Abstract

Photoacoustic microscopy (PAM) provides high resolution images with excellent image contrast based on optical absorption. The compact size and high repetition rate of pulsed microchip lasers make them attractive sources for PAM. However, their fixed wavelength output precludes their use in spectroscopic PAM. We are developing a tunable optical source based on a microchip laser that is suitable for spectroscopic PAM. Pulses from a 6.6 kHz repetition rate Q-switched Nd:YAG microchip laser are sent through a photonic crystal fiber with a zero dispersion wavelength at 1040 nm. The highly nonlinear optical propagation produces a supercontinuum spectrum spanning 500 – 1300 nm. A tunable band pass filter selects the desired wavelength band from the supercontinuum. Our PAM system employs optical focusing and a 25 MHz spherically focused detection transducer. En-face imaging experiments were performed at seven different wavelengths from 575 to 875 nm. A simple discriminant analysis of the multiwavelength photoacoustic data produces images that clearly distinguish the different absorbing regions of ink phantoms. These results suggest the potential of this compact tunable source for spectroscopic photoacoustic microscopy.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. H. Song, E. W. Stein, J. A. Margenthaler, and L. V. Wang, “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model,” J. Biomed. Opt. 13(5), 054033 (2008).
    [CrossRef] [PubMed]
  2. J. L.-S. Su, B. Wang, and S. Y. Emelianov, “Photoacoustic imaging of coronary artery stents,” Opt. Express 17(22), 19894–19901 (2009).
    [CrossRef] [PubMed]
  3. K. Kim, S.-W. Huang, S. Ashkenazi, M. O’Donnell, A. Agarwal, N. A. Kotov, M. F. Denny, and M. J. Kaplan, “Photoacoustic imaging of early inflammatory response using gold nanorods,” Appl. Phys. Lett. 90(22), 223901 (2007).
    [CrossRef]
  4. P.-C. Li, C.-W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. C. Wang, Y.-N. Wu, and D.-B. Shieh, “Photoacoustic imaging of multiple targets using gold nanorods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(8), 1642–1647 (2007).
    [CrossRef] [PubMed]
  5. B. T. Cox, J. G. Laufer, and P. C. Beard, “The challenges for quantitative photoacoustic imaging,” Proc. SPIE 7177, 717713 (2009).
    [CrossRef]
  6. J.-T. Oh, M.-L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt. 11(3), 34032 (2006).
    [CrossRef] [PubMed]
  7. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
    [CrossRef] [PubMed]
  8. K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929–931 (2008).
    [CrossRef] [PubMed]
  9. J. J. Zayhowski, “Q-switched operation of microchip lasers,” Opt. Lett. 16(8), 575–577 (1991).
    [CrossRef] [PubMed]
  10. T. Harrison, J. C. Ranasinghesagara, H. Lu, K. Mathewson, A. Walsh, and R. J. Zemp, “Combined photoacoustic and ultrasound biomicroscopy,” Opt. Express 17(24), 22041–22046 (2009).
    [CrossRef] [PubMed]
  11. S. Sethuraman, J. H. Amirian, S. H. Litovsky, R. W. Smalling, and S. Y. Emelianov, “Spectroscopic intravascular photoacoustic imaging to differentiate atherosclerotic plaques,” Opt. Express 16(5), 3362–3367 (2008).
    [CrossRef] [PubMed]
  12. T. J. Allen and P. C. Beard, “Photoacoustic characterization of vascular tissue at NIR wavelengths,” Proc. SPIE 7177, 71770A (2009).
    [CrossRef]
  13. W. Wadsworth, N. Joly, J. Knight, T. Birks, F. Biancalana, and P. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express 12(2), 299–309 (2004).
    [CrossRef] [PubMed]
  14. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, “Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping,” J. Opt. Soc. Am. B 19(4), 765–771 (2002).
    [CrossRef]
  15. D. H. Reitze, A. M. Weiner, and D. E. Leaird, “Shaping of wide bandwidth 20 femtosecond optical pulses,” Appl. Phys. Lett. 61(11), 1260–1262 (1992).
    [CrossRef]
  16. R. A. Johnson, and D. W. Wichern, Applied Multivariate Statistical Analysis, Prentice Hall (2002).
  17. Q. Liu, K. Chen, M. Martin, A. Wintenberg, R. Lenarduzzi, M. Panjehpour, B. F. Overholt, and T. Vo-Dinh, “Development of a synchronous fluorescence imaging system and data analysis methods,” Opt. Express 15(20), 12583–12594 (2007).
    [CrossRef] [PubMed]
  18. L. A. Nelson, J. C. McCann, A. W. Loepke, J. Wu, B. Ben Dor, and C. D. Kurth, “Development and validation of a multiwavelength spatial domain near-infrared oximeter to detect cerebral hypoxia-ischemia,” J. Biomed. Opt. 11(6), 064022 (2006).
    [CrossRef]
  19. K. J. Jeon, S.-J. Kim, K. K. Park, J.-W. Kim, and G. Yoon, “Noninvasive total hemoglobin measurement,” J. Biomed. Opt. 7(1), 45–50 (2002).
    [CrossRef] [PubMed]

