Abstract

By combing laser direct writing and hydrothermal growth, we demonstrate the growth of three-dimensional flowerlike ZnO nanostructures from aqueous solution. Our approach offers synthetic flexibility in controlling film architecture, coating texture and crystallite size. The wettability is studied by measurement of time-dependent contact angles in the as-grown samples. In addition, superior photocatalytic activity of the flowerlike ZnO nanostructures in the degradation of Rhodamine B is investigated as well. The influence factors and formation mechanism of the flowerlike ZnO nanostructures are also analyzed and discussed.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. S. Ding, X. F. Shen, S. Gomez, H. Luo, M. Aindow, and S. L. Suib, “Hydrothermal growth of manganese dioxide into three-dimensional hierarchical nanoarchitectures,” Adv. Funct. Mater. 16(4), 549–555 (2006).
    [CrossRef]
  2. A. Chen, X. Peng, K. Koczkur, and B. Miller, “Super-hydrophobic tin oxide nanoflowers,” Chem. Commun. (Camb.) (17): 1964–1965 (2004).
    [CrossRef]
  3. B. Liu and H. C. Zeng, “Mesoscale organization of CuO nanoribbons: formation of “dandelions”,” J. Am. Chem. Soc. 126(26), 8124–8125 (2004).
    [CrossRef] [PubMed]
  4. S. Park, J. H. Lim, S. W. Chung, and C. A. Mirkin, “Self-assembly of mesoscopic metal-polymer amphiphiles,” Science 303(5656), 348–351 (2004).
    [CrossRef] [PubMed]
  5. X. Wang, J. Zhuang, Q. Peng, and Y. D. Li, “A general strategy for nanocrystal synthesis,” Nature 437(7055), 121–124 (2005).
    [CrossRef] [PubMed]
  6. Y. P. Fang, A. W. Xu, A. M. Qin, and R. J. Yu, “Selective synthesis of hexagonal and tetragonal dysprosium orthophosphate nanorods by a hydrothermal method,” Cryst. Growth Des. 5(3), 1221–1225 (2005).
    [CrossRef]
  7. J. A. van Kan, A. A. Bettiol, and F. Watt, “Proton beam writing of three-dimensional nanostructures in hydrogen silsesquioxane,” Nano Lett. 6(3), 579–582 (2006).
    [CrossRef] [PubMed]
  8. J. W. Hsu, Z. R. Tian, N. C. Simmons, C. M. Matzke, J. A. Voigt, and J. A. Liu, “Directed spatial organization of zinc oxide nanorods,” Nano Lett. 5(1), 83–86 (2005).
    [CrossRef] [PubMed]
  9. S. Xu, Y. Wei, M. Kirkham, J. Liu, W. Mai, D. Davidovic, R. L. Snyder, and Z. L. Wang, “Patterned growth of vertically aligned ZnO nanowire arrays on inorganic substrates at low temperature without catalyst,” J. Am. Chem. Soc. 130(45), 14958–14959 (2008).
    [CrossRef] [PubMed]
  10. Y. J. Kim, C. H. Lee, Y. J. Hong, and G. C. Yi, “Controlled selective growth of ZnO nanorod and microrod arrays on Si substrates by a wet chemical method,” Appl. Phys. Lett. 89, 163128–163130 (2006.).
    [CrossRef]
  11. C. A. Mirkin, “Programming the assembly of two- and three-dimensional architectures with DNA and nanoscale inorganic building blocks,” Inorg. Chem. 39(11), 2258–2272 (2000).
    [CrossRef]
  12. A. Ivanisevic and C. A. Mirkin, ““Dip-Pen” nanolithography on semiconductor surfaces,” J. Am. Chem. Soc. 123(32), 7887–7889 (2001).
    [CrossRef] [PubMed]
  13. A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101(16), 5856–5861 (2004).
    [CrossRef] [PubMed]
  14. Y. F. Guan and A. J. Pedraza, “Synthesis and alignment of ZnO and ZnO nanoparticles by laser-assisted chemical vapor deposition,” Nanotechnology 19(4), 045609 (2008).
    [CrossRef] [PubMed]
  15. Q. Z. Zhao, S. Malzer, and L. J. Wang, “Formation of subwavelength periodic structures on tungsten induced by ultrashort laser pulses,” Opt. Lett. 32(13), 1932–1934 (2007).
    [CrossRef] [PubMed]
  16. X. D. Guo, R. X. Li, Y. Hang, Z. Z. Xu, B. K. Yu, Y. Dai, B. Lu, and X. W. Sun, “Coherent linking of periodic nano-ripples on a ZnO crystal surface induced by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 94(2), 423–426 (2009).
    [CrossRef]
  17. F. F. Luo, B. Qian, G. Lin, J. Xu, Y. Liao, J. Song, H. Y. Sun, B. Zhu, J. R. Qiu, Q. Z. Zhao, and Z. Z. Xu, “Redistribution of elements in glass induced by a high-repetition-rate femtosecond laser,” Opt. Express 18(6), 6262–6269 (2010).
    [CrossRef] [PubMed]
  18. A. B. D. Cassie and S. Baxter, “Wettability of porous surfaces,” Trans. Faraday Soc. 40, 546–551 (1944).
    [CrossRef]
  19. R. Rosario, D. Gust, A. A. Garcia, M. Hayes, J. L. Taraci, J. W. Dailey, and S. T. Picraux, “Lotus effect amplifies light-induced contact angle switching,” J. Phys. Chem. B 108(34), 12640–12642 (2004).
    [CrossRef]
  20. L. S. Zhong, J. S. Hu, H. P. Liang, A. M. Cao, W. G. Song, and L. J. Wan, “Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment,” Adv. Mater. 18(18), 2426–2431 (2006).
    [CrossRef]
  21. W. N. Li, J. K. Yuan, X. F. Shen, S. Gomez-Mower, L. P. Xu, S. Sithambaram, M. Aindow, and S. L. Suib, “Hydrothermal synthesis of structure- and shape-controlled manganese oxide octahedral molecular sieve nanomaterials,” Adv. Funct. Mater. 16(9), 1247–1253 (2006).
    [CrossRef]
  22. Y. B. Li, Y. Bando, and D. Golberg, “MoS2 nanoflowers and their field-emission properties,” Appl. Phys. Lett. 82(12), 1962–1964 (2003).
    [CrossRef]
  23. J. A. Marqusee and J. Ross, “Kinetics of phase transitions: Theory of Ostwald ripening,” J. Chem. Phys. 79(1), 373–378 (1983).
    [CrossRef]
  24. C. W. Extrand, S. I. Moon, P. Hall, and D. Schmidt, “Superwetting of structured surfaces,” Langmuir 23(17), 8882–8890 (2007).
    [CrossRef] [PubMed]
  25. R. N. Wenzel, “Resistance of solid surfaces to wetting by water,” Ind. Eng. Chem. 28(8), 988–994 (1936).
    [CrossRef]
  26. H. K. Sun, M. Luo, W. J. Weng, K. Cheng, P. Y. Du, G. Shen, and G. R. Han, “Room-temperature preparation of ZnO nanosheets grown on Si substrates by a seed-layer assisted solution route,” Nanotechnology 19(12), 125603 (2008).
    [CrossRef] [PubMed]
  27. Y. O. Popov, “Evaporative deposition patterns: spatial dimensions of the deposit,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036313 (2005).
    [CrossRef] [PubMed]
  28. J. Matos, J. Laine, and J. M. Hermann, “Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon,” Appl. Catal. B 18(3–4), 281–291 (1998).
    [CrossRef]

