Abstract

A single-layer of breath figure pattern was explored via the dynamical optical images and the temperature evolution. The pattern was prepared with the solution of carbon disulfide (CS2) dissolved 1% weight concentration of polystyrene. The evaporation of CS2 was considered to be the most important role to the formation of the breath figure pattern. The understanding of the breath figures pattern will promote the technique to fabricating an imprinted template with demanded hexagonal structures.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Srinivasarao, D. Collings, A. Philips, and S. Patel, “Three-dimensionally ordered array of air bubbles in a polymer film,” Science 292(5514), 79–83 (2001).
    [CrossRef] [PubMed]
  2. T. J. Baker, Philos. “Breath figures,” Mag. 44, 752 (1922).
  3. L. Song, R. K. Bly, J. N. Wilson, S. Bakbak, J. O. Park, M. Srinivasarao, and U. H. F. Bunz, “Facile microstructuring of organic semiconducting polymers by the breath figure method: hexagonally ordered bubble arrays in rigid-rod polymers,” Adv. Mater. 16(2), 115–118 (2004).
    [CrossRef]
  4. A. Bolognesi, C. Botta, and S. Yunus, “Micro-patterning of organic light emitting diodes using self-organised honeycomb ordered polymer films,” Thin Solid Films 492(1-2), 307–312 (2005).
    [CrossRef]
  5. P. T. Tanev, M. Chibwe, and T. J. Pinnavaia, “Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds,” Nature 368(6469), 321–323 (1994).
    [CrossRef] [PubMed]
  6. E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67(24), 3380–3383 (1991).
    [CrossRef] [PubMed]
  7. M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure, ” Appl. Phys. Lett. 75(3), 316–318 (1999).
    [CrossRef]
  8. G. Yang, X. Xiong, and L. Zhang, “Microporous formation of blend membranes from cellulose/konjac glucomannan in NaOH/thiourea aqueous solution,” J. Membr. Sci. 201(1-2), 161–173 (2002).
    [CrossRef]
  9. J. H. Holtz and S. A. Asher, “Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials,” Nature 389(6653), 829–832 (1997).
    [CrossRef]
  10. K. Chari, C. W. Lander, and R. J. Sudol, “Anamorphic microlens arrays based on breath-figure template with adaptive surface reconstruction,” Appl. Phys. Lett. 92(11), 111916 (2008).
    [CrossRef]
  11. C. Y. Wu, T. H. Chiang, and C.-C. Hsu, “Fabrication of microlens array diffuser films with controllable haze distribution by combination of breath figures and replica molding methods,” Opt. Express 16(24), 19978–19986 (2008).
    [CrossRef] [PubMed]
  12. O. Karthaus, N. Maruyama, X. Cieren, M. Shimomura, H. Hasegawa, and T. Hashimoto, “Water-assisted formation of micrometer-size honeycomb patterns of polymers,” Langmuir 16(15), 6071–6076 (2000).
    [CrossRef]
  13. J. Peng, Y. Han, Y. Yang, and B. Li, “The influencing factors on the macroporous formation in polymer films by water droplet templating,” Polymer (Guildf.) 45(2), 447–452 (2004).
    [CrossRef]
  14. A. V. Limaye, R. D. Narhe, A. M. Dhote, and S. B. Ogale, “Evidence for convective effects in breath figure formation on volatile fluid surfaces,” Phys. Rev. Lett. 76(20), 3762–3765 (1996).
    [CrossRef] [PubMed]
  15. D. Beysens and C. M. Knobler, “Growth of breath figures,” Phys. Rev. Lett. 57(12), 1433–1436 (1986).
    [CrossRef] [PubMed]
  16. J. L. Viovy, D. Beysens, and C. M. Knobler, “Scaling description for the growth of condensation patterns on surfaces,” Phys. Rev. A 37(12), 4965–4970 (1988).
    [CrossRef] [PubMed]
  17. F. Family and P. Meakin, “Scaling of the droplet-size distribution in vapor-deposited thin films,” Phys. Rev. Lett. 61(4), 428–431 (1988).
    [CrossRef] [PubMed]
  18. F. Family and P. Meakin, “Kinetics of droplet growth processes: Simulations, theory, and experiments,” Phys. Rev. A 40(7), 3836–3854 (1989).
    [CrossRef] [PubMed]
  19. S. Yunus, A. Delcorte, C. Poleunis, P. Bertrand, A. Bolognesi, and C. Botta, “A route to self-organized honeycomb microstructured polystyrene films and their chemical characterization by ToF-SIMS imaging,” Adv. Funct. Mater. 17(7), 1079–1084 (2007).
    [CrossRef]
  20. G. Widawski, M. Rawiso, and B. François, “Self-organized honeycomb morphology of star-polymer polystyrene films,” Nature 369(6479), 387–389 (1994).
    [CrossRef]
  21. O. Pitois and B. François, “Formation of ordered micro-porous membranes,” Eur. Phys. J. B 8(2), 225–231 (1999).
    [CrossRef]
  22. O. Pitois and B. François, “Crystallization of condensation droplets on a liquid surface,” Colloid Polym. Sci. 277(6), 574–578 (1999).
    [CrossRef]

