Abstract

This work is dedicated to design a novel liquid crystal (LC) lens device with multiple ring electrodes in unequal widths, in order to offer tunability on focusing quality and to lower the level of applied voltage. The number and widths of the multiple ring electrodes are pre-designed and optimized to offer the on-line tunability on individual electrode voltages to render a better refraction index distribution for focusing, as compared to the past hole-type LC lenses. The resulted refractive index distribution is expected to offer similar focusing effects based on the theory of the gradient refraction index (GRIN) lens. The transparent electrodes of this new LC lens are placed at the inner surface of the LC cell to minimize the driving voltages, in results, less than 10V, for the same level of focusing power and an easy practical operation. A new fabrication process in the wafer level to bury bus lines is developed for generating smooth electrical fields over the lens aperture. In addition, a dielectric layer is coated between electrodes and the LC layer.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
    [CrossRef]
  2. T. Nose and S. Sato, “A liquid crystal microlens obtained with a nonuniform electric field,” Liq. Cryst. 5(5), 1425–1433 (1989).
    [CrossRef]
  3. A. Naumov, G. D. Love, M. Yu. Loktev, and F. L. Vladimirov, “Control optimization of spherical modal liquid crystal lenses,” Opt. Express 4(9), 344–352 (1999).
    [CrossRef] [PubMed]
  4. B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232– L1233 (2002).
    [CrossRef]
  5. P. J. W. Hands, A. K. Kirby, and G. D. Love, “Adaptive modally addressed liquid crystal lenses,” Liquid Crystals VIII, Proc. of SPIE 5518, Liq. Cryst. VIII, 136–143 (2004).
  6. M. Ye, S. Hayasaka, and S. Sato, “Liquid crystal lens array with hexagonal-hole-patterned electrodes,” Jpn. J. Appl. Phys. 43(No. 9A), 6108–6111 (2004).
    [CrossRef]
  7. B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with stacked structure of liquid-crystal layers,” Opt. Commun. 250(4-6), 266–273 (2005).
    [CrossRef]
  8. M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41(Part 2, No. 5B), L571–L573 (2002).
    [CrossRef]
  9. M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).
    [CrossRef] [PubMed]
  10. C. W. Chiu, Y. C. Lin, P. C. P. Chao, and A. Y. Fuh, “Achieving high focusing power for a large-aperture liquid crystal lens with novel hole-and-ring electrodes,” Opt. Express 16(23), 19277–19284 (2008).
    [CrossRef]
  11. Y. H. Lin, H. Ren, K. H. Fan-Chiang, W. K. Choi, S. Gauza, X. Zhu, and S. T. Wu, “Tunable-Focus Cylindrical Liquid Crystal Lenses,” Jpn. J. Appl. Phys. 44(No. 1A), 243–244 (2005).
    [CrossRef]
  12. M. Bin Wang, “Ye, M. Yamaguchi, and S. Sato, “thin liquid crystal with low driving voltages,” Jpn. J. Appl. Phys. 48, 098004 (2009).
  13. H. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515–1517 (2003).
    [CrossRef]
  14. P. Valley, D. L. Mathine, M. R. Dodge, J. Schwiegerling, G. Peyman, and N. Peyghambarian, “Tunable-focus flat liquid-crystal diffractive lens,” Opt. Lett. 35(3), 336–338 (2010).
    [CrossRef] [PubMed]
  15. T. C. Kraan, T. van Bommel, and R. A. Hikmet, “Modeling liquid-crystal gradient-index lenses,” J. Opt. Soc. Am. A 24(11), 3467–3477 (2007).
    [CrossRef]
  16. M. P. C. M. Krijn, S. T. de Zwart, D. K. G. de Boer, O. H. Willemsen, and M. Sluijter, “2-D/3-D displays based on switchable lenticulars,” J. Soc. Inf. Disp. 16(8), 847–855 (2008).
    [CrossRef]
  17. M. Sluijter, A. Herzog, D. K. G. de Boer, M. P. C. M. Krijn, H. P. Urbach, and H. P. Urbach, “Ray-tracing simulations of liquid-crystal gradient-index lenses for three-dimensional displays,” J. Opt. Soc. Am. B 26(11), 2035–2043 (2009).
    [CrossRef]
  18. M. Kurihara and N. Hashimoto, “Liquid crystal optics for laser beam modulation,” Proc. SPIE 6374, U101–U106 (2006).
  19. C.-C. Cheng, C. A. Chang, C.-H. Liu, and J. A. Yeh, “A tunable liquid-crystal microlens with hybrid alignment,” 2009 SID International Symposium Digest of Technical Papers, 8, S365–S369–114 (2006).
  20. Y.-Y. Kao, Y.-P. Huang, K.-X. Yang, P. C.-P. Chao, C.-C. Tsai, and C.-N. Mo, ““An auto-stereoscopic 3D display using tunable liquid crystal lens array that mimics effects of GRIN lenticular lens array,” 2009 SID International Symposium,” Dig. Tech. Pap. XL, 111–114 (2009).
    [CrossRef]
  21. G. Li, P. Valley, P. Äyräs, D. L. Mathine, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
    [CrossRef]
  22. E. Hecht, Optics, (Addision-Wesley, 2002).
  23. N. Damean, B. A. Parviz, J. N. Lee, T. Odom, and G. M. Whitesides, “Composite ferromagnetic photoresist for the fabrication of microelectromechanical systems,” J. Micromech. Microeng. 15(1), 29–34 (2005).
    [CrossRef]
  24. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  25. N. Fraval and J. L. B. de la Tocnaye, “Low aberrations symmetrical adaptive modal liquid crystal lens with short focal lengths,” Appl. Opt. 49(15), 2778–2783 (2010).
    [CrossRef] [PubMed]
  26. T. Takahashi, M. Ye, and S. Sato, “Wavefront aberrations of a liquid crystal lens with focal length variable from negative to positive values,” Jpn. J. Appl. Phys. 46(No. 5A), 2926–2931 (2007).
    [CrossRef]
  27. H. Ren, D. W. Fox, B. Wu, and S. T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
    [CrossRef] [PubMed]

