Abstract

An optothermal tweezer was developed with a single-beam laser at 1550 nm for manipulation of colloidal microparticles. Strong absorption in water can thermally induce a localized flow, which exerts a Stokes’ drag on the particles that complements the gradient force. Long-range capturing of 6 µm polystyrene particles over ~ 176 µm was observed with a tweezing power of ~7 mW. Transportation and levitation, targeted deposition and selective levitation of particles were explored to experimentally demonstrate the versatility of the optothermal tweezer as a multipurpose particle manipulation tool.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288 – 290 (1986), http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-11-5-288.
    [CrossRef] [PubMed]
  2. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810 – 816 (2003), http://www.nature.com/nature/journal/v424/n6950/full/nature01935.html.
    [CrossRef] [PubMed]
  3. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Opt. Lett. 11, 288 – 290 (1986), http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-11-5-288.
    [CrossRef] [PubMed]
  4. C. D’Helon, E. W. Dearden, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Measurement of the optical force and trapping range of a single-beam gradient optical trap for micron-sized latex spheres,” J. Mod. Opt. 41, 595 – 601 (1994).
    [CrossRef]
  5. P. Schiro, C. DuBois, and A. Kwok, “Large capture-range of a single-beam gradient optical trap,” Opt. Express 11, 3485-3489 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?id=78205.
    [CrossRef] [PubMed]
  6. E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys J. 84, 1308 –1316 (2003), http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1302707/.
    [CrossRef] [PubMed]
  7. H. Mao, J. R. Arias-Gonzalez, S. B. Smith, I. Tinoco, Jr., and C. Bustamante, “Temperature control methods in a laser tweezers system,” Biophys J. 89, 1308–1316 (2005), http://www.ncbi.nlm.nih.gov/pubmed/15923237.
    [CrossRef] [PubMed]
  8. D. Braun, and A. Libchaber, “Trapping of DNA by thermophoretic depletion and convection,” Phys. Rev. Lett. 89, 188103 (2002), http://link.aps.org/doi/10.1103/PhysRevLett.89.188103.
    [CrossRef] [PubMed]
  9. S. Duhr, and D. Braun, “Two-dimensional colloidal crystals formed by thermophoresis and convection,” Appl. Phys. Lett. 86, 131921 (2005), http://link.aip.org/link/APPLAB/v86/i13/p131921/s1.
    [CrossRef]
  10. D. R. Mason, D. K. Gramotnev, and G. Gramotnev,“Thermal tweezers for manipulation of adatoms and nanoparticles on surfaces heated by interfering laser pulses,” J. Appl. Phys. 104, 064320 (2008), http://link.aip.org/link/JAPIAU/v104/i6/p064320/s1.
    [CrossRef]
  11. R. D. Leonardo, F. Ianni, and G. Ruocco, “Colloidal attraction induced by a temperature gradient,” Langmuir 25, 4247 - 4250 (2009), http://pubs.acs.org/doi/abs/10.1021/la8038335.
    [CrossRef] [PubMed]
  12. C. B. Mast, and D. Braun, “Thermal trap for DNA replication,” Phys. Rev. Lett. 104, 188102 (2010), http://link.aps.org/doi/10.1103/PhysRevLett.104.188102.
    [CrossRef] [PubMed]
  13. Y. Liu and A. W. Poon, “Optothermal manipulation of colloidal microparticles,” in Proceedings of the Conference on Lasers and Electro-Optics (IEEE and Optical Society of America, San Jose, CA, 2010), JWA76, http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2010-JWA76.
  14. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-m wavelength region,” Appl. Opt. 12, 555 – 563 (1973), http://www.opticsinfobase.org/abstract.cfm?URI=ao-12-3-555.
    [CrossRef] [PubMed]

2010 (1)

C. B. Mast, and D. Braun, “Thermal trap for DNA replication,” Phys. Rev. Lett. 104, 188102 (2010), http://link.aps.org/doi/10.1103/PhysRevLett.104.188102.
[CrossRef] [PubMed]

2009 (1)

R. D. Leonardo, F. Ianni, and G. Ruocco, “Colloidal attraction induced by a temperature gradient,” Langmuir 25, 4247 - 4250 (2009), http://pubs.acs.org/doi/abs/10.1021/la8038335.
[CrossRef] [PubMed]

2008 (1)

D. R. Mason, D. K. Gramotnev, and G. Gramotnev,“Thermal tweezers for manipulation of adatoms and nanoparticles on surfaces heated by interfering laser pulses,” J. Appl. Phys. 104, 064320 (2008), http://link.aip.org/link/JAPIAU/v104/i6/p064320/s1.
[CrossRef]