2008

K. Chari, C. W. Lander, and R. J. Sudol, “Anamorphic microlens arrays based on breath-figure template with adaptive surface reconstruction,” Appl. Phys. Lett. 92(11), 111916 (2008).
[CrossRef]

C. Y. Wu, T. H. Chiang, and C.-C. Hsu, “Fabrication of microlens array diffuser films with controllable haze distribution by combination of breath figures and replica molding methods,” Opt. Express 16(24), 19978–19986 (2008).
[CrossRef] [PubMed]

2007

S. Yunus, A. Delcorte, C. Poleunis, P. Bertrand, A. Bolognesi, and C. Botta, “A route to self-organized honeycomb microstructured polystyrene films and their chemical characterization by ToF-SIMS imaging,” Adv. Funct. Mater. 17(7), 1079–1084 (2007).
[CrossRef]

2005

A. Bolognesi, C. Botta, and S. Yunus, “Micro-patterning of organic light emitting diodes using self-organised honeycomb ordered polymer films,” Thin Solid Films 492(1-2), 307–312 (2005).
[CrossRef]

2004

L. Song, R. K. Bly, J. N. Wilson, S. Bakbak, J. O. Park, M. Srinivasarao, and U. H. F. Bunz, “Facile microstructuring of organic semiconducting polymers by the breath figure method: hexagonally ordered bubble arrays in rigid-rod polymers,” Adv. Mater. 16(2), 115–118 (2004).
[CrossRef]

J. Peng, Y. Han, Y. Yang, and B. Li, “The influencing factors on the macroporous formation in polymer films by water droplet templating,” Polymer (Guildf.) 45(2), 447–452 (2004).
[CrossRef]

2002

G. Yang, X. Xiong, and L. Zhang, “Microporous formation of blend membranes from cellulose/konjac glucomannan in NaOH/thiourea aqueous solution,” J. Membr. Sci. 201(1-2), 161–173 (2002).
[CrossRef]

2001

M. Srinivasarao, D. Collings, A. Philips, and S. Patel, “Three-dimensionally ordered array of air bubbles in a polymer film,” Science 292(5514), 79–83 (2001).
[CrossRef] [PubMed]

2000

O. Karthaus, N. Maruyama, X. Cieren, M. Shimomura, H. Hasegawa, and T. Hashimoto, “Water-assisted formation of micrometer-size honeycomb patterns of polymers,” Langmuir 16(15), 6071–6076 (2000).
[CrossRef]

1999

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure, ” Appl. Phys. Lett. 75(3), 316–318 (1999).
[CrossRef]

O. Pitois and B. François, “Formation of ordered micro-porous membranes,” Eur. Phys. J. B 8(2), 225–231 (1999).
[CrossRef]

O. Pitois and B. François, “Crystallization of condensation droplets on a liquid surface,” Colloid Polym. Sci. 277(6), 574–578 (1999).
[CrossRef]

1997

J. H. Holtz and S. A. Asher, “Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials,” Nature 389(6653), 829–832 (1997).
[CrossRef]