2010 (1)

2009 (1)

X. D. Guo, R. X. Li, Y. Hang, Z. Z. Xu, B. K. Yu, Y. Dai, B. Lu, and X. W. Sun, “Coherent linking of periodic nano-ripples on a ZnO crystal surface induced by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 94(2), 423–426 (2009).
[CrossRef]

2008 (3)

H. K. Sun, M. Luo, W. J. Weng, K. Cheng, P. Y. Du, G. Shen, and G. R. Han, “Room-temperature preparation of ZnO nanosheets grown on Si substrates by a seed-layer assisted solution route,” Nanotechnology 19(12), 125603 (2008).
[CrossRef] [PubMed]

Y. F. Guan and A. J. Pedraza, “Synthesis and alignment of ZnO and ZnO nanoparticles by laser-assisted chemical vapor deposition,” Nanotechnology 19(4), 045609 (2008).
[CrossRef] [PubMed]

S. Xu, Y. Wei, M. Kirkham, J. Liu, W. Mai, D. Davidovic, R. L. Snyder, and Z. L. Wang, “Patterned growth of vertically aligned ZnO nanowire arrays on inorganic substrates at low temperature without catalyst,” J. Am. Chem. Soc. 130(45), 14958–14959 (2008).
[CrossRef] [PubMed]

2007 (2)

2006 (5)

L. S. Zhong, J. S. Hu, H. P. Liang, A. M. Cao, W. G. Song, and L. J. Wan, “Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment,” Adv. Mater. 18(18), 2426–2431 (2006).
[CrossRef]

W. N. Li, J. K. Yuan, X. F. Shen, S. Gomez-Mower, L. P. Xu, S. Sithambaram, M. Aindow, and S. L. Suib, “Hydrothermal synthesis of structure- and shape-controlled manganese oxide octahedral molecular sieve nanomaterials,” Adv. Funct. Mater. 16(9), 1247–1253 (2006).
[CrossRef]

Y. J. Kim, C. H. Lee, Y. J. Hong, and G. C. Yi, “Controlled selective growth of ZnO nanorod and microrod arrays on Si substrates by a wet chemical method,” Appl. Phys. Lett. 89, 163128–163130 (2006.).
[CrossRef]

Y. S. Ding, X. F. Shen, S. Gomez, H. Luo, M. Aindow, and S. L. Suib, “Hydrothermal growth of manganese dioxide into three-dimensional hierarchical nanoarchitectures,” Adv. Funct. Mater. 16(4), 549–555 (2006).
[CrossRef]

J. A. van Kan, A. A. Bettiol, and F. Watt, “Proton beam writing of three-dimensional nanostructures in hydrogen silsesquioxane,” Nano Lett. 6(3), 579–582 (2006).
[CrossRef] [PubMed]

2005 (4)

J. W. Hsu, Z. R. Tian, N. C. Simmons, C. M. Matzke, J. A. Voigt, and J. A. Liu, “Directed spatial organization of zinc oxide nanorods,” Nano Lett. 5(1), 83–86 (2005).
[CrossRef] [PubMed]

X. Wang, J. Zhuang, Q. Peng, and Y. D. Li, “A general strategy for nanocrystal synthesis,” Nature 437(7055), 121–124 (2005).
[CrossRef] [PubMed]

Y. P. Fang, A. W. Xu, A. M. Qin, and R. J. Yu, “Selective synthesis of hexagonal and tetragonal dysprosium orthophosphate nanorods by a hydrothermal method,” Cryst. Growth Des. 5(3), 1221–1225 (2005).
[CrossRef]

Y. O. Popov, “Evaporative deposition patterns: spatial dimensions of the deposit,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036313 (2005).
[CrossRef] [PubMed]

2004 (5)

R. Rosario, D. Gust, A. A. Garcia, M. Hayes, J. L. Taraci, J. W. Dailey, and S. T. Picraux, “Lotus effect amplifies light-induced contact angle switching,” J. Phys. Chem. B 108(34), 12640–12642 (2004).
[CrossRef]

A. Chen, X. Peng, K. Koczkur, and B. Miller, “Super-hydrophobic tin oxide nanoflowers,” Chem. Commun. (Camb.) (17): 1964–1965 (2004).
[CrossRef]

B. Liu and H. C. Zeng, “Mesoscale organization of CuO nanoribbons: formation of “dandelions”,” J. Am. Chem. Soc. 126(26), 8124–8125 (2004).
[CrossRef] [PubMed]

S. Park, J. H. Lim, S. W. Chung, and C. A. Mirkin, “Self-assembly of mesoscopic metal-polymer amphiphiles,” Science 303(5656), 348–351 (2004).
[CrossRef] [PubMed]

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101(16), 5856–5861 (2004).
[CrossRef] [PubMed]

2003 (1)

Y. B. Li, Y. Bando, and D. Golberg, “MoS2 nanoflowers and their field-emission properties,” Appl. Phys. Lett. 82(12), 1962–1964 (2003).
[CrossRef]

2001 (1)