2010 (2)

2009 (3)

Y.-Y. Kao, Y.-P. Huang, K.-X. Yang, P. C.-P. Chao, C.-C. Tsai, and C.-N. Mo, ““An auto-stereoscopic 3D display using tunable liquid crystal lens array that mimics effects of GRIN lenticular lens array,” 2009 SID International Symposium,” Dig. Tech. Pap. XL, 111–114 (2009).
[CrossRef]

M. Sluijter, A. Herzog, D. K. G. de Boer, M. P. C. M. Krijn, H. P. Urbach, and H. P. Urbach, “Ray-tracing simulations of liquid-crystal gradient-index lenses for three-dimensional displays,” J. Opt. Soc. Am. B 26(11), 2035–2043 (2009).
[CrossRef]

M. Bin Wang, “Ye, M. Yamaguchi, and S. Sato, “thin liquid crystal with low driving voltages,” Jpn. J. Appl. Phys. 48, 098004 (2009).

2008 (2)

C. W. Chiu, Y. C. Lin, P. C. P. Chao, and A. Y. Fuh, “Achieving high focusing power for a large-aperture liquid crystal lens with novel hole-and-ring electrodes,” Opt. Express 16(23), 19277–19284 (2008).
[CrossRef]

M. P. C. M. Krijn, S. T. de Zwart, D. K. G. de Boer, O. H. Willemsen, and M. Sluijter, “2-D/3-D displays based on switchable lenticulars,” J. Soc. Inf. Disp. 16(8), 847–855 (2008).
[CrossRef]

2007 (4)

G. Li, P. Valley, P. Äyräs, D. L. Mathine, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[CrossRef]

T. Takahashi, M. Ye, and S. Sato, “Wavefront aberrations of a liquid crystal lens with focal length variable from negative to positive values,” Jpn. J. Appl. Phys. 46(No. 5A), 2926–2931 (2007).
[CrossRef]

H. Ren, D. W. Fox, B. Wu, and S. T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
[CrossRef] [PubMed]

T. C. Kraan, T. van Bommel, and R. A. Hikmet, “Modeling liquid-crystal gradient-index lenses,” J. Opt. Soc. Am. A 24(11), 3467–3477 (2007).
[CrossRef]

2006 (1)

M. Kurihara and N. Hashimoto, “Liquid crystal optics for laser beam modulation,” Proc. SPIE 6374, U101–U106 (2006).

2005 (3)

Y. H. Lin, H. Ren, K. H. Fan-Chiang, W. K. Choi, S. Gauza, X. Zhu, and S. T. Wu, “Tunable-Focus Cylindrical Liquid Crystal Lenses,” Jpn. J. Appl. Phys. 44(No. 1A), 243–244 (2005).
[CrossRef]

