microw. Theory Tech. 49(6), 1032–1038 (2001).
[CrossRef]

West, K. W.

U. D. Keil, D. R. Dykaar, A. F. J. Levi, R. F. Kopf, L. N. Pfeiffer, S. B. Darack, and K. W. West, “High-speed coplanar transmission line,” IEEE J. Quantum Electron. 28(10), 2333–2342 (1992).
[CrossRef]

Whitmire, S.

A. Markelz, S. Whitmire, J. Hillebrecht, and R. Birge, “THz time domain spectroscopy of biomolecular conformational modes,” Phys. Med. Biol. 47(21), 3797–3805 (2002).
[CrossRef] [PubMed]

Yang, M. H.

Zhang, X.-C.

B. B. Hu, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Free-space radiation from electro-optic crystals,” Appl. Phys. Lett. 56(6), 506–508 (1990).
[CrossRef]

Appl. Phys. Lett. (4)

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photo-conducting hertzian dipoles,” Appl. Phys. Lett. 45(3), 284–286 (1984).
[CrossRef]

B. B. Hu, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Free-space radiation from electro-optic crystals,” Appl. Phys. Lett. 56(6), 506–508 (1990).
[CrossRef]

E. Bründermann, E. E. Haller, and A. V. Muravjov, “Terahertz emission of population-inverted hot-holes in single-crystalline silicon,” Appl. Phys. Lett. 73(6), 723–725 (1998).
[CrossRef]

S. Y. Chou, Y. Liu, and P. B. Fischer, “Tera-hertz metal-semiconductor-metal photodetectors with 25-nm finger spacing and finger width,” Appl. Phys. Lett. 61(4), 477–479 (1992).
[CrossRef]

Electron. Lett. (1)

T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, and M. Koch, “Audio signal transmission over THz communication channel using semiconductor modulator,” Electron. Lett. 40(2), 124–126 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

U. D. Keil, D. R. Dykaar, A. F. J. Levi, R. F. Kopf, L. N. Pfeiffer, S. B. Darack, and K. W. West, “High-speed coplanar transmission line,” IEEE J. Quantum Electron. 28(10), 2333–2342 (1992).
[CrossRef]

IEEE Trans. Antenn. Propag. (1)

M. Kominami, D. M. Pozar, and D. H. Schaubert, “Dipole and slot elements and arrays on semi-infinite substrate,” IEEE Trans. Antenn. Propag. 33(6), 600–607 (1985).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (3)

S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microw. Theory Tech. 49(6), 1032–1038 (2001).
[CrossRef]

D. F. Filipovic, S. S. Gearhart, and G. M. Rebeiz, “Double-slot antennas on extended hemispherical and elliptical silicon dielectric lenses,” IEEE Trans. Microw. Theory Tech. 41(10), 1738–1749 (1993).
[CrossRef]

M. J. M. van der Vorst, P. J. I. de Maagt, and M. H. A. Herben, “Effect on internal reflection on the radiation properties and input admittance of integrated lens antennas,” IEEE Trans. Microw. Theory Tech. 47(9), 1696–1704 (1999).
[CrossRef]

J. Appl. Phys. (1)

E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” J. Appl. Phys. 73(3), 1480–1484 (1993).
[CrossRef]

J. Infrared Milli Terahz Waves (1)

K. Han, T. K. Nguyen, I. Park, and H. Han, “Terahertz Yagi-Uda antenna for high input resistance,” J. Infrared Milli Terahz Waves 31, 441–454 (2010).

Jpn. J. Appl. Phys. (1)

O. Morikawa, M. Tonouchi, M. Tani, K. Sakai, and M. Hangyo, “Sub-THz emission properties of photoconductive antennas excited with multimode laser diode,” Jpn. J. Appl. Phys. 38(Part 1, No. 3A), 1388–1389 (1999).
[CrossRef]

Nat. Photonics (1)

E. Linfield, “Terahertz application: A source of fresh hope,” Nat. Photonics 1(5), 257–258 (2007).
[CrossRef]

Nature (1)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Med. Biol. (1)

A. Markelz, S. Whitmire, J. Hillebrecht, and R. Birge, “THz time domain spectroscopy of biomolecular conformational modes,” Phys. Med. Biol. 47(21), 3797–3805 (2002).
[CrossRef] [PubMed]

Other (5)

R. E. Miles, X.-C. Zhang, H. Eisele, and A. Krotkus, Terahertz Frequency Detection and Identification of Materials and Objects, (Springer, Berlin, Germany, 2007), pp. 167–184.

K. Moon, H. Han, and I. Park, “Terahertz folded half-wavelength dipole antenna for high output power,” in Topical Meeting on Microwave Photonics, (Seoul, Korea, 2005), pp. 301–304.

C. A. Balanis, Antenna Theory: Analysis and Design, (Wiley, New York, 1997), pp. 60–61.

K. Moon, “Highly resonant antennas for terahertz photomixers,” Ph. D. dissertation, POSTECH, pp. 59–73, 2007.

K. J. Button, Infrared and Millimeter Waves, vol. 10, (Academic Press, New York, 1983), pp.1–90.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Equivalent-circuit model for a photomixer.

Fig. 2
Fig. 2

Structure of the proposed antenna and DC bias circuit.

Fig. 4
Fig. 4

Current density distributions on the proposed antenna at a full-wavelength resonance.

Fig. 3
Fig. 3

Characteristics of the proposed antenna before and after attaching DC bias lines (a) Input resistance, (b) radiation efficiency.

Fig. 5
Fig. 5

Input resistance and radiation efficiency at a full-wavelength resonance when a distance d between the proposed antenna and PBG cell varies.

Fig. 6
Fig. 6

Input resistance at a full-wavelength resonance when a ratio of Dy /Dx varies.

Fig. 7
Fig. 7

Antenna characteristics as functions of the horizontal gap Gx and the vertical gap Gy .

Fig. 8
Fig. 8

Radiation patterns of antennas at 1 THz on a half-infinite GaAs substrate (a) x-z plane (b) y-z plane.

Fig. 9
Fig. 9

Radiation efficiency and mismatch efficiency at a full-wavelength resonance when a ratio of Dy /Dx varies.

Fig. 10
Fig. 10

Total efficiency at a full-wavelength resonance when a ratio of Dy /Dx varies.

Fig. 11
Fig. 11

Extended hemispherical lens substrate structure.

Fig. 12
Fig. 12

Directivities of antennas on lens when a ratio of substrate thickness to radius of hemisphere T/R varies.

Fig. 13
Fig. 13

Radiation patterns of antennas at 1 THz on an extended hemispherical lens substrate (R = 4.5 λ) (a) x-z plane (b) y-z plane.

Fig. 14
Fig. 14

Input resistance characteristics of the proposed antenna when a ratio of substrate thickness to radius of hemisphere T/R varies (R = 4.5 λ).

Fig. 15
Fig. 15

Input resistance characteristics of the proposed antenna and a full-wavelength dipole antenna on an extended hemispherical lens substrate (R = 4.5 λ).

Tables (1)

Tables Icon

Table 1 Design parameters of the proposed antenna for a maximum total efficiency on a half-infinite GaAs substrate

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε total = ε radiation × ε mismatch = ε radiation × ( 1 | Γ | 2 ) .
Γ = Z antenna Z photomixer Z antenna + Z photomixer .

Metrics