A. Ivanisevic and C. A. Mirkin, ““Dip-Pen” nanolithography on semiconductor surfaces,” J. Am. Chem. Soc. 123(32), 7887–7889 (2001).
[CrossRef] [PubMed]

2000 (1)

C. A. Mirkin, “Programming the assembly of two- and three-dimensional architectures with DNA and nanoscale inorganic building blocks,” Inorg. Chem. 39(11), 2258–2272 (2000).
[CrossRef]

1998 (1)

J. Matos, J. Laine, and J. M. Hermann, “Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon,” Appl. Catal. B 18(3–4), 281–291 (1998).
[CrossRef]

1983 (1)

J. A. Marqusee and J. Ross, “Kinetics of phase transitions: Theory of Ostwald ripening,” J. Chem. Phys. 79(1), 373–378 (1983).
[CrossRef]

1944 (1)

A. B. D. Cassie and S. Baxter, “Wettability of porous surfaces,” Trans. Faraday Soc. 40, 546–551 (1944).
[CrossRef]

1936 (1)

R. N. Wenzel, “Resistance of solid surfaces to wetting by water,” Ind. Eng. Chem. 28(8), 988–994 (1936).
[CrossRef]

Aindow, M.

Y. S. Ding, X. F. Shen, S. Gomez, H. Luo, M. Aindow, and S. L. Suib, “Hydrothermal growth of manganese dioxide into three-dimensional hierarchical nanoarchitectures,” Adv. Funct. Mater. 16(4), 549–555 (2006).
[CrossRef]

W. N. Li, J. K. Yuan, X. F. Shen, S. Gomez-Mower, L. P. Xu, S. Sithambaram, M. Aindow, and S. L. Suib, “Hydrothermal synthesis of structure- and shape-controlled manganese oxide octahedral molecular sieve nanomaterials,” Adv. Funct. Mater. 16(9), 1247–1253 (2006).
[CrossRef]

Bando, Y.

Y. B. Li, Y. Bando, and D. Golberg, “MoS2 nanoflowers and their field-emission properties,” Appl. Phys. Lett. 82(12), 1962–1964 (2003).
[CrossRef]

Baxter, S.

A. B. D. Cassie and S. Baxter, “Wettability of porous surfaces,” Trans. Faraday Soc. 40, 546–551 (1944).
[CrossRef]

Bettiol, A. A.

J. A. van Kan, A. A. Bettiol, and F. Watt, “Proton beam writing of three-dimensional nanostructures in hydrogen silsesquioxane,” Nano Lett. 6(3), 579–582 (2006).
[CrossRef] [PubMed]

Cao, A. M.

L. S. Zhong, J. S. Hu, H. P. Liang, A. M. Cao, W. G. Song, and L. J. Wan, “Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment,” Adv. Mater. 18(18), 2426–2431 (2006).
[CrossRef]

Cassie, A. B. D.

A. B. D. Cassie and S. Baxter, “Wettability of porous surfaces,” Trans. Faraday Soc. 40, 546–551 (1944).
[CrossRef]

Chen, A.

A. Chen, X. Peng, K. Koczkur, and B. Miller, “Super-hydrophobic tin oxide nanoflowers,” Chem. Commun. (Camb.) (17): 1964–1965 (2004).
[CrossRef]

Cheng, K.

H. K. Sun, M. Luo, W. J. Weng, K. Cheng, P. Y. Du, G. Shen, and G. R. Han, “Room-temperature preparation of ZnO nanosheets grown on Si substrates by a seed-layer assisted solution route,” Nanotechnology 19(12), 125603 (2008).
[CrossRef] [PubMed]

Chung, S. W.

S. Park, J. H. Lim, S. W. Chung, and C. A. Mirkin, “Self-assembly of mesoscopic metal-polymer amphiphiles,” Science 303(5656), 348–351 (2004).
[CrossRef] [PubMed]

Dai, Y.

X. D. Guo, R. X. Li, Y. Hang, Z. Z. Xu, B. K. Yu, Y. Dai, B. Lu, and X. W. Sun, “Coherent linking of periodic nano-ripples on a ZnO crystal surface induced by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 94(2), 423–426 (2009).
[CrossRef]

Dailey, J. W.

R. Rosario, D. Gust, A. A. Garcia, M. Hayes, J. L. Taraci, J. W. Dailey, and S. T. Picraux, “Lotus effect amplifies light-induced contact angle switching,” J. Phys. Chem. B 108(34), 12640–12642 (2004).
[CrossRef]

Davidovic, D.

S. Xu, Y. Wei, M. Kirkham, J. Liu, W. Mai, D. Davidovic, R. L. Snyder, and Z. L. Wang, “Patterned growth of vertically aligned ZnO nanowire arrays on inorganic substrates at low temperature without catalyst,” J. Am. Chem. Soc. 130(45), 14958–14959 (2008).
[CrossRef] [PubMed]

Ding, Y. S.

Y. S. Ding, X. F. Shen, S. Gomez, H. Luo, M. Aindow, and S. L. Suib, “Hydrothermal growth of manganese dioxide into three-dimensional hierarchical nanoarchitectures,” Adv. Funct. Mater. 16(4), 549–555 (2006).
[CrossRef]

Du, P. Y.

H. K. Sun, M. Luo, W. J. Weng, K. Cheng, P. Y. Du, G. Shen, and G. R. Han, “Room-temperature preparation of ZnO nanosheets grown on Si substrates by a seed-layer assisted solution route,” Nanotechnology 19(12), 125603 (2008).
[CrossRef] [PubMed]

Extrand, C. W.

C. W. Extrand, S. I. Moon, P. Hall, and D. Schmidt, “Superwetting of structured surfaces,” Langmuir 23(17), 8882–8890 (2007).
[CrossRef] [PubMed]

Fang, Y. P.

Y. P. Fang, A. W. Xu, A. M. Qin, and R. J. Yu, “Selective synthesis of hexagonal and tetragonal dysprosium orthophosphate nanorods by a hydrothermal method,” Cryst. Growth Des. 5(3), 1221–1225 (2005).
[CrossRef]

Garcia, A. A.

R. Rosario, D. Gust, A. A. Garcia, M. Hayes, J. L. Taraci, J. W. Dailey, and S. T. Picraux, “Lotus effect amplifies light-induced contact angle switching,” J. Phys. Chem. B 108(34), 12640–12642 (2004).
[CrossRef]

Golberg, D.