1996

A. V. Limaye, R. D. Narhe, A. M. Dhote, and S. B. Ogale, “Evidence for convective effects in breath figure formation on volatile fluid surfaces,” Phys. Rev. Lett. 76(20), 3762–3765 (1996).
[CrossRef] [PubMed]

1994

G. Widawski, M. Rawiso, and B. François, “Self-organized honeycomb morphology of star-polymer polystyrene films,” Nature 369(6479), 387–389 (1994).
[CrossRef]

P. T. Tanev, M. Chibwe, and T. J. Pinnavaia, “Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds,” Nature 368(6469), 321–323 (1994).
[CrossRef] [PubMed]

1991

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67(24), 3380–3383 (1991).
[CrossRef] [PubMed]

1989

F. Family and P. Meakin, “Kinetics of droplet growth processes: Simulations, theory, and experiments,” Phys. Rev. A 40(7), 3836–3854 (1989).
[CrossRef] [PubMed]

1988

J. L. Viovy, D. Beysens, and C. M. Knobler, “Scaling description for the growth of condensation patterns on surfaces,” Phys. Rev. A 37(12), 4965–4970 (1988).
[CrossRef] [PubMed]

F. Family and P. Meakin, “Scaling of the droplet-size distribution in vapor-deposited thin films,” Phys. Rev. Lett. 61(4), 428–431 (1988).
[CrossRef] [PubMed]

1986

D. Beysens and C. M. Knobler, “Growth of breath figures,” Phys. Rev. Lett. 57(12), 1433–1436 (1986).
[CrossRef] [PubMed]

1922

T. J. Baker, Philos. “Breath figures,” Mag. 44, 752 (1922).

Asher, S. A.

J. H. Holtz and S. A. Asher, “Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials,” Nature 389(6653), 829–832 (1997).
[CrossRef]

Bakbak, S.

L. Song, R. K. Bly, J. N. Wilson, S. Bakbak, J. O. Park, M. Srinivasarao, and U. H. F. Bunz, “Facile microstructuring of organic semiconducting polymers by the breath figure method: hexagonally ordered bubble arrays in rigid-rod polymers,” Adv. Mater. 16(2), 115–118 (2004).
[CrossRef]

Baker, T. J.

T. J. Baker, Philos. “Breath figures,” Mag. 44, 752 (1922).

Bertrand, P.

S. Yunus, A. Delcorte, C. Poleunis, P. Bertrand, A. Bolognesi, and C. Botta, “A route to self-organized honeycomb microstructured polystyrene films and their chemical characterization by ToF-SIMS imaging,” Adv. Funct. Mater. 17(7), 1079–1084 (2007).
[CrossRef]

Beysens, D.

J. L. Viovy, D. Beysens, and C. M. Knobler, “Scaling description for the growth of condensation patterns on surfaces,” Phys. Rev. A 37(12), 4965–4970 (1988).
[CrossRef] [PubMed]

D. Beysens and C. M. Knobler, “Growth of breath figures,” Phys. Rev. Lett. 57(12), 1433–1436 (1986).
[CrossRef] [PubMed]

Bly, R. K.

L. Song, R. K. Bly, J. N. Wilson, S. Bakbak, J. O. Park, M. Srinivasarao, and U. H. F. Bunz, “Facile microstructuring of organic semiconducting polymers by the breath figure method: hexagonally ordered bubble arrays in rigid-rod polymers,” Adv. Mater. 16(2), 115–118 (2004).
[CrossRef]

Bolognesi, A.

S. Yunus, A. Delcorte, C. Poleunis, P. Bertrand, A. Bolognesi, and C. Botta, “A route to self-organized honeycomb microstructured polystyrene films and their chemical characterization by ToF-SIMS imaging,” Adv. Funct. Mater. 17(7), 1079–1084 (2007).
[CrossRef]

A. Bolognesi, C. Botta, and S. Yunus, “Micro-patterning of organic light emitting diodes using self-organised honeycomb ordered polymer films,” Thin Solid Films 492(1-2), 307–312 (2005).
[CrossRef]

Botta, C.