B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with stacked structure of liquid-crystal layers,” Opt. Commun. 250(4-6), 266–273 (2005).
[CrossRef]

N. Damean, B. A. Parviz, J. N. Lee, T. Odom, and G. M. Whitesides, “Composite ferromagnetic photoresist for the fabrication of microelectromechanical systems,” J. Micromech. Microeng. 15(1), 29–34 (2005).
[CrossRef]

2004 (2)

M. Ye, S. Hayasaka, and S. Sato, “Liquid crystal lens array with hexagonal-hole-patterned electrodes,” Jpn. J. Appl. Phys. 43(No. 9A), 6108–6111 (2004).
[CrossRef]

M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).
[CrossRef] [PubMed]

2003 (1)

H. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515–1517 (2003).
[CrossRef]

2002 (2)

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41(Part 2, No. 5B), L571–L573 (2002).
[CrossRef]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232– L1233 (2002).
[CrossRef]

1999 (1)

1989 (1)

T. Nose and S. Sato, “A liquid crystal microlens obtained with a nonuniform electric field,” Liq. Cryst. 5(5), 1425–1433 (1989).
[CrossRef]

1979 (1)

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[CrossRef]

Äyräs, P.

G. Li, P. Valley, P. Äyräs, D. L. Mathine, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[CrossRef]

Bin Wang, M.

M. Bin Wang, “Ye, M. Yamaguchi, and S. Sato, “thin liquid crystal with low driving voltages,” Jpn. J. Appl. Phys. 48, 098004 (2009).

Chao, P. C. P.

Chao, P. C.-P.

Y.-Y. Kao, Y.-P. Huang, K.-X. Yang, P. C.-P. Chao, C.-C. Tsai, and C.-N. Mo, ““An auto-stereoscopic 3D display using tunable liquid crystal lens array that mimics effects of GRIN lenticular lens array,” 2009 SID International Symposium,” Dig. Tech. Pap. XL, 111–114 (2009).
[CrossRef]

Chiu, C. W.

Choi, W. K.

Y. H. Lin, H. Ren, K. H. Fan-Chiang, W. K. Choi, S. Gauza, X. Zhu, and S. T. Wu, “Tunable-Focus Cylindrical Liquid Crystal Lenses,” Jpn. J. Appl. Phys. 44(No. 1A), 243–244 (2005).
[CrossRef]

Damean, N.

N. Damean, B. A. Parviz, J. N. Lee, T. Odom, and G. M. Whitesides, “Composite ferromagnetic photoresist for the fabrication of microelectromechanical systems,” J. Micromech. Microeng. 15(1), 29–34 (2005).
[CrossRef]

de Boer, D. K. G.

M. Sluijter, A. Herzog, D. K. G. de Boer, M. P. C. M. Krijn, H. P. Urbach, and H. P. Urbach, “Ray-tracing simulations of liquid-crystal gradient-index lenses for three-dimensional displays,” J. Opt. Soc. Am. B 26(11), 2035–2043 (2009).
[CrossRef]

M. P. C. M. Krijn, S. T. de Zwart, D. K. G. de Boer, O. H. Willemsen, and M. Sluijter, “2-D/3-D displays based on switchable lenticulars,” J. Soc. Inf. Disp. 16(8), 847–855 (2008).
[CrossRef]

de la Tocnaye, J. L. B.

de Zwart, S. T.

M. P. C. M. Krijn, S. T. de Zwart, D. K. G. de Boer, O. H. Willemsen, and M. Sluijter, “2-D/3-D displays based on switchable lenticulars,” J. Soc. Inf. Disp. 16(8), 847–855 (2008).
[CrossRef]

Dodge, M. R.

Fan, Y. H.

H. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515–1517 (2003).
[CrossRef]

Fan-Chiang, K. H.

Y. H. Lin, H. Ren, K. H. Fan-Chiang, W. K. Choi, S. Gauza, X. Zhu, and S. T. Wu, “Tunable-Focus Cylindrical Liquid Crystal Lenses,” Jpn. J. Appl. Phys. 44(No. 1A), 243–244 (2005).
[CrossRef]

Fox, D. W.

Fraval, N.

Fuh, A. Y.

Gauza, S.