Y. B. Li, Y. Bando, and D. Golberg, “MoS2 nanoflowers and their field-emission properties,” Appl. Phys. Lett. 82(12), 1962–1964 (2003).
[CrossRef]

Gomez, S.

Y. S. Ding, X. F. Shen, S. Gomez, H. Luo, M. Aindow, and S. L. Suib, “Hydrothermal growth of manganese dioxide into three-dimensional hierarchical nanoarchitectures,” Adv. Funct. Mater. 16(4), 549–555 (2006).
[CrossRef]

Gomez-Mower, S.

W. N. Li, J. K. Yuan, X. F. Shen, S. Gomez-Mower, L. P. Xu, S. Sithambaram, M. Aindow, and S. L. Suib, “Hydrothermal synthesis of structure- and shape-controlled manganese oxide octahedral molecular sieve nanomaterials,” Adv. Funct. Mater. 16(9), 1247–1253 (2006).
[CrossRef]

Guan, Y. F.

Y. F. Guan and A. J. Pedraza, “Synthesis and alignment of ZnO and ZnO nanoparticles by laser-assisted chemical vapor deposition,” Nanotechnology 19(4), 045609 (2008).
[CrossRef] [PubMed]

Guo, X. D.

X. D. Guo, R. X. Li, Y. Hang, Z. Z. Xu, B. K. Yu, Y. Dai, B. Lu, and X. W. Sun, “Coherent linking of periodic nano-ripples on a ZnO crystal surface induced by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 94(2), 423–426 (2009).
[CrossRef]

Gust, D.

R. Rosario, D. Gust, A. A. Garcia, M. Hayes, J. L. Taraci, J. W. Dailey, and S. T. Picraux, “Lotus effect amplifies light-induced contact angle switching,” J. Phys. Chem. B 108(34), 12640–12642 (2004).
[CrossRef]

Hall, P.

C. W. Extrand, S. I. Moon, P. Hall, and D. Schmidt, “Superwetting of structured surfaces,” Langmuir 23(17), 8882–8890 (2007).
[CrossRef] [PubMed]

Han, G. R.

H. K. Sun, M. Luo, W. J. Weng, K. Cheng, P. Y. Du, G. Shen, and G. R. Han, “Room-temperature preparation of ZnO nanosheets grown on Si substrates by a seed-layer assisted solution route,” Nanotechnology 19(12), 125603 (2008).
[CrossRef] [PubMed]

Hang, Y.

X. D. Guo, R. X. Li, Y. Hang, Z. Z. Xu, B. K. Yu, Y. Dai, B. Lu, and X. W. Sun, “Coherent linking of periodic nano-ripples on a ZnO crystal surface induced by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 94(2), 423–426 (2009).
[CrossRef]

Hayes, M.

R. Rosario, D. Gust, A. A. Garcia, M. Hayes, J. L. Taraci, J. W. Dailey, and S. T. Picraux, “Lotus effect amplifies light-induced contact angle switching,” J. Phys. Chem. B 108(34), 12640–12642 (2004).
[CrossRef]

Hermann, J. M.

J. Matos, J. Laine, and J. M. Hermann, “Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon,” Appl. Catal. B 18(3–4), 281–291 (1998).
[CrossRef]

Hong, Y. J.

Y. J. Kim, C. H. Lee, Y. J. Hong, and G. C. Yi, “Controlled selective growth of ZnO nanorod and microrod arrays on Si substrates by a wet chemical method,” Appl. Phys. Lett. 89, 163128–163130 (2006.).
[CrossRef]

Hsu, J. W.

J. W. Hsu, Z. R. Tian, N. C. Simmons, C. M. Matzke, J. A. Voigt, and J. A. Liu, “Directed spatial organization of zinc oxide nanorods,” Nano Lett. 5(1), 83–86 (2005).
[CrossRef] [PubMed]

Hu, J. S.

L. S. Zhong, J. S. Hu, H. P. Liang, A. M. Cao, W. G. Song, and L. J. Wan, “Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment,” Adv. Mater. 18(18), 2426–2431 (2006).
[CrossRef]

Hunt, A. J.

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101(16), 5856–5861 (2004).
[CrossRef] [PubMed]

Ivanisevic, A.

A. Ivanisevic and C. A. Mirkin, ““Dip-Pen” nanolithography on semiconductor surfaces,” J. Am. Chem. Soc. 123(32), 7887–7889 (2001).
[CrossRef] [PubMed]

Joglekar, A. P.

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101(16), 5856–5861 (2004).
[CrossRef] [PubMed]

Kim, Y. J.

Y. J. Kim, C. H. Lee, Y. J. Hong, and G. C. Yi, “Controlled selective growth of ZnO nanorod and microrod arrays on Si substrates by a wet chemical method,” Appl. Phys. Lett. 89, 163128–163130 (2006.).
[CrossRef]

Kirkham, M.

S. Xu, Y. Wei, M. Kirkham, J. Liu, W. Mai, D. Davidovic, R. L. Snyder, and Z. L. Wang, “Patterned growth of vertically aligned ZnO nanowire arrays on inorganic substrates at low temperature without catalyst,” J. Am. Chem. Soc. 130(45), 14958–14959 (2008).
[CrossRef] [PubMed]

Koczkur, K.

A. Chen, X. Peng, K. Koczkur, and B. Miller, “Super-hydrophobic tin oxide nanoflowers,” Chem. Commun. (Camb.) (17): 1964–1965 (2004).
[CrossRef]

Laine, J.

J. Matos, J. Laine, and J. M. Hermann, “Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon,” Appl. Catal. B 18(3–4), 281–291 (1998).
[CrossRef]

Lee, C. H.

Y. J. Kim, C. H. Lee, Y. J. Hong, and G. C. Yi, “Controlled selective growth of ZnO nanorod and microrod arrays on Si substrates by a wet chemical method,” Appl. Phys. Lett. 89, 163128–163130 (2006.).
[CrossRef]

Li, R. X.

X. D. Guo, R. X. Li, Y. Hang, Z. Z. Xu, B. K. Yu, Y. Dai, B. Lu, and X. W. Sun, “Coherent linking of periodic nano-ripples on a ZnO crystal surface induced by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 94(2), 423–426 (2009).
[CrossRef]

Li, W. N.