2005 (2)

S. Duhr, and D. Braun, “Two-dimensional colloidal crystals formed by thermophoresis and convection,” Appl. Phys. Lett. 86, 131921 (2005), http://link.aip.org/link/APPLAB/v86/i13/p131921/s1.
[CrossRef]

H. Mao, J. R. Arias-Gonzalez, S. B. Smith, I. Tinoco, Jr., and C. Bustamante, “Temperature control methods in a laser tweezers system,” Biophys J. 89, 1308–1316 (2005), http://www.ncbi.nlm.nih.gov/pubmed/15923237.
[CrossRef] [PubMed]

2003 (3)

2002 (1)

D. Braun, and A. Libchaber, “Trapping of DNA by thermophoretic depletion and convection,” Phys. Rev. Lett. 89, 188103 (2002), http://link.aps.org/doi/10.1103/PhysRevLett.89.188103.
[CrossRef] [PubMed]

1994 (1)

C. D’Helon, E. W. Dearden, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Measurement of the optical force and trapping range of a single-beam gradient optical trap for micron-sized latex spheres,” J. Mod. Opt. 41, 595 – 601 (1994).
[CrossRef]

1986 (2)

1973 (1)

Arias-Gonzalez, J. R.

H. Mao, J. R. Arias-Gonzalez, S. B. Smith, I. Tinoco, Jr., and C. Bustamante, “Temperature control methods in a laser tweezers system,” Biophys J. 89, 1308–1316 (2005), http://www.ncbi.nlm.nih.gov/pubmed/15923237.
[CrossRef] [PubMed]

Ashkin, A.

Bjorkholm, J. E.

Braun, D.

C. B. Mast, and D. Braun, “Thermal trap for DNA replication,” Phys. Rev. Lett. 104, 188102 (2010), http://link.aps.org/doi/10.1103/PhysRevLett.104.188102.
[CrossRef] [PubMed]

S. Duhr, and D. Braun, “Two-dimensional colloidal crystals formed by thermophoresis and convection,” Appl. Phys. Lett. 86, 131921 (2005), http://link.aip.org/link/APPLAB/v86/i13/p131921/s1.
[CrossRef]

D. Braun, and A. Libchaber, “Trapping of DNA by thermophoretic depletion and convection,” Phys. Rev. Lett. 89, 188103 (2002), http://link.aps.org/doi/10.1103/PhysRevLett.89.188103.
[CrossRef] [PubMed]

Bustamante, C.

H. Mao, J. R. Arias-Gonzalez, S. B. Smith, I. Tinoco, Jr., and C. Bustamante, “Temperature control methods in a laser tweezers system,” Biophys J. 89, 1308–1316 (2005), http://www.ncbi.nlm.nih.gov/pubmed/15923237.
[CrossRef] [PubMed]

Chu, S.

D’Helon, C.

C. D’Helon, E. W. Dearden, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Measurement of the optical force and trapping range of a single-beam gradient optical trap for micron-sized latex spheres,” J. Mod. Opt. 41, 595 – 601 (1994).
[CrossRef]

Dearden, E. W.

C. D’Helon, E. W. Dearden, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Measurement of the optical force and trapping range of a single-beam gradient optical trap for micron-sized latex spheres,” J. Mod. Opt. 41, 595 – 601 (1994).
[CrossRef]

DuBois, C.

Duhr, S.

S. Duhr, and D. Braun, “Two-dimensional colloidal crystals formed by thermophoresis and convection,” Appl. Phys. Lett. 86, 131921 (2005), http://link.aip.org/link/APPLAB/v86/i13/p131921/s1.
[CrossRef]

Dziedzic, J. M.

Gittes, F.

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys J. 84, 1308 –1316 (2003), http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1302707/.
[CrossRef] [PubMed]

Gramotnev, D. K.

D. R. Mason, D. K. Gramotnev, and G. Gramotnev,“Thermal tweezers for manipulation of adatoms and nanoparticles on surfaces heated by interfering laser pulses,” J. Appl. Phys. 104, 064320 (2008), http://link.aip.org/link/JAPIAU/v104/i6/p064320/s1.
[CrossRef]

Gramotnev, G.

D. R. Mason, D. K. Gramotnev, and G. Gramotnev,“Thermal tweezers for manipulation of adatoms and nanoparticles on surfaces heated by interfering laser pulses,” J. Appl. Phys. 104, 064320 (2008), http://link.aip.org/link/JAPIAU/v104/i6/p064320/s1.
[CrossRef]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810 – 816 (2003), http://www.nature.com/nature/journal/v424/n6950/full/nature01935.html.
[CrossRef] [PubMed]

Hale, G. M.