Y. H. Lin, H. Ren, K. H. Fan-Chiang, W. K. Choi, S. Gauza, X. Zhu, and S. T. Wu, “Tunable-Focus Cylindrical Liquid Crystal Lenses,” Jpn. J. Appl. Phys. 44(No. 1A), 243–244 (2005).
[CrossRef]

Hashimoto, N.

M. Kurihara and N. Hashimoto, “Liquid crystal optics for laser beam modulation,” Proc. SPIE 6374, U101–U106 (2006).

Hayasaka, S.

M. Ye, S. Hayasaka, and S. Sato, “Liquid crystal lens array with hexagonal-hole-patterned electrodes,” Jpn. J. Appl. Phys. 43(No. 9A), 6108–6111 (2004).
[CrossRef]

Herzog, A.

Hikmet, R. A.

Honkanen, S.

G. Li, P. Valley, P. Äyräs, D. L. Mathine, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[CrossRef]

Honma, M.

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232– L1233 (2002).
[CrossRef]

Huang, Y.-P.

Y.-Y. Kao, Y.-P. Huang, K.-X. Yang, P. C.-P. Chao, C.-C. Tsai, and C.-N. Mo, ““An auto-stereoscopic 3D display using tunable liquid crystal lens array that mimics effects of GRIN lenticular lens array,” 2009 SID International Symposium,” Dig. Tech. Pap. XL, 111–114 (2009).
[CrossRef]

Kao, Y.-Y.

Y.-Y. Kao, Y.-P. Huang, K.-X. Yang, P. C.-P. Chao, C.-C. Tsai, and C.-N. Mo, ““An auto-stereoscopic 3D display using tunable liquid crystal lens array that mimics effects of GRIN lenticular lens array,” 2009 SID International Symposium,” Dig. Tech. Pap. XL, 111–114 (2009).
[CrossRef]

Kraan, T. C.

Krijn, M. P. C. M.

M. Sluijter, A. Herzog, D. K. G. de Boer, M. P. C. M. Krijn, H. P. Urbach, and H. P. Urbach, “Ray-tracing simulations of liquid-crystal gradient-index lenses for three-dimensional displays,” J. Opt. Soc. Am. B 26(11), 2035–2043 (2009).
[CrossRef]

M. P. C. M. Krijn, S. T. de Zwart, D. K. G. de Boer, O. H. Willemsen, and M. Sluijter, “2-D/3-D displays based on switchable lenticulars,” J. Soc. Inf. Disp. 16(8), 847–855 (2008).
[CrossRef]

Kurihara, M.

M. Kurihara and N. Hashimoto, “Liquid crystal optics for laser beam modulation,” Proc. SPIE 6374, U101–U106 (2006).

Lee, J. N.

N. Damean, B. A. Parviz, J. N. Lee, T. Odom, and G. M. Whitesides, “Composite ferromagnetic photoresist for the fabrication of microelectromechanical systems,” J. Micromech. Microeng. 15(1), 29–34 (2005).
[CrossRef]

Li, G.

G. Li, P. Valley, P. Äyräs, D. L. Mathine, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[CrossRef]

Lin, Y. C.

Lin, Y. H.

Y. H. Lin, H. Ren, K. H. Fan-Chiang, W. K. Choi, S. Gauza, X. Zhu, and S. T. Wu, “Tunable-Focus Cylindrical Liquid Crystal Lenses,” Jpn. J. Appl. Phys. 44(No. 1A), 243–244 (2005).
[CrossRef]

Loktev, M. Yu.

Love, G. D.

Mathine, D. L.

P. Valley, D. L. Mathine, M. R. Dodge, J. Schwiegerling, G. Peyman, and N. Peyghambarian, “Tunable-focus flat liquid-crystal diffractive lens,” Opt. Lett. 35(3), 336–338 (2010).
[CrossRef] [PubMed]

G. Li, P. Valley, P. Äyräs, D. L. Mathine, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[CrossRef]

Mo, C.-N.

Y.-Y. Kao, Y.-P. Huang, K.-X. Yang, P. C.-P. Chao, C.-C. Tsai, and C.-N. Mo, ““An auto-stereoscopic 3D display using tunable liquid crystal lens array that mimics effects of GRIN lenticular lens array,” 2009 SID International Symposium,” Dig. Tech. Pap. XL, 111–114 (2009).
[CrossRef]

Naumov, A.

Nose, T.