S. Yunus, A. Delcorte, C. Poleunis, P. Bertrand, A. Bolognesi, and C. Botta, “A route to self-organized honeycomb microstructured polystyrene films and their chemical characterization by ToF-SIMS imaging,” Adv. Funct. Mater. 17(7), 1079–1084 (2007).
[CrossRef]

A. Bolognesi, C. Botta, and S. Yunus, “Micro-patterning of organic light emitting diodes using self-organised honeycomb ordered polymer films,” Thin Solid Films 492(1-2), 307–312 (2005).
[CrossRef]

Brommer, K. D.

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67(24), 3380–3383 (1991).
[CrossRef] [PubMed]

Bunz, U. H. F.

L. Song, R. K. Bly, J. N. Wilson, S. Bakbak, J. O. Park, M. Srinivasarao, and U. H. F. Bunz, “Facile microstructuring of organic semiconducting polymers by the breath figure method: hexagonally ordered bubble arrays in rigid-rod polymers,” Adv. Mater. 16(2), 115–118 (2004).
[CrossRef]

Chari, K.

K. Chari, C. W. Lander, and R. J. Sudol, “Anamorphic microlens arrays based on breath-figure template with adaptive surface reconstruction,” Appl. Phys. Lett. 92(11), 111916 (2008).
[CrossRef]

Chiang, T. H.

Chibwe, M.

P. T. Tanev, M. Chibwe, and T. J. Pinnavaia, “Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds,” Nature 368(6469), 321–323 (1994).
[CrossRef] [PubMed]

Chutinan, A.

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure, ” Appl. Phys. Lett. 75(3), 316–318 (1999).
[CrossRef]

Cieren, X.

O. Karthaus, N. Maruyama, X. Cieren, M. Shimomura, H. Hasegawa, and T. Hashimoto, “Water-assisted formation of micrometer-size honeycomb patterns of polymers,” Langmuir 16(15), 6071–6076 (2000).
[CrossRef]

Collings, D.

M. Srinivasarao, D. Collings, A. Philips, and S. Patel, “Three-dimensionally ordered array of air bubbles in a polymer film,” Science 292(5514), 79–83 (2001).
[CrossRef] [PubMed]

Delcorte, A.

S. Yunus, A. Delcorte, C. Poleunis, P. Bertrand, A. Bolognesi, and C. Botta, “A route to self-organized honeycomb microstructured polystyrene films and their chemical characterization by ToF-SIMS imaging,” Adv. Funct. Mater. 17(7), 1079–1084 (2007).
[CrossRef]

Dhote, A. M.

A. V. Limaye, R. D. Narhe, A. M. Dhote, and S. B. Ogale, “Evidence for convective effects in breath figure formation on volatile fluid surfaces,” Phys. Rev. Lett. 76(20), 3762–3765 (1996).
[CrossRef] [PubMed]

Family, F.

F. Family and P. Meakin, “Kinetics of droplet growth processes: Simulations, theory, and experiments,” Phys. Rev. A 40(7), 3836–3854 (1989).
[CrossRef] [PubMed]

F. Family and P. Meakin, “Scaling of the droplet-size distribution in vapor-deposited thin films,” Phys. Rev. Lett. 61(4), 428–431 (1988).
[CrossRef] [PubMed]

François, B.

O. Pitois and B. François, “Formation of ordered micro-porous membranes,” Eur. Phys. J. B 8(2), 225–231 (1999).
[CrossRef]

O. Pitois and B. François, “Crystallization of condensation droplets on a liquid surface,” Colloid Polym. Sci. 277(6), 574–578 (1999).
[CrossRef]

G. Widawski, M. Rawiso, and B. François, “Self-organized honeycomb morphology of star-polymer polystyrene films,” Nature 369(6479), 387–389 (1994).
[CrossRef]

Gmitter, T. J.

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67(24), 3380–3383 (1991).
[CrossRef] [PubMed]

Han, Y.

J. Peng, Y. Han, Y. Yang, and B. Li, “The influencing factors on the macroporous formation in polymer films by water droplet templating,” Polymer (Guildf.) 45(2), 447–452 (2004).
[CrossRef]

Hasegawa, H.