2009

J. L.-S. Su, B. Wang, and S. Y. Emelianov, “Photoacoustic imaging of coronary artery stents,” Opt. Express 17(22), 19894–19901 (2009).
[CrossRef] [PubMed]

B. T. Cox, J. G. Laufer, and P. C. Beard, “The challenges for quantitative photoacoustic imaging,” Proc. SPIE 7177, 717713 (2009).
[CrossRef]

T. Harrison, J. C. Ranasinghesagara, H. Lu, K. Mathewson, A. Walsh, and R. J. Zemp, “Combined photoacoustic and ultrasound biomicroscopy,” Opt. Express 17(24), 22041–22046 (2009).
[CrossRef] [PubMed]

T. J. Allen and P. C. Beard, “Photoacoustic characterization of vascular tissue at NIR wavelengths,” Proc. SPIE 7177, 71770A (2009).
[CrossRef]

2008

2007

K. Kim, S.-W. Huang, S. Ashkenazi, M. O’Donnell, A. Agarwal, N. A. Kotov, M. F. Denny, and M. J. Kaplan, “Photoacoustic imaging of early inflammatory response using gold nanorods,” Appl. Phys. Lett. 90(22), 223901 (2007).
[CrossRef]

P.-C. Li, C.-W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. C. Wang, Y.-N. Wu, and D.-B. Shieh, “Photoacoustic imaging of multiple targets using gold nanorods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(8), 1642–1647 (2007).
[CrossRef] [PubMed]

Q. Liu, K. Chen, M. Martin, A. Wintenberg, R. Lenarduzzi, M. Panjehpour, B. F. Overholt, and T. Vo-Dinh, “Development of a synchronous fluorescence imaging system and data analysis methods,” Opt. Express 15(20), 12583–12594 (2007).
[CrossRef] [PubMed]

2006

L. A. Nelson, J. C. McCann, A. W. Loepke, J. Wu, B. Ben Dor, and C. D. Kurth, “Development and validation of a multiwavelength spatial domain near-infrared oximeter to detect cerebral hypoxia-ischemia,” J. Biomed. Opt. 11(6), 064022 (2006).
[CrossRef]

J.-T. Oh, M.-L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt. 11(3), 34032 (2006).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

2004

2002

1992

D. H. Reitze, A. M. Weiner, and D. E. Leaird, “Shaping of wide bandwidth 20 femtosecond optical pulses,” Appl. Phys. Lett. 61(11), 1260–1262 (1992).
[CrossRef]

1991

Agarwal, A.

K. Kim, S.-W. Huang, S. Ashkenazi, M. O’Donnell, A. Agarwal, N. A. Kotov, M. F. Denny, and M. J. Kaplan, “Photoacoustic imaging of early inflammatory response using gold nanorods,” Appl. Phys. Lett. 90(22), 223901 (2007).
[CrossRef]

Allen, T. J.

T. J. Allen and P. C. Beard, “Photoacoustic characterization of vascular tissue at NIR wavelengths,” Proc. SPIE 7177, 71770A (2009).
[CrossRef]

Amirian, J. H.