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232– L1233 (2002).
[CrossRef]

T. Nose and S. Sato, “A liquid crystal microlens obtained with a nonuniform electric field,” Liq. Cryst. 5(5), 1425–1433 (1989).
[CrossRef]

Odom, T.

N. Damean, B. A. Parviz, J. N. Lee, T. Odom, and G. M. Whitesides, “Composite ferromagnetic photoresist for the fabrication of microelectromechanical systems,” J. Micromech. Microeng. 15(1), 29–34 (2005).
[CrossRef]

Parviz, B. A.

N. Damean, B. A. Parviz, J. N. Lee, T. Odom, and G. M. Whitesides, “Composite ferromagnetic photoresist for the fabrication of microelectromechanical systems,” J. Micromech. Microeng. 15(1), 29–34 (2005).
[CrossRef]

Peyghambarian, N.

P. Valley, D. L. Mathine, M. R. Dodge, J. Schwiegerling, G. Peyman, and N. Peyghambarian, “Tunable-focus flat liquid-crystal diffractive lens,” Opt. Lett. 35(3), 336–338 (2010).
[CrossRef] [PubMed]

G. Li, P. Valley, P. Äyräs, D. L. Mathine, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[CrossRef]

Peyman, G.

Ren, H.

H. Ren, D. W. Fox, B. Wu, and S. T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
[CrossRef] [PubMed]

Y. H. Lin, H. Ren, K. H. Fan-Chiang, W. K. Choi, S. Gauza, X. Zhu, and S. T. Wu, “Tunable-Focus Cylindrical Liquid Crystal Lenses,” Jpn. J. Appl. Phys. 44(No. 1A), 243–244 (2005).
[CrossRef]

H. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515–1517 (2003).
[CrossRef]

Sato, S.

T. Takahashi, M. Ye, and S. Sato, “Wavefront aberrations of a liquid crystal lens with focal length variable from negative to positive values,” Jpn. J. Appl. Phys. 46(No. 5A), 2926–2931 (2007).
[CrossRef]

B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with stacked structure of liquid-crystal layers,” Opt. Commun. 250(4-6), 266–273 (2005).
[CrossRef]

M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).
[CrossRef] [PubMed]

M. Ye, S. Hayasaka, and S. Sato, “Liquid crystal lens array with hexagonal-hole-patterned electrodes,” Jpn. J. Appl. Phys. 43(No. 9A), 6108–6111 (2004).
[CrossRef]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232– L1233 (2002).
[CrossRef]

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41(Part 2, No. 5B), L571–L573 (2002).
[CrossRef]

T. Nose and S. Sato, “A liquid crystal microlens obtained with a nonuniform electric field,” Liq. Cryst. 5(5), 1425–1433 (1989).
[CrossRef]

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[CrossRef]

Schwiegerling, J.

Sluijter, M.

M. Sluijter, A. Herzog, D. K. G. de Boer, M. P. C. M. Krijn, H. P. Urbach, and H. P. Urbach, “Ray-tracing simulations of liquid-crystal gradient-index lenses for three-dimensional displays,” J. Opt. Soc. Am. B 26(11), 2035–2043 (2009).
[CrossRef]

M. P. C. M. Krijn, S. T. de Zwart, D. K. G. de Boer, O. H. Willemsen, and M. Sluijter, “2-D/3-D displays based on switchable lenticulars,” J. Soc. Inf. Disp. 16(8), 847–855 (2008).
[CrossRef]

Takahashi, T.

T. Takahashi, M. Ye, and S. Sato, “Wavefront aberrations of a liquid crystal lens with focal length variable from negative to positive values,” Jpn. J. Appl. Phys. 46(No. 5A), 2926–2931 (2007).
[CrossRef]

Tsai, C.-C.

Y.-Y. Kao, Y.-P. Huang, K.-X. Yang, P. C.-P. Chao, C.-C. Tsai, and C.-N. Mo, ““An auto-stereoscopic 3D display using tunable liquid crystal lens array that mimics effects of GRIN lenticular lens array,” 2009 SID International Symposium,” Dig. Tech. Pap. XL, 111–114 (2009).
[CrossRef]

Urbach, H. P.

Valley, P.

P. Valley, D. L. Mathine, M. R. Dodge, J. Schwiegerling, G. Peyman, and N. Peyghambarian, “Tunable-focus flat liquid-crystal diffractive lens,” Opt. Lett. 35(3), 336–338 (2010).
[CrossRef] [PubMed]

G. Li, P. Valley, P. Äyräs, D. L. Mathine, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[CrossRef]

van Bommel, T.