Heckenberg, N. R.

C. D’Helon, E. W. Dearden, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Measurement of the optical force and trapping range of a single-beam gradient optical trap for micron-sized latex spheres,” J. Mod. Opt. 41, 595 – 601 (1994).
[CrossRef]

Ianni, F.

R. D. Leonardo, F. Ianni, and G. Ruocco, “Colloidal attraction induced by a temperature gradient,” Langmuir 25, 4247 - 4250 (2009), http://pubs.acs.org/doi/abs/10.1021/la8038335.
[CrossRef] [PubMed]

Kwok, A.

Leonardo, R. D.

R. D. Leonardo, F. Ianni, and G. Ruocco, “Colloidal attraction induced by a temperature gradient,” Langmuir 25, 4247 - 4250 (2009), http://pubs.acs.org/doi/abs/10.1021/la8038335.
[CrossRef] [PubMed]

Libchaber, A.

D. Braun, and A. Libchaber, “Trapping of DNA by thermophoretic depletion and convection,” Phys. Rev. Lett. 89, 188103 (2002), http://link.aps.org/doi/10.1103/PhysRevLett.89.188103.
[CrossRef] [PubMed]

Mao, H.

H. Mao, J. R. Arias-Gonzalez, S. B. Smith, I. Tinoco, Jr., and C. Bustamante, “Temperature control methods in a laser tweezers system,” Biophys J. 89, 1308–1316 (2005), http://www.ncbi.nlm.nih.gov/pubmed/15923237.
[CrossRef] [PubMed]

Mason, D. R.

D. R. Mason, D. K. Gramotnev, and G. Gramotnev,“Thermal tweezers for manipulation of adatoms and nanoparticles on surfaces heated by interfering laser pulses,” J. Appl. Phys. 104, 064320 (2008), http://link.aip.org/link/JAPIAU/v104/i6/p064320/s1.
[CrossRef]

Mast, C. B.

C. B. Mast, and D. Braun, “Thermal trap for DNA replication,” Phys. Rev. Lett. 104, 188102 (2010), http://link.aps.org/doi/10.1103/PhysRevLett.104.188102.
[CrossRef] [PubMed]

Peterman, E. J. G.

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys J. 84, 1308 –1316 (2003), http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1302707/.
[CrossRef] [PubMed]

Querry, M. R.

Rubinsztein-Dunlop, H.

C. D’Helon, E. W. Dearden, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Measurement of the optical force and trapping range of a single-beam gradient optical trap for micron-sized latex spheres,” J. Mod. Opt. 41, 595 – 601 (1994).
[CrossRef]

Ruocco, G.

R. D. Leonardo, F. Ianni, and G. Ruocco, “Colloidal attraction induced by a temperature gradient,” Langmuir 25, 4247 - 4250 (2009), http://pubs.acs.org/doi/abs/10.1021/la8038335.
[CrossRef] [PubMed]

Schiro, P.

Schmidt, C. F.

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys J. 84, 1308 –1316 (2003), http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1302707/.
[CrossRef] [PubMed]

Smith, S. B.

H. Mao, J. R. Arias-Gonzalez, S. B. Smith, I. Tinoco, Jr., and C. Bustamante, “Temperature control methods in a laser tweezers system,” Biophys J. 89, 1308–1316 (2005), http://www.ncbi.nlm.nih.gov/pubmed/15923237.
[CrossRef] [PubMed]

Tinoco, I.

H. Mao, J. R. Arias-Gonzalez, S. B. Smith, I. Tinoco, Jr., and C. Bustamante, “Temperature control methods in a laser tweezers system,” Biophys J. 89, 1308–1316 (2005), http://www.ncbi.nlm.nih.gov/pubmed/15923237.
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

S. Duhr, and D. Braun, “Two-dimensional colloidal crystals formed by thermophoresis and convection,” Appl. Phys. Lett. 86, 131921 (2005), http://link.aip.org/link/APPLAB/v86/i13/p131921/s1.
[CrossRef]

Biophys J. (2)

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys J. 84, 1308 –1316 (2003), http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1302707/.
[CrossRef] [PubMed]

H. Mao, J. R. Arias-Gonzalez, S. B. Smith, I. Tinoco, Jr., and C. Bustamante, “Temperature control methods in a laser tweezers system,” Biophys J. 89, 1308–1316 (2005), http://www.ncbi.nlm.nih.gov/pubmed/15923237.
[CrossRef] [PubMed]