Ashkenazi, S.

K. Kim, S.-W. Huang, S. Ashkenazi, M. O’Donnell, A. Agarwal, N. A. Kotov, M. F. Denny, and M. J. Kaplan, “Photoacoustic imaging of early inflammatory response using gold nanorods,” Appl. Phys. Lett. 90(22), 223901 (2007).
[CrossRef]

Beard, P. C.

B. T. Cox, J. G. Laufer, and P. C. Beard, “The challenges for quantitative photoacoustic imaging,” Proc. SPIE 7177, 717713 (2009).
[CrossRef]

T. J. Allen and P. C. Beard, “Photoacoustic characterization of vascular tissue at NIR wavelengths,” Proc. SPIE 7177, 71770A (2009).
[CrossRef]

Ben Dor, B.

L. A. Nelson, J. C. McCann, A. W. Loepke, J. Wu, B. Ben Dor, and C. D. Kurth, “Development and validation of a multiwavelength spatial domain near-infrared oximeter to detect cerebral hypoxia-ischemia,” J. Biomed. Opt. 11(6), 064022 (2006).
[CrossRef]

Biancalana, F.

Birks, T.

Chen, C.-D.

P.-C. Li, C.-W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. C. Wang, Y.-N. Wu, and D.-B. Shieh, “Photoacoustic imaging of multiple targets using gold nanorods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(8), 1642–1647 (2007).
[CrossRef] [PubMed]

Chen, K.

Coen, S.

Cox, B. T.

B. T. Cox, J. G. Laufer, and P. C. Beard, “The challenges for quantitative photoacoustic imaging,” Proc. SPIE 7177, 717713 (2009).
[CrossRef]

Denny, M. F.

K. Kim, S.-W. Huang, S. Ashkenazi, M. O’Donnell, A. Agarwal, N. A. Kotov, M. F. Denny, and M. J. Kaplan, “Photoacoustic imaging of early inflammatory response using gold nanorods,” Appl. Phys. Lett. 90(22), 223901 (2007).
[CrossRef]

Dudley, J. M.

Eggleton, B. J.

Emelianov, S. Y.

Grossard, N.

Harrison, T.

Hu, S.

Huang, S.-W.

K. Kim, S.-W. Huang, S. Ashkenazi, M. O’Donnell, A. Agarwal, N. A. Kotov, M. F. Denny, and M. J. Kaplan, “Photoacoustic imaging of early inflammatory response using gold nanorods,” Appl. Phys. Lett. 90(22), 223901 (2007).
[CrossRef]

Jeon, K. J.

K. J. Jeon, S.-J. Kim, K. K. Park, J.-W. Kim, and G. Yoon, “Noninvasive total hemoglobin measurement,” J. Biomed. Opt. 7(1), 45–50 (2002).
[CrossRef] [PubMed]

Joly, N.

Kaplan, M. J.

K. Kim, S.-W. Huang, S. Ashkenazi, M. O’Donnell, A. Agarwal, N. A. Kotov, M. F. Denny, and M. J. Kaplan, “Photoacoustic imaging of early inflammatory response using gold nanorods,” Appl. Phys. Lett. 90(22), 223901 (2007).
[CrossRef]

Kim, J.-W.

K. J. Jeon, S.-J. Kim, K. K. Park, J.-W. Kim, and G. Yoon, “Noninvasive total hemoglobin measurement,” J. Biomed. Opt. 7(1), 45–50 (2002).
[CrossRef] [PubMed]

Kim, K.

K. Kim, S.-W. Huang, S. Ashkenazi, M. O’Donnell, A. Agarwal, N. A. Kotov, M. F. Denny, and M. J. Kaplan, “Photoacoustic imaging of early inflammatory response using gold nanorods,” Appl. Phys. Lett. 90(22), 223901 (2007).
[CrossRef]

Kim, S.-J.

K. J. Jeon, S.-J. Kim, K. K. Park, J.-W. Kim, and G. Yoon, “Noninvasive total hemoglobin measurement,” J. Biomed. Opt. 7(1), 45–50 (2002).
[CrossRef] [PubMed]

Knight, J.