O. Karthaus, N. Maruyama, X. Cieren, M. Shimomura, H. Hasegawa, and T. Hashimoto, “Water-assisted formation of micrometer-size honeycomb patterns of polymers,” Langmuir 16(15), 6071–6076 (2000).
[CrossRef]

Hashimoto, T.

O. Karthaus, N. Maruyama, X. Cieren, M. Shimomura, H. Hasegawa, and T. Hashimoto, “Water-assisted formation of micrometer-size honeycomb patterns of polymers,” Langmuir 16(15), 6071–6076 (2000).
[CrossRef]

Holtz, J. H.

J. H. Holtz and S. A. Asher, “Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials,” Nature 389(6653), 829–832 (1997).
[CrossRef]

Hsu, C.-C.

Imada, M.

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure, ” Appl. Phys. Lett. 75(3), 316–318 (1999).
[CrossRef]

Joannopoulos, J. D.

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67(24), 3380–3383 (1991).
[CrossRef] [PubMed]

Karthaus, O.

O. Karthaus, N. Maruyama, X. Cieren, M. Shimomura, H. Hasegawa, and T. Hashimoto, “Water-assisted formation of micrometer-size honeycomb patterns of polymers,” Langmuir 16(15), 6071–6076 (2000).
[CrossRef]

Knobler, C. M.

J. L. Viovy, D. Beysens, and C. M. Knobler, “Scaling description for the growth of condensation patterns on surfaces,” Phys. Rev. A 37(12), 4965–4970 (1988).
[CrossRef] [PubMed]

D. Beysens and C. M. Knobler, “Growth of breath figures,” Phys. Rev. Lett. 57(12), 1433–1436 (1986).
[CrossRef] [PubMed]

Lander, C. W.

K. Chari, C. W. Lander, and R. J. Sudol, “Anamorphic microlens arrays based on breath-figure template with adaptive surface reconstruction,” Appl. Phys. Lett. 92(11), 111916 (2008).
[CrossRef]

Li, B.

J. Peng, Y. Han, Y. Yang, and B. Li, “The influencing factors on the macroporous formation in polymer films by water droplet templating,” Polymer (Guildf.) 45(2), 447–452 (2004).
[CrossRef]

Limaye, A. V.

A. V. Limaye, R. D. Narhe, A. M. Dhote, and S. B. Ogale, “Evidence for convective effects in breath figure formation on volatile fluid surfaces,” Phys. Rev. Lett. 76(20), 3762–3765 (1996).
[CrossRef] [PubMed]

Maruyama, N.

O. Karthaus, N. Maruyama, X. Cieren, M. Shimomura, H. Hasegawa, and T. Hashimoto, “Water-assisted formation of micrometer-size honeycomb patterns of polymers,” Langmuir 16(15), 6071–6076 (2000).
[CrossRef]

Meade, R. D.

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67(24), 3380–3383 (1991).
[CrossRef] [PubMed]

Meakin, P.

F. Family and P. Meakin, “Kinetics of droplet growth processes: Simulations, theory, and experiments,” Phys. Rev. A 40(7), 3836–3854 (1989).
[CrossRef] [PubMed]

F. Family and P. Meakin, “Scaling of the droplet-size distribution in vapor-deposited thin films,” Phys. Rev. Lett. 61(4), 428–431 (1988).
[CrossRef] [PubMed]

Murata, M.

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure, ” Appl. Phys. Lett. 75(3), 316–318 (1999).
[CrossRef]

Narhe, R. D.

A. V. Limaye, R. D. Narhe, A. M. Dhote, and S. B. Ogale, “Evidence for convective effects in breath figure formation on volatile fluid surfaces,” Phys. Rev. Lett. 76(20), 3762–3765 (1996).
[CrossRef] [PubMed]

Noda, S.

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure, ” Appl. Phys. Lett. 75(3), 316–318 (1999).
[CrossRef]

Ogale, S. B.

A. V. Limaye, R. D. Narhe, A. M. Dhote, and S. B. Ogale, “Evidence for convective effects in breath figure formation on volatile fluid surfaces,” Phys. Rev. Lett. 76(20), 3762–3765 (1996).
[CrossRef] [PubMed]

Park, J. O.