J. Appl. Phys. (1)

D. R. Mason, D. K. Gramotnev, and G. Gramotnev,“Thermal tweezers for manipulation of adatoms and nanoparticles on surfaces heated by interfering laser pulses,” J. Appl. Phys. 104, 064320 (2008), http://link.aip.org/link/JAPIAU/v104/i6/p064320/s1.
[CrossRef]

J. Mod. Opt. (1)

C. D’Helon, E. W. Dearden, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Measurement of the optical force and trapping range of a single-beam gradient optical trap for micron-sized latex spheres,” J. Mod. Opt. 41, 595 – 601 (1994).
[CrossRef]

Langmuir (1)

R. D. Leonardo, F. Ianni, and G. Ruocco, “Colloidal attraction induced by a temperature gradient,” Langmuir 25, 4247 - 4250 (2009), http://pubs.acs.org/doi/abs/10.1021/la8038335.
[CrossRef] [PubMed]

Nature (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810 – 816 (2003), http://www.nature.com/nature/journal/v424/n6950/full/nature01935.html.
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. Lett. (2)

D. Braun, and A. Libchaber, “Trapping of DNA by thermophoretic depletion and convection,” Phys. Rev. Lett. 89, 188103 (2002), http://link.aps.org/doi/10.1103/PhysRevLett.89.188103.
[CrossRef] [PubMed]

C. B. Mast, and D. Braun, “Thermal trap for DNA replication,” Phys. Rev. Lett. 104, 188102 (2010), http://link.aps.org/doi/10.1103/PhysRevLett.104.188102.
[CrossRef] [PubMed]

Other (1)

Y. Liu and A. W. Poon, “Optothermal manipulation of colloidal microparticles,” in Proceedings of the Conference on Lasers and Electro-Optics (IEEE and Optical Society of America, San Jose, CA, 2010), JWA76, http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2010-JWA76.

Supplementary Material (5)

» Media 1: MOV (3612 KB)     
» Media 2: MOV (2740 KB)     
» Media 3: MOV (2607 KB)     
» Media 4: MOV (499 KB)     
» Media 5: MOV (1206 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a): Schematic of the optothermal tweezer. CCD: charge-coupled device camera; LED: light-emitting diode; EDFA: erbium-doped fiber amplifier. Inset: zoomin view of the microparticle colloid chamber. (b) Illustration of the fluid flow inside the colloid chamber showing lateral plane c with inward flow, plane d with outward flowx and the beam axis e. (c) System potential in the lateral direction with inward flow. (d) System potential in the lateral direction with outward flow. (e) System potential along the beam axis. (Not to scale.)

Fig. 2.
Fig. 2.

(a) – (d) Long-range capturing of a 6 µm microparticle (circled in red) with a stationary laser beam of ~7 mW from over 176 µm away from the beam position. (e) Velocity and acceleration of a particle being trapped as a function of its distance to the beam focal axis. Inset: Beam radius near the focus. The image shows a beam spot captured by an infrared camera with its calculated center and 1/e radius.

Fig. 3.
Fig. 3.

(a) Levitation of 6 µm particles in a colloid segregated into two layers A and B. (b) First row: a particle (circled in red) appears at the center (beam focal axis) of the upper layer A (Media1); second row: a different particle moves towards the center and disappears from the lower layer B (Media2). (c) Transient levitation rate for a tweezing power of ~4.2 mW, ~5.6 mW, ~7 mW and ~8.4 mW.

Fig. 4.
Fig. 4.

Levitation and transportation mode. (a) Tweezer configuration. Particles in the colloid are segregated into layers A and B. (b) System potential in the vertical direction. (c) First row: layer A; second row: layer B. The particle circled in red is attracted toward the beam focus (columns 1 – 2), levitated from B to A (column 3) and transported past the two particles circled in green (columns 4 – 6) (Media3).

Fig. 5.
Fig. 5.

Targeted deposition mode. (a) Tweezer configuration. (b) System potential in the vertical direction. (c) The letter “T” is written in the upper layer of the segregated colloid (Media4).

Fig. 6.
Fig. 6.

Selective levitation mode. (a) Tweezer configuration. (b) System potential in the vertical direction. (c) The particle circled in red is levitated from the lower layer, while other nearby particles are not much affected (Media5).

Tables (1)

Tables Icon

Table 1. Instantaneous levitation rate R and flow stabilization time τ for some values of tweezing power Pop in optothermal levitation of 6 µm polystyrene particles.

Metrics