Kotov, N. A.

K. Kim, S.-W. Huang, S. Ashkenazi, M. O’Donnell, A. Agarwal, N. A. Kotov, M. F. Denny, and M. J. Kaplan, “Photoacoustic imaging of early inflammatory response using gold nanorods,” Appl. Phys. Lett. 90(22), 223901 (2007).
[CrossRef]

Kurth, C. D.

L. A. Nelson, J. C. McCann, A. W. Loepke, J. Wu, B. Ben Dor, and C. D. Kurth, “Development and validation of a multiwavelength spatial domain near-infrared oximeter to detect cerebral hypoxia-ischemia,” J. Biomed. Opt. 11(6), 064022 (2006).
[CrossRef]

Laufer, J. G.

B. T. Cox, J. G. Laufer, and P. C. Beard, “The challenges for quantitative photoacoustic imaging,” Proc. SPIE 7177, 717713 (2009).
[CrossRef]

Leaird, D. E.

D. H. Reitze, A. M. Weiner, and D. E. Leaird, “Shaping of wide bandwidth 20 femtosecond optical pulses,” Appl. Phys. Lett. 61(11), 1260–1262 (1992).
[CrossRef]

Lenarduzzi, R.

Li, M.-L.

J.-T. Oh, M.-L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt. 11(3), 34032 (2006).
[CrossRef] [PubMed]

Li, P.-C.

P.-C. Li, C.-W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. C. Wang, Y.-N. Wu, and D.-B. Shieh, “Photoacoustic imaging of multiple targets using gold nanorods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(8), 1642–1647 (2007).
[CrossRef] [PubMed]

Liao, C.-K.

P.-C. Li, C.-W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. C. Wang, Y.-N. Wu, and D.-B. Shieh, “Photoacoustic imaging of multiple targets using gold nanorods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(8), 1642–1647 (2007).
[CrossRef] [PubMed]

Litovsky, S. H.

Liu, Q.

Loepke, A. W.

L. A. Nelson, J. C. McCann, A. W. Loepke, J. Wu, B. Ben Dor, and C. D. Kurth, “Development and validation of a multiwavelength spatial domain near-infrared oximeter to detect cerebral hypoxia-ischemia,” J. Biomed. Opt. 11(6), 064022 (2006).
[CrossRef]

Lu, H.

Maillotte, H.

Margenthaler, J. A.

K. H. Song, E. W. Stein, J. A. Margenthaler, and L. V. Wang, “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model,” J. Biomed. Opt. 13(5), 054033 (2008).
[CrossRef] [PubMed]

Martin, M.

Maslov, K.

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929–931 (2008).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

J.-T. Oh, M.-L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt. 11(3), 34032 (2006).
[CrossRef] [PubMed]

Mathewson, K.

McCann, J. C.

L. A. Nelson, J. C. McCann, A. W. Loepke, J. Wu, B. Ben Dor, and C. D. Kurth, “Development and validation of a multiwavelength spatial domain near-infrared oximeter to detect cerebral hypoxia-ischemia,” J. Biomed. Opt. 11(6), 064022 (2006).
[CrossRef]

Nelson, L. A.

L. A. Nelson, J. C. McCann, A. W. Loepke, J. Wu, B. Ben Dor, and C. D. Kurth, “Development and validation of a multiwavelength spatial domain near-infrared oximeter to detect cerebral hypoxia-ischemia,” J. Biomed. Opt. 11(6), 064022 (2006).
[CrossRef]

O’Donnell, M.

K. Kim, S.-W. Huang, S. Ashkenazi, M. O’Donnell, A. Agarwal, N. A. Kotov, M. F. Denny, and M. J. Kaplan, “Photoacoustic imaging of early inflammatory response using gold nanorods,” Appl. Phys. Lett. 90(22), 223901 (2007).
[CrossRef]

Oh, J.-T.

J.-T. Oh, M.-L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt. 11(3), 34032 (2006).
[CrossRef] [PubMed]

Overholt, B. F.

Panjehpour, M.

Pao, K.-C.