L. Song, R. K. Bly, J. N. Wilson, S. Bakbak, J. O. Park, M. Srinivasarao, and U. H. F. Bunz, “Facile microstructuring of organic semiconducting polymers by the breath figure method: hexagonally ordered bubble arrays in rigid-rod polymers,” Adv. Mater. 16(2), 115–118 (2004).
[CrossRef]

Patel, S.

M. Srinivasarao, D. Collings, A. Philips, and S. Patel, “Three-dimensionally ordered array of air bubbles in a polymer film,” Science 292(5514), 79–83 (2001).
[CrossRef] [PubMed]

Peng, J.

J. Peng, Y. Han, Y. Yang, and B. Li, “The influencing factors on the macroporous formation in polymer films by water droplet templating,” Polymer (Guildf.) 45(2), 447–452 (2004).
[CrossRef]

Philips, A.

M. Srinivasarao, D. Collings, A. Philips, and S. Patel, “Three-dimensionally ordered array of air bubbles in a polymer film,” Science 292(5514), 79–83 (2001).
[CrossRef] [PubMed]

Pinnavaia, T. J.

P. T. Tanev, M. Chibwe, and T. J. Pinnavaia, “Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds,” Nature 368(6469), 321–323 (1994).
[CrossRef] [PubMed]

Pitois, O.

O. Pitois and B. François, “Formation of ordered micro-porous membranes,” Eur. Phys. J. B 8(2), 225–231 (1999).
[CrossRef]

O. Pitois and B. François, “Crystallization of condensation droplets on a liquid surface,” Colloid Polym. Sci. 277(6), 574–578 (1999).
[CrossRef]

Poleunis, C.

S. Yunus, A. Delcorte, C. Poleunis, P. Bertrand, A. Bolognesi, and C. Botta, “A route to self-organized honeycomb microstructured polystyrene films and their chemical characterization by ToF-SIMS imaging,” Adv. Funct. Mater. 17(7), 1079–1084 (2007).
[CrossRef]

Rappe, A. M.

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67(24), 3380–3383 (1991).
[CrossRef] [PubMed]

Rawiso, M.

G. Widawski, M. Rawiso, and B. François, “Self-organized honeycomb morphology of star-polymer polystyrene films,” Nature 369(6479), 387–389 (1994).
[CrossRef]

Sasaki, G.

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure, ” Appl. Phys. Lett. 75(3), 316–318 (1999).
[CrossRef]

Shimomura, M.

O. Karthaus, N. Maruyama, X. Cieren, M. Shimomura, H. Hasegawa, and T. Hashimoto, “Water-assisted formation of micrometer-size honeycomb patterns of polymers,” Langmuir 16(15), 6071–6076 (2000).
[CrossRef]

Song, L.

L. Song, R. K. Bly, J. N. Wilson, S. Bakbak, J. O. Park, M. Srinivasarao, and U. H. F. Bunz, “Facile microstructuring of organic semiconducting polymers by the breath figure method: hexagonally ordered bubble arrays in rigid-rod polymers,” Adv. Mater. 16(2), 115–118 (2004).
[CrossRef]

Srinivasarao, M.

L. Song, R. K. Bly, J. N. Wilson, S. Bakbak, J. O. Park, M. Srinivasarao, and U. H. F. Bunz, “Facile microstructuring of organic semiconducting polymers by the breath figure method: hexagonally ordered bubble arrays in rigid-rod polymers,” Adv. Mater. 16(2), 115–118 (2004).
[CrossRef]

M. Srinivasarao, D. Collings, A. Philips, and S. Patel, “Three-dimensionally ordered array of air bubbles in a polymer film,” Science 292(5514), 79–83 (2001).
[CrossRef] [PubMed]

Sudol, R. J.

K. Chari, C. W. Lander, and R. J. Sudol, “Anamorphic microlens arrays based on breath-figure template with adaptive surface reconstruction,” Appl. Phys. Lett. 92(11), 111916 (2008).
[CrossRef]

Tanev, P. T.