Vladimirov, F. L.

Wang, B.

B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with stacked structure of liquid-crystal layers,” Opt. Commun. 250(4-6), 266–273 (2005).
[CrossRef]

M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).
[CrossRef] [PubMed]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232– L1233 (2002).
[CrossRef]

Whitesides, G. M.

N. Damean, B. A. Parviz, J. N. Lee, T. Odom, and G. M. Whitesides, “Composite ferromagnetic photoresist for the fabrication of microelectromechanical systems,” J. Micromech. Microeng. 15(1), 29–34 (2005).
[CrossRef]

Willemsen, O. H.

M. P. C. M. Krijn, S. T. de Zwart, D. K. G. de Boer, O. H. Willemsen, and M. Sluijter, “2-D/3-D displays based on switchable lenticulars,” J. Soc. Inf. Disp. 16(8), 847–855 (2008).
[CrossRef]

Wu, B.

Wu, S. T.

H. Ren, D. W. Fox, B. Wu, and S. T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
[CrossRef] [PubMed]

Y. H. Lin, H. Ren, K. H. Fan-Chiang, W. K. Choi, S. Gauza, X. Zhu, and S. T. Wu, “Tunable-Focus Cylindrical Liquid Crystal Lenses,” Jpn. J. Appl. Phys. 44(No. 1A), 243–244 (2005).
[CrossRef]

H. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515–1517 (2003).
[CrossRef]

Yang, K.-X.

Y.-Y. Kao, Y.-P. Huang, K.-X. Yang, P. C.-P. Chao, C.-C. Tsai, and C.-N. Mo, ““An auto-stereoscopic 3D display using tunable liquid crystal lens array that mimics effects of GRIN lenticular lens array,” 2009 SID International Symposium,” Dig. Tech. Pap. XL, 111–114 (2009).
[CrossRef]

Ye, M.

T. Takahashi, M. Ye, and S. Sato, “Wavefront aberrations of a liquid crystal lens with focal length variable from negative to positive values,” Jpn. J. Appl. Phys. 46(No. 5A), 2926–2931 (2007).
[CrossRef]

B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with stacked structure of liquid-crystal layers,” Opt. Commun. 250(4-6), 266–273 (2005).
[CrossRef]

M. Ye, S. Hayasaka, and S. Sato, “Liquid crystal lens array with hexagonal-hole-patterned electrodes,” Jpn. J. Appl. Phys. 43(No. 9A), 6108–6111 (2004).
[CrossRef]

M. Ye, B. Wang, and S. Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43(35), 6407–6412 (2004).
[CrossRef] [PubMed]

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41(Part 2, No. 5B), L571–L573 (2002).
[CrossRef]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232– L1233 (2002).
[CrossRef]

Zhu, X.

Y. H. Lin, H. Ren, K. H. Fan-Chiang, W. K. Choi, S. Gauza, X. Zhu, and S. T. Wu, “Tunable-Focus Cylindrical Liquid Crystal Lenses,” Jpn. J. Appl. Phys. 44(No. 1A), 243–244 (2005).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

G. Li, P. Valley, P. Äyräs, D. L. Mathine, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[CrossRef]

H. Ren, Y. H. Fan, and S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515–1517 (2003).
[CrossRef]

Dig. Tech. Pap. (1)

Y.-Y. Kao, Y.-P. Huang, K.-X. Yang, P. C.-P. Chao, C.-C. Tsai, and C.-N. Mo, ““An auto-stereoscopic 3D display using tunable liquid crystal lens array that mimics effects of GRIN lenticular lens array,” 2009 SID International Symposium,” Dig. Tech. Pap. XL, 111–114 (2009).
[CrossRef]

J. Micromech. Microeng. (1)

N. Damean, B. A. Parviz, J. N. Lee, T. Odom, and G. M. Whitesides, “Composite ferromagnetic photoresist for the fabrication of microelectromechanical systems,” J. Micromech. Microeng. 15(1), 29–34 (2005).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Soc. Inf. Disp. (1)

M. P. C. M. Krijn, S. T. de Zwart, D. K. G. de Boer, O. H. Willemsen, and M. Sluijter, “2-D/3-D displays based on switchable lenticulars,” J. Soc. Inf. Disp. 16(8), 847–855 (2008).
[CrossRef]

Jpn. J. Appl. Phys. (7)

Y. H. Lin, H. Ren, K. H. Fan-Chiang, W. K. Choi, S. Gauza, X. Zhu, and S. T. Wu, “Tunable-Focus Cylindrical Liquid Crystal Lenses,” Jpn. J. Appl. Phys. 44(No. 1A), 243–244 (2005).
[CrossRef]

M. Bin Wang, “Ye, M. Yamaguchi, and S. Sato, “thin liquid crystal with low driving voltages,” Jpn. J. Appl. Phys. 48, 098004 (2009).