P.-C. Li, C.-W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. C. Wang, Y.-N. Wu, and D.-B. Shieh, “Photoacoustic imaging of multiple targets using gold nanorods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(8), 1642–1647 (2007).
[CrossRef] [PubMed]

Park, K. K.

K. J. Jeon, S.-J. Kim, K. K. Park, J.-W. Kim, and G. Yoon, “Noninvasive total hemoglobin measurement,” J. Biomed. Opt. 7(1), 45–50 (2002).
[CrossRef] [PubMed]

Provino, L.

Ranasinghesagara, J. C.

Reitze, D. H.

D. H. Reitze, A. M. Weiner, and D. E. Leaird, “Shaping of wide bandwidth 20 femtosecond optical pulses,” Appl. Phys. Lett. 61(11), 1260–1262 (1992).
[CrossRef]

Russell, P.

Sethuraman, S.

Shieh, D.-B.

P.-C. Li, C.-W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. C. Wang, Y.-N. Wu, and D.-B. Shieh, “Photoacoustic imaging of multiple targets using gold nanorods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(8), 1642–1647 (2007).
[CrossRef] [PubMed]

Smalling, R. W.

Song, K. H.

K. H. Song, E. W. Stein, J. A. Margenthaler, and L. V. Wang, “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model,” J. Biomed. Opt. 13(5), 054033 (2008).
[CrossRef] [PubMed]

Stein, E. W.

K. H. Song, E. W. Stein, J. A. Margenthaler, and L. V. Wang, “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model,” J. Biomed. Opt. 13(5), 054033 (2008).
[CrossRef] [PubMed]

Stoica, G.

J.-T. Oh, M.-L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt. 11(3), 34032 (2006).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

Su, J. L.-S.

Vo-Dinh, T.

Wadsworth, W.

Walsh, A.

Wang, B.

Wang, C.-R. C.

P.-C. Li, C.-W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. C. Wang, Y.-N. Wu, and D.-B. Shieh, “Photoacoustic imaging of multiple targets using gold nanorods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(8), 1642–1647 (2007).
[CrossRef] [PubMed]

Wang, L. V.

K. H. Song, E. W. Stein, J. A. Margenthaler, and L. V. Wang, “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model,” J. Biomed. Opt. 13(5), 054033 (2008).
[CrossRef] [PubMed]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929–931 (2008).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

J.-T. Oh, M.-L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt. 11(3), 34032 (2006).
[CrossRef] [PubMed]

Wei, C.-W.

P.-C. Li, C.-W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. C. Wang, Y.-N. Wu, and D.-B. Shieh, “Photoacoustic imaging of multiple targets using gold nanorods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(8), 1642–1647 (2007).
[CrossRef] [PubMed]

Weiner, A. M.

D. H. Reitze, A. M. Weiner, and D. E. Leaird, “Shaping of wide bandwidth 20 femtosecond optical pulses,” Appl. Phys. Lett. 61(11), 1260–1262 (1992).
[CrossRef]

Windeler, R. S.

Wintenberg, A.

Wu, J.

L. A. Nelson, J. C. McCann, A. W. Loepke, J. Wu, B. Ben Dor, and C. D. Kurth, “Development and validation of a multiwavelength spatial domain near-infrared oximeter to detect cerebral hypoxia-ischemia,” J. Biomed. Opt. 11(6), 064022 (2006).
[CrossRef]

Wu, Y.-N.

P.-C. Li, C.-W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. C. Wang, Y.-N. Wu, and D.-B. Shieh, “Photoacoustic imaging of multiple targets using gold nanorods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(8), 1642–1647 (2007).
[CrossRef] [PubMed]

Yoon, G.

K. J. Jeon, S.-J. Kim, K. K. Park, J.-W. Kim, and G. Yoon, “Noninvasive total hemoglobin measurement,” J. Biomed. Opt. 7(1), 45–50 (2002).
[CrossRef] [PubMed]

Zayhowski, J. J.

Zemp, R. J.

Zhang, H. F.

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929–931 (2008).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

J.-T. Oh, M.-L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt. 11(3), 34032 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett.