P. T. Tanev, M. Chibwe, and T. J. Pinnavaia, “Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds,” Nature 368(6469), 321–323 (1994).
[CrossRef] [PubMed]

Tokuda, T.

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure, ” Appl. Phys. Lett. 75(3), 316–318 (1999).
[CrossRef]

Viovy, J. L.

J. L. Viovy, D. Beysens, and C. M. Knobler, “Scaling description for the growth of condensation patterns on surfaces,” Phys. Rev. A 37(12), 4965–4970 (1988).
[CrossRef] [PubMed]

Widawski, G.

G. Widawski, M. Rawiso, and B. François, “Self-organized honeycomb morphology of star-polymer polystyrene films,” Nature 369(6479), 387–389 (1994).
[CrossRef]

Wilson, J. N.

L. Song, R. K. Bly, J. N. Wilson, S. Bakbak, J. O. Park, M. Srinivasarao, and U. H. F. Bunz, “Facile microstructuring of organic semiconducting polymers by the breath figure method: hexagonally ordered bubble arrays in rigid-rod polymers,” Adv. Mater. 16(2), 115–118 (2004).
[CrossRef]

Wu, C. Y.

Xiong, X.

G. Yang, X. Xiong, and L. Zhang, “Microporous formation of blend membranes from cellulose/konjac glucomannan in NaOH/thiourea aqueous solution,” J. Membr. Sci. 201(1-2), 161–173 (2002).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67(24), 3380–3383 (1991).
[CrossRef] [PubMed]

Yang, G.

G. Yang, X. Xiong, and L. Zhang, “Microporous formation of blend membranes from cellulose/konjac glucomannan in NaOH/thiourea aqueous solution,” J. Membr. Sci. 201(1-2), 161–173 (2002).
[CrossRef]

Yang, Y.

J. Peng, Y. Han, Y. Yang, and B. Li, “The influencing factors on the macroporous formation in polymer films by water droplet templating,” Polymer (Guildf.) 45(2), 447–452 (2004).
[CrossRef]

Yunus, S.

S. Yunus, A. Delcorte, C. Poleunis, P. Bertrand, A. Bolognesi, and C. Botta, “A route to self-organized honeycomb microstructured polystyrene films and their chemical characterization by ToF-SIMS imaging,” Adv. Funct. Mater. 17(7), 1079–1084 (2007).
[CrossRef]

A. Bolognesi, C. Botta, and S. Yunus, “Micro-patterning of organic light emitting diodes using self-organised honeycomb ordered polymer films,” Thin Solid Films 492(1-2), 307–312 (2005).
[CrossRef]

Zhang, L.

G. Yang, X. Xiong, and L. Zhang, “Microporous formation of blend membranes from cellulose/konjac glucomannan in NaOH/thiourea aqueous solution,” J. Membr. Sci. 201(1-2), 161–173 (2002).
[CrossRef]

Adv. Funct. Mater.

S. Yunus, A. Delcorte, C. Poleunis, P. Bertrand, A. Bolognesi, and C. Botta, “A route to self-organized honeycomb microstructured polystyrene films and their chemical characterization by ToF-SIMS imaging,” Adv. Funct. Mater. 17(7), 1079–1084 (2007).
[CrossRef]

Adv. Mater.

L. Song, R. K. Bly, J. N. Wilson, S. Bakbak, J. O. Park, M. Srinivasarao, and U. H. F. Bunz, “Facile microstructuring of organic semiconducting polymers by the breath figure method: hexagonally ordered bubble arrays in rigid-rod polymers,” Adv. Mater. 16(2), 115–118 (2004).
[CrossRef]

Appl. Phys. Lett.

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure, ” Appl. Phys. Lett. 75(3), 316–318 (1999).
[CrossRef]

K. Chari, C. W. Lander, and R. J. Sudol, “Anamorphic microlens arrays based on breath-figure template with adaptive surface reconstruction,” Appl. Phys. Lett. 92(11), 111916 (2008).
[CrossRef]

Colloid Polym. Sci.