M. Ye, S. Hayasaka, and S. Sato, “Liquid crystal lens array with hexagonal-hole-patterned electrodes,” Jpn. J. Appl. Phys. 43(No. 9A), 6108–6111 (2004).
[CrossRef]

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[CrossRef]

B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” Jpn. J. Appl. Phys. 41(Part 2, No. 11A), L1232– L1233 (2002).
[CrossRef]

T. Takahashi, M. Ye, and S. Sato, “Wavefront aberrations of a liquid crystal lens with focal length variable from negative to positive values,” Jpn. J. Appl. Phys. 46(No. 5A), 2926–2931 (2007).
[CrossRef]

M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41(Part 2, No. 5B), L571–L573 (2002).
[CrossRef]

Liq. Cryst. (1)

T. Nose and S. Sato, “A liquid crystal microlens obtained with a nonuniform electric field,” Liq. Cryst. 5(5), 1425–1433 (1989).
[CrossRef]

Opt. Commun. (1)

B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with stacked structure of liquid-crystal layers,” Opt. Commun. 250(4-6), 266–273 (2005).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Proc. SPIE (1)

M. Kurihara and N. Hashimoto, “Liquid crystal optics for laser beam modulation,” Proc. SPIE 6374, U101–U106 (2006).

Other (4)

C.-C. Cheng, C. A. Chang, C.-H. Liu, and J. A. Yeh, “A tunable liquid-crystal microlens with hybrid alignment,” 2009 SID International Symposium Digest of Technical Papers, 8, S365–S369–114 (2006).

P. J. W. Hands, A. K. Kirby, and G. D. Love, “Adaptive modally addressed liquid crystal lenses,” Liquid Crystals VIII, Proc. of SPIE 5518, Liq. Cryst. VIII, 136–143 (2004).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

E. Hecht, Optics, (Addision-Wesley, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) The refractive index distribution of a GRIN lens with 2 mm in radius; (b) The relationship between the lens aperture and the minimum effective focal length possible.

Fig. 2
Fig. 2

(a) The structure for the conventional hole-type LC lens; (b) The proposed LC GRIN lens with multiple ring electrodes in unequal widths; (c) The chart for width design of ring electrodes.

Fig. 3
Fig. 3

The simulated refractive index distributions of the proposed LC lens with multiple electrodes in unequal widths and the maximum (for the outmost ring) driving voltages as (a) 4V, (b) 6V, (c) 8V, and (d) 10V.

Fig. 4
Fig. 4

(a) The electrode pattern with all electrodes in the same layer; (b) with buried bus lines; (c) Photo of the fabricated LC lens; (d) The fabrication process for ring electrodes and buried bus lines.

Fig. 5
Fig. 5

(a) Experiment apparatus; (b) Interference patterns with the LC aperture in 2mm and the maximum applied driving voltages (to the outmost ring electrode) from 4V to 10V.

Fig. 6
Fig. 6

(a) Measured and predicted index distributions with 10V applied to the outmost ring electrode; (b) Resulted focal lengths versus maximum (for the outmost ring electrode) driving voltages.

Fig. 7
Fig. 7

Power intensity at the focal plane.

Fig. 8
Fig. 8

(a) The equipments of the image observation with a CMOS sensor; Images of the near object shot by a CMOS sensor with this proposed LC lens (b) not activated and (c) activated.

Tables (2)

Tables Icon

Table 1 Applied individual electrode voltages

Tables Icon

Table 2 Fabrication Parameters

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n G ( r ) = n G , max r 2 2 d G f ,
f = r 2 2 d L C [ n L C , max n L C ( r ) ] ,
R = 2 d L C f [ n L C , max n L C ( R ) ] = 2 d L C f [ n L C , max n L C , min ] = 2 d L C f [ n e n o ] .
Δ n = n max n min N = n e n o N .
f = r 2 2 λ N ,

Metrics