W. N. Li, J. K. Yuan, X. F. Shen, S. Gomez-Mower, L. P. Xu, S. Sithambaram, M. Aindow, and S. L. Suib, “Hydrothermal synthesis of structure- and shape-controlled manganese oxide octahedral molecular sieve nanomaterials,” Adv. Funct. Mater. 16(9), 1247–1253 (2006).
[CrossRef]

Li, Y. B.

Y. B. Li, Y. Bando, and D. Golberg, “MoS2 nanoflowers and their field-emission properties,” Appl. Phys. Lett. 82(12), 1962–1964 (2003).
[CrossRef]

Li, Y. D.

X. Wang, J. Zhuang, Q. Peng, and Y. D. Li, “A general strategy for nanocrystal synthesis,” Nature 437(7055), 121–124 (2005).
[CrossRef] [PubMed]

Liang, H. P.

L. S. Zhong, J. S. Hu, H. P. Liang, A. M. Cao, W. G. Song, and L. J. Wan, “Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment,” Adv. Mater. 18(18), 2426–2431 (2006).
[CrossRef]

Liao, Y.

Lim, J. H.

S. Park, J. H. Lim, S. W. Chung, and C. A. Mirkin, “Self-assembly of mesoscopic metal-polymer amphiphiles,” Science 303(5656), 348–351 (2004).
[CrossRef] [PubMed]

Lin, G.

Liu, B.

B. Liu and H. C. Zeng, “Mesoscale organization of CuO nanoribbons: formation of “dandelions”,” J. Am. Chem. Soc. 126(26), 8124–8125 (2004).
[CrossRef] [PubMed]

Liu, H. H.

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101(16), 5856–5861 (2004).
[CrossRef] [PubMed]

Liu, J.

S. Xu, Y. Wei, M. Kirkham, J. Liu, W. Mai, D. Davidovic, R. L. Snyder, and Z. L. Wang, “Patterned growth of vertically aligned ZnO nanowire arrays on inorganic substrates at low temperature without catalyst,” J. Am. Chem. Soc. 130(45), 14958–14959 (2008).
[CrossRef] [PubMed]

Liu, J. A.

J. W. Hsu, Z. R. Tian, N. C. Simmons, C. M. Matzke, J. A. Voigt, and J. A. Liu, “Directed spatial organization of zinc oxide nanorods,” Nano Lett. 5(1), 83–86 (2005).
[CrossRef] [PubMed]

Lu, B.

X. D. Guo, R. X. Li, Y. Hang, Z. Z. Xu, B. K. Yu, Y. Dai, B. Lu, and X. W. Sun, “Coherent linking of periodic nano-ripples on a ZnO crystal surface induced by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 94(2), 423–426 (2009).
[CrossRef]

Luo, F. F.

Luo, H.

Y. S. Ding, X. F. Shen, S. Gomez, H. Luo, M. Aindow, and S. L. Suib, “Hydrothermal growth of manganese dioxide into three-dimensional hierarchical nanoarchitectures,” Adv. Funct. Mater. 16(4), 549–555 (2006).
[CrossRef]

Luo, M.

H. K. Sun, M. Luo, W. J. Weng, K. Cheng, P. Y. Du, G. Shen, and G. R. Han, “Room-temperature preparation of ZnO nanosheets grown on Si substrates by a seed-layer assisted solution route,” Nanotechnology 19(12), 125603 (2008).
[CrossRef] [PubMed]

Mai, W.

S. Xu, Y. Wei, M. Kirkham, J. Liu, W. Mai, D. Davidovic, R. L. Snyder, and Z. L. Wang, “Patterned growth of vertically aligned ZnO nanowire arrays on inorganic substrates at low temperature without catalyst,” J. Am. Chem. Soc. 130(45), 14958–14959 (2008).
[CrossRef] [PubMed]

Malzer, S.

Marqusee, J. A.

J. A. Marqusee and J. Ross, “Kinetics of phase transitions: Theory of Ostwald ripening,” J. Chem. Phys. 79(1), 373–378 (1983).
[CrossRef]

Matos, J.

J. Matos, J. Laine, and J. M. Hermann, “Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon,” Appl. Catal. B 18(3–4), 281–291 (1998).
[CrossRef]

Matzke, C. M.

J. W. Hsu, Z. R. Tian, N. C. Simmons, C. M. Matzke, J. A. Voigt, and J. A. Liu, “Directed spatial organization of zinc oxide nanorods,” Nano Lett. 5(1), 83–86 (2005).
[CrossRef] [PubMed]

Meyhöfer, E.

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101(16), 5856–5861 (2004).
[CrossRef] [PubMed]

Miller, B.

A. Chen, X. Peng, K. Koczkur, and B. Miller, “Super-hydrophobic tin oxide nanoflowers,” Chem. Commun. (Camb.) (17): 1964–1965 (2004).
[CrossRef]

Mirkin, C. A.

S. Park, J. H. Lim, S. W. Chung, and C. A. Mirkin, “Self-assembly of mesoscopic metal-polymer amphiphiles,” Science 303(5656), 348–351 (2004).
[CrossRef] [PubMed]

A. Ivanisevic and C. A. Mirkin, ““Dip-Pen” nanolithography on semiconductor surfaces,” J. Am. Chem. Soc. 123(32), 7887–7889 (2001).
[CrossRef] [PubMed]

C. A. Mirkin, “Programming the assembly of two- and three-dimensional architectures with DNA and nanoscale inorganic building blocks,” Inorg. Chem. 39(11), 2258–2272 (2000).
[CrossRef]

Moon, S. I.

C. W. Extrand, S. I. Moon, P. Hall, and D. Schmidt, “Superwetting of structured surfaces,” Langmuir 23(17), 8882–8890 (2007).
[CrossRef] [PubMed]

Mourou, G.

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101(16), 5856–5861 (2004).
[CrossRef] [PubMed]

Park, S.

S. Park, J. H. Lim, S. W. Chung, and C. A. Mirkin, “Self-assembly of mesoscopic metal-polymer amphiphiles,” Science 303(5656), 348–351 (2004).
[CrossRef] [PubMed]

Pedraza, A. J.

Y. F. Guan and A. J. Pedraza, “Synthesis and alignment of ZnO and ZnO nanoparticles by laser-assisted chemical vapor deposition,” Nanotechnology 19(4), 045609 (2008).
[CrossRef] [PubMed]

Peng, Q.