O. Pitois and B. François, “Crystallization of condensation droplets on a liquid surface,” Colloid Polym. Sci. 277(6), 574–578 (1999).
[CrossRef]

Eur. Phys. J. B

O. Pitois and B. François, “Formation of ordered micro-porous membranes,” Eur. Phys. J. B 8(2), 225–231 (1999).
[CrossRef]

J. Membr. Sci.

G. Yang, X. Xiong, and L. Zhang, “Microporous formation of blend membranes from cellulose/konjac glucomannan in NaOH/thiourea aqueous solution,” J. Membr. Sci. 201(1-2), 161–173 (2002).
[CrossRef]

Langmuir

O. Karthaus, N. Maruyama, X. Cieren, M. Shimomura, H. Hasegawa, and T. Hashimoto, “Water-assisted formation of micrometer-size honeycomb patterns of polymers,” Langmuir 16(15), 6071–6076 (2000).
[CrossRef]

Mag.

T. J. Baker, Philos. “Breath figures,” Mag. 44, 752 (1922).

Nature

J. H. Holtz and S. A. Asher, “Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials,” Nature 389(6653), 829–832 (1997).
[CrossRef]

P. T. Tanev, M. Chibwe, and T. J. Pinnavaia, “Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds,” Nature 368(6469), 321–323 (1994).
[CrossRef] [PubMed]

G. Widawski, M. Rawiso, and B. François, “Self-organized honeycomb morphology of star-polymer polystyrene films,” Nature 369(6479), 387–389 (1994).
[CrossRef]

Opt. Express

Phys. Rev. A

J. L. Viovy, D. Beysens, and C. M. Knobler, “Scaling description for the growth of condensation patterns on surfaces,” Phys. Rev. A 37(12), 4965–4970 (1988).
[CrossRef] [PubMed]

F. Family and P. Meakin, “Kinetics of droplet growth processes: Simulations, theory, and experiments,” Phys. Rev. A 40(7), 3836–3854 (1989).
[CrossRef] [PubMed]

Phys. Rev. Lett.

F. Family and P. Meakin, “Scaling of the droplet-size distribution in vapor-deposited thin films,” Phys. Rev. Lett. 61(4), 428–431 (1988).
[CrossRef] [PubMed]

A. V. Limaye, R. D. Narhe, A. M. Dhote, and S. B. Ogale, “Evidence for convective effects in breath figure formation on volatile fluid surfaces,” Phys. Rev. Lett. 76(20), 3762–3765 (1996).
[CrossRef] [PubMed]

D. Beysens and C. M. Knobler, “Growth of breath figures,” Phys. Rev. Lett. 57(12), 1433–1436 (1986).
[CrossRef] [PubMed]

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67(24), 3380–3383 (1991).
[CrossRef] [PubMed]

Polymer (Guildf.)

J. Peng, Y. Han, Y. Yang, and B. Li, “The influencing factors on the macroporous formation in polymer films by water droplet templating,” Polymer (Guildf.) 45(2), 447–452 (2004).
[CrossRef]

Science

M. Srinivasarao, D. Collings, A. Philips, and S. Patel, “Three-dimensionally ordered array of air bubbles in a polymer film,” Science 292(5514), 79–83 (2001).
[CrossRef] [PubMed]

Thin Solid Films

A. Bolognesi, C. Botta, and S. Yunus, “Micro-patterning of organic light emitting diodes using self-organised honeycomb ordered polymer films,” Thin Solid Films 492(1-2), 307–312 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup for the dynamical optical observation and the temperature monitor on the breath figures.

Fig. 2
Fig. 2

Dynamics of the breath figures, which was monitored by using an optical microscope.

Fig. 5
Fig. 5

Temperature variation of the template during the formation process of breath figure pattern.

Fig. 3
Fig. 3

Height of solution level varied with the elapsed time.

Fig. 4
Fig. 4

Image processing on Fig. 2 (a) to (d): Separated polystyrene (red region) was accumulated and distributed around the water droplets.

Fig. 6
Fig. 6

SEM image of the polymer architecture viewed at a tilted angle of 45°.

Fig. 7
Fig. 7

Growth of the water droplet as a function of time follows the power law.

Metrics