K. Kim, S.-W. Huang, S. Ashkenazi, M. O’Donnell, A. Agarwal, N. A. Kotov, M. F. Denny, and M. J. Kaplan, “Photoacoustic imaging of early inflammatory response using gold nanorods,” Appl. Phys. Lett. 90(22), 223901 (2007).
[CrossRef]

D. H. Reitze, A. M. Weiner, and D. E. Leaird, “Shaping of wide bandwidth 20 femtosecond optical pulses,” Appl. Phys. Lett. 61(11), 1260–1262 (1992).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control

P.-C. Li, C.-W. Wei, C.-K. Liao, C.-D. Chen, K.-C. Pao, C.-R. C. Wang, Y.-N. Wu, and D.-B. Shieh, “Photoacoustic imaging of multiple targets using gold nanorods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(8), 1642–1647 (2007).
[CrossRef] [PubMed]

J. Biomed. Opt.

K. H. Song, E. W. Stein, J. A. Margenthaler, and L. V. Wang, “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model,” J. Biomed. Opt. 13(5), 054033 (2008).
[CrossRef] [PubMed]

J.-T. Oh, M.-L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” J. Biomed. Opt. 11(3), 34032 (2006).
[CrossRef] [PubMed]

L. A. Nelson, J. C. McCann, A. W. Loepke, J. Wu, B. Ben Dor, and C. D. Kurth, “Development and validation of a multiwavelength spatial domain near-infrared oximeter to detect cerebral hypoxia-ischemia,” J. Biomed. Opt. 11(6), 064022 (2006).
[CrossRef]

K. J. Jeon, S.-J. Kim, K. K. Park, J.-W. Kim, and G. Yoon, “Noninvasive total hemoglobin measurement,” J. Biomed. Opt. 7(1), 45–50 (2002).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B

Nat. Biotechnol.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Proc. SPIE

B. T. Cox, J. G. Laufer, and P. C. Beard, “The challenges for quantitative photoacoustic imaging,” Proc. SPIE 7177, 717713 (2009).
[CrossRef]

T. J. Allen and P. C. Beard, “Photoacoustic characterization of vascular tissue at NIR wavelengths,” Proc. SPIE 7177, 71770A (2009).
[CrossRef]

Other

R. A. Johnson, and D. W. Wichern, Applied Multivariate Statistical Analysis, Prentice Hall (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of the photonic crystal fiber (PCF) supercontinuum source. The plano-convex lens (PCX) collimates the microchip laser output. An aspheric lens (AL) focuses the 1064 nm pulses into the PCF. A microscope objective (MO) collimates the supercontinuum (SC) output. (b) Supercontinuum spectrum measured with an optical spectrum analyzer. (c) Prism-based monochromator, where a concave mirror collimates the dispersed light. The masked mirror allows manual selection of the desired wavelength and bandwidth [15].

Fig. 2
Fig. 2

(a) Schematic of the photoacoustic microscopy system. The photoacoustic signal is reflected by the glass plate and detected by a 25 MHz transducer. (b) En face image of a resolution target shown over a 20 dB scale and 600 x 600 μm field of view. The bar patterns correspond to Elements 5 and 6 within Group 3 of the USAF resolution target. (c) Profile of the Element 6 bar pattern shown over a 20 dB scale. The dashed curve corresponds to a simulated profile assuming a point spread function with a −6 dB width of 18 μm.

Fig. 3
Fig. 3

(a) Multiwavelength images of black, blue, green, and red ink spots (left to right). All images are displayed over a 1.8 x 5.4 mm area and the same 40 dB scale. The spectrally processed image clearly identifies the four ink regions. (b) Multispectral photoacoustic data of black (triangles), blue (diamonds), green (circles), and red (squares) ink regions. For comparison, the solid curves are absorbance measurements by spectrophotometry.

Fig. 4
Fig. 4

PAM images through a scattering solution at (a) 575 nm and (b) 675 nm of a cotton fiber phantom stained with the same inks as Fig. 3. The scale bar represents 150 μm. (c) Spectrally processed image after discriminant analysis. All images are shown over a 0.6 x 0.6 mm field of view and a 20 dB scale. (d) Photograph of the fiber phantom without scattering solution with appropriate labels for the colored fibers.

Metrics