X. Wang, J. Zhuang, Q. Peng, and Y. D. Li, “A general strategy for nanocrystal synthesis,” Nature 437(7055), 121–124 (2005).
[CrossRef] [PubMed]

Peng, X.

A. Chen, X. Peng, K. Koczkur, and B. Miller, “Super-hydrophobic tin oxide nanoflowers,” Chem. Commun. (Camb.) (17): 1964–1965 (2004).
[CrossRef]

Picraux, S. T.

R. Rosario, D. Gust, A. A. Garcia, M. Hayes, J. L. Taraci, J. W. Dailey, and S. T. Picraux, “Lotus effect amplifies light-induced contact angle switching,” J. Phys. Chem. B 108(34), 12640–12642 (2004).
[CrossRef]

Popov, Y. O.

Y. O. Popov, “Evaporative deposition patterns: spatial dimensions of the deposit,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036313 (2005).
[CrossRef] [PubMed]

Qian, B.

Qin, A. M.

Y. P. Fang, A. W. Xu, A. M. Qin, and R. J. Yu, “Selective synthesis of hexagonal and tetragonal dysprosium orthophosphate nanorods by a hydrothermal method,” Cryst. Growth Des. 5(3), 1221–1225 (2005).
[CrossRef]

Qiu, J. R.

Rosario, R.

R. Rosario, D. Gust, A. A. Garcia, M. Hayes, J. L. Taraci, J. W. Dailey, and S. T. Picraux, “Lotus effect amplifies light-induced contact angle switching,” J. Phys. Chem. B 108(34), 12640–12642 (2004).
[CrossRef]

Ross, J.

J. A. Marqusee and J. Ross, “Kinetics of phase transitions: Theory of Ostwald ripening,” J. Chem. Phys. 79(1), 373–378 (1983).
[CrossRef]

Schmidt, D.

C. W. Extrand, S. I. Moon, P. Hall, and D. Schmidt, “Superwetting of structured surfaces,” Langmuir 23(17), 8882–8890 (2007).
[CrossRef] [PubMed]

Shen, G.

H. K. Sun, M. Luo, W. J. Weng, K. Cheng, P. Y. Du, G. Shen, and G. R. Han, “Room-temperature preparation of ZnO nanosheets grown on Si substrates by a seed-layer assisted solution route,” Nanotechnology 19(12), 125603 (2008).
[CrossRef] [PubMed]

Shen, X. F.

W. N. Li, J. K. Yuan, X. F. Shen, S. Gomez-Mower, L. P. Xu, S. Sithambaram, M. Aindow, and S. L. Suib, “Hydrothermal synthesis of structure- and shape-controlled manganese oxide octahedral molecular sieve nanomaterials,” Adv. Funct. Mater. 16(9), 1247–1253 (2006).
[CrossRef]

Y. S. Ding, X. F. Shen, S. Gomez, H. Luo, M. Aindow, and S. L. Suib, “Hydrothermal growth of manganese dioxide into three-dimensional hierarchical nanoarchitectures,” Adv. Funct. Mater. 16(4), 549–555 (2006).
[CrossRef]

Simmons, N. C.

J. W. Hsu, Z. R. Tian, N. C. Simmons, C. M. Matzke, J. A. Voigt, and J. A. Liu, “Directed spatial organization of zinc oxide nanorods,” Nano Lett. 5(1), 83–86 (2005).
[CrossRef] [PubMed]

Sithambaram, S.

W. N. Li, J. K. Yuan, X. F. Shen, S. Gomez-Mower, L. P. Xu, S. Sithambaram, M. Aindow, and S. L. Suib, “Hydrothermal synthesis of structure- and shape-controlled manganese oxide octahedral molecular sieve nanomaterials,” Adv. Funct. Mater. 16(9), 1247–1253 (2006).
[CrossRef]

Snyder, R. L.

S. Xu, Y. Wei, M. Kirkham, J. Liu, W. Mai, D. Davidovic, R. L. Snyder, and Z. L. Wang, “Patterned growth of vertically aligned ZnO nanowire arrays on inorganic substrates at low temperature without catalyst,” J. Am. Chem. Soc. 130(45), 14958–14959 (2008).
[CrossRef] [PubMed]

Song, J.

Song, W. G.

L. S. Zhong, J. S. Hu, H. P. Liang, A. M. Cao, W. G. Song, and L. J. Wan, “Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment,” Adv. Mater. 18(18), 2426–2431 (2006).
[CrossRef]

Suib, S. L.

W. N. Li, J. K. Yuan, X. F. Shen, S. Gomez-Mower, L. P. Xu, S. Sithambaram, M. Aindow, and S. L. Suib, “Hydrothermal synthesis of structure- and shape-controlled manganese oxide octahedral molecular sieve nanomaterials,” Adv. Funct. Mater. 16(9), 1247–1253 (2006).
[CrossRef]

Y. S. Ding, X. F. Shen, S. Gomez, H. Luo, M. Aindow, and S. L. Suib, “Hydrothermal growth of manganese dioxide into three-dimensional hierarchical nanoarchitectures,” Adv. Funct. Mater. 16(4), 549–555 (2006).
[CrossRef]

Sun, H. K.

H. K. Sun, M. Luo, W. J. Weng, K. Cheng, P. Y. Du, G. Shen, and G. R. Han, “Room-temperature preparation of ZnO nanosheets grown on Si substrates by a seed-layer assisted solution route,” Nanotechnology 19(12), 125603 (2008).
[CrossRef] [PubMed]

Sun, H. Y.

Sun, X. W.

X. D. Guo, R. X. Li, Y. Hang, Z. Z. Xu, B. K. Yu, Y. Dai, B. Lu, and X. W. Sun, “Coherent linking of periodic nano-ripples on a ZnO crystal surface induced by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 94(2), 423–426 (2009).
[CrossRef]

Taraci, J. L.

R. Rosario, D. Gust, A. A. Garcia, M. Hayes, J. L. Taraci, J. W. Dailey, and S. T. Picraux, “Lotus effect amplifies light-induced contact angle switching,” J. Phys. Chem. B 108(34), 12640–12642 (2004).
[CrossRef]

Tian, Z. R.

J. W. Hsu, Z. R. Tian, N. C. Simmons, C. M. Matzke, J. A. Voigt, and J. A. Liu, “Directed spatial organization of zinc oxide nanorods,” Nano Lett. 5(1), 83–86 (2005).
[CrossRef] [PubMed]

van Kan, J. A.

J. A. van Kan, A. A. Bettiol, and F. Watt, “Proton beam writing of three-dimensional nanostructures in hydrogen silsesquioxane,” Nano Lett. 6(3), 579–582 (2006).
[CrossRef] [PubMed]

Voigt, J. A.

J. W. Hsu, Z. R. Tian, N. C. Simmons, C. M. Matzke, J. A. Voigt, and J. A. Liu, “Directed spatial organization of zinc oxide nanorods,” Nano Lett. 5(1), 83–86 (2005).
[CrossRef] [PubMed]

Wan, L. J.

L. S. Zhong, J. S. Hu, H. P. Liang, A. M. Cao, W. G. Song, and L. J. Wan, “Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment,” Adv. Mater. 18(18), 2426–2431 (2006).
[CrossRef]

Wang, L. J.

Wang, X.

X. Wang, J. Zhuang, Q. Peng, and Y. D. Li, “A general strategy for nanocrystal synthesis,” Nature 437(7055), 121–124 (2005).
[CrossRef] [PubMed]

Wang, Z. L.

S. Xu, Y. Wei, M. Kirkham, J. Liu, W. Mai, D. Davidovic, R. L. Snyder, and Z. L. Wang, “Patterned growth of vertically aligned ZnO nanowire arrays on inorganic substrates at low temperature without catalyst,” J. Am. Chem. Soc. 130(45), 14958–14959 (2008).
[CrossRef] [PubMed]

Watt, F.

J. A. van Kan, A. A. Bettiol, and F. Watt, “Proton beam writing of three-dimensional nanostructures in hydrogen silsesquioxane,” Nano Lett. 6(3), 579–582 (2006).
[CrossRef] [PubMed]

Wei, Y.

S. Xu, Y. Wei, M. Kirkham, J. Liu, W. Mai, D. Davidovic, R. L. Snyder, and Z. L. Wang, “Patterned growth of vertically aligned ZnO nanowire arrays on inorganic substrates at low temperature without catalyst,” J. Am. Chem. Soc. 130(45), 14958–14959 (2008).
[CrossRef] [PubMed]

Weng, W. J.

H. K. Sun, M. Luo, W. J. Weng, K. Cheng, P. Y. Du, G. Shen, and G. R. Han, “Room-temperature preparation of ZnO nanosheets grown on Si substrates by a seed-layer assisted solution route,” Nanotechnology 19(12), 125603 (2008).
[CrossRef] [PubMed]

Wenzel, R. N.

R. N. Wenzel, “Resistance of solid surfaces to wetting by water,” Ind. Eng. Chem. 28(8), 988–994 (1936).
[CrossRef]

Xu, A. W.

Y. P. Fang, A. W. Xu, A. M. Qin, and R. J. Yu, “Selective synthesis of hexagonal and tetragonal dysprosium orthophosphate nanorods by a hydrothermal method,” Cryst. Growth Des. 5(3), 1221–1225 (2005).
[CrossRef]

Xu, J.

Xu, L. P.

W. N. Li, J. K. Yuan, X. F. Shen, S. Gomez-Mower, L. P. Xu, S. Sithambaram, M. Aindow, and S. L. Suib, “Hydrothermal synthesis of structure- and shape-controlled manganese oxide octahedral molecular sieve nanomaterials,” Adv. Funct. Mater. 16(9), 1247–1253 (2006).
[CrossRef]

Xu, S.

S. Xu, Y. Wei, M. Kirkham, J. Liu, W. Mai, D. Davidovic, R. L. Snyder, and Z. L. Wang, “Patterned growth of vertically aligned ZnO nanowire arrays on inorganic substrates at low temperature without catalyst,” J. Am. Chem. Soc. 130(45), 14958–14959 (2008).
[CrossRef] [PubMed]

Xu, Z. Z.

F. F. Luo, B. Qian, G. Lin, J. Xu, Y. Liao, J. Song, H. Y. Sun, B. Zhu, J. R. Qiu, Q. Z. Zhao, and Z. Z. Xu, “Redistribution of elements in glass induced by a high-repetition-rate femtosecond laser,” Opt. Express 18(6), 6262–6269 (2010).
[CrossRef] [PubMed]

X. D. Guo, R. X. Li, Y. Hang, Z. Z. Xu, B. K. Yu, Y. Dai, B. Lu, and X. W. Sun, “Coherent linking of periodic nano-ripples on a ZnO crystal surface induced by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 94(2), 423–426 (2009).
[CrossRef]

Yi, G. C.

Y. J. Kim, C. H. Lee, Y. J. Hong, and G. C. Yi, “Controlled selective growth of ZnO nanorod and microrod arrays on Si substrates by a wet chemical method,” Appl. Phys. Lett. 89, 163128–163130 (2006.).
[CrossRef]

Yu, B. K.

X. D. Guo, R. X. Li, Y. Hang, Z. Z. Xu, B. K. Yu, Y. Dai, B. Lu, and X. W. Sun, “Coherent linking of periodic nano-ripples on a ZnO crystal surface induced by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 94(2), 423–426 (2009).
[CrossRef]

Yu, R. J.

Y. P. Fang, A. W. Xu, A. M. Qin, and R. J. Yu, “Selective synthesis of hexagonal and tetragonal dysprosium orthophosphate nanorods by a hydrothermal method,” Cryst. Growth Des. 5(3), 1221–1225 (2005).
[CrossRef]

Yuan, J. K.

W. N. Li, J. K. Yuan, X. F. Shen, S. Gomez-Mower, L. P. Xu, S. Sithambaram, M. Aindow, and S. L. Suib, “Hydrothermal synthesis of structure- and shape-controlled manganese oxide octahedral molecular sieve nanomaterials,” Adv. Funct. Mater. 16(9), 1247–1253 (2006).
[CrossRef]

Zeng, H. C.

B. Liu and H. C. Zeng, “Mesoscale organization of CuO nanoribbons: formation of “dandelions”,” J. Am. Chem. Soc. 126(26), 8124–8125 (2004).
[CrossRef] [PubMed]

Zhao, Q. Z.

Zhong, L. S.

L. S. Zhong, J. S. Hu, H. P. Liang, A. M. Cao, W. G. Song, and L. J. Wan, “Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment,” Adv. Mater. 18(18), 2426–2431 (2006).
[CrossRef]

Zhu, B.

Zhuang, J.

X. Wang, J. Zhuang, Q. Peng, and Y. D. Li, “A general strategy for nanocrystal synthesis,” Nature 437(7055), 121–124 (2005).
[CrossRef] [PubMed]

Adv. Funct. Mater. (2)

Y. S. Ding, X. F. Shen, S. Gomez, H. Luo, M. Aindow, and S. L. Suib, “Hydrothermal growth of manganese dioxide into three-dimensional hierarchical nanoarchitectures,” Adv. Funct. Mater. 16(4), 549–555 (2006).
[CrossRef]

W. N. Li, J. K. Yuan, X. F. Shen, S. Gomez-Mower, L. P. Xu, S. Sithambaram, M. Aindow, and S. L. Suib, “Hydrothermal synthesis of structure- and shape-controlled manganese oxide octahedral molecular sieve nanomaterials,” Adv. Funct. Mater. 16(9), 1247–1253 (2006).
[CrossRef]

Adv. Mater. (1)

L. S. Zhong, J. S. Hu, H. P. Liang, A. M. Cao, W. G. Song, and L. J. Wan, “Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment,” Adv. Mater. 18(18), 2426–2431 (2006).
[CrossRef]

Appl. Catal. B (1)

J. Matos, J. Laine, and J. M. Hermann, “Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon,” Appl. Catal. B 18(3–4), 281–291 (1998).
[CrossRef]

Appl. Phys. Lett. (1)

Y. B. Li, Y. Bando, and D. Golberg, “MoS2 nanoflowers and their field-emission properties,” Appl. Phys. Lett. 82(12), 1962–1964 (2003).
[CrossRef]

Appl. Phys. Lett. (1)

Y. J. Kim, C. H. Lee, Y. J. Hong, and G. C. Yi, “Controlled selective growth of ZnO nanorod and microrod arrays on Si substrates by a wet chemical method,” Appl. Phys. Lett. 89, 163128–163130 (2006.).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

X. D. Guo, R. X. Li, Y. Hang, Z. Z. Xu, B. K. Yu, Y. Dai, B. Lu, and X. W. Sun, “Coherent linking of periodic nano-ripples on a ZnO crystal surface induced by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 94(2), 423–426 (2009).
[CrossRef]

Chem. Commun. (Camb.) (1)

A. Chen, X. Peng, K. Koczkur, and B. Miller, “Super-hydrophobic tin oxide nanoflowers,” Chem. Commun. (Camb.) (17): 1964–1965 (2004).
[CrossRef]

Cryst. Growth Des. (1)

Y. P. Fang, A. W. Xu, A. M. Qin, and R. J. Yu, “Selective synthesis of hexagonal and tetragonal dysprosium orthophosphate nanorods by a hydrothermal method,” Cryst. Growth Des. 5(3), 1221–1225 (2005).
[CrossRef]

Ind. Eng. Chem. (1)

R. N. Wenzel, “Resistance of solid surfaces to wetting by water,” Ind. Eng. Chem. 28(8), 988–994 (1936).
[CrossRef]

Inorg. Chem. (1)

C. A. Mirkin, “Programming the assembly of two- and three-dimensional architectures with DNA and nanoscale inorganic building blocks,” Inorg. Chem. 39(11), 2258–2272 (2000).
[CrossRef]

J. Am. Chem. Soc. (3)

A. Ivanisevic and C. A. Mirkin, ““Dip-Pen” nanolithography on semiconductor surfaces,” J. Am. Chem. Soc. 123(32), 7887–7889 (2001).
[CrossRef] [PubMed]

S. Xu, Y. Wei, M. Kirkham, J. Liu, W. Mai, D. Davidovic, R. L. Snyder, and Z. L. Wang, “Patterned growth of vertically aligned ZnO nanowire arrays on inorganic substrates at low temperature without catalyst,” J. Am. Chem. Soc. 130(45), 14958–14959 (2008).
[CrossRef] [PubMed]

B. Liu and H. C. Zeng, “Mesoscale organization of CuO nanoribbons: formation of “dandelions”,” J. Am. Chem. Soc. 126(26), 8124–8125 (2004).
[CrossRef] [PubMed]

J. Chem. Phys. (1)

J. A. Marqusee and J. Ross, “Kinetics of phase transitions: Theory of Ostwald ripening,” J. Chem. Phys. 79(1), 373–378 (1983).
[CrossRef]

J. Phys. Chem. B (1)

R. Rosario, D. Gust, A. A. Garcia, M. Hayes, J. L. Taraci, J. W. Dailey, and S. T. Picraux, “Lotus effect amplifies light-induced contact angle switching,” J. Phys. Chem. B 108(34), 12640–12642 (2004).
[CrossRef]

Langmuir (1)

C. W. Extrand, S. I. Moon, P. Hall, and D. Schmidt, “Superwetting of structured surfaces,” Langmuir 23(17), 8882–8890 (2007).
[CrossRef] [PubMed]

Nano Lett. (2)

J. A. van Kan, A. A. Bettiol, and F. Watt, “Proton beam writing of three-dimensional nanostructures in hydrogen silsesquioxane,” Nano Lett. 6(3), 579–582 (2006).
[CrossRef] [PubMed]

J. W. Hsu, Z. R. Tian, N. C. Simmons, C. M. Matzke, J. A. Voigt, and J. A. Liu, “Directed spatial organization of zinc oxide nanorods,” Nano Lett. 5(1), 83–86 (2005).
[CrossRef] [PubMed]

Nanotechnology (2)

Y. F. Guan and A. J. Pedraza, “Synthesis and alignment of ZnO and ZnO nanoparticles by laser-assisted chemical vapor deposition,” Nanotechnology 19(4), 045609 (2008).
[CrossRef] [PubMed]

H. K. Sun, M. Luo, W. J. Weng, K. Cheng, P. Y. Du, G. Shen, and G. R. Han, “Room-temperature preparation of ZnO nanosheets grown on Si substrates by a seed-layer assisted solution route,” Nanotechnology 19(12), 125603 (2008).
[CrossRef] [PubMed]

Nature (1)

X. Wang, J. Zhuang, Q. Peng, and Y. D. Li, “A general strategy for nanocrystal synthesis,” Nature 437(7055), 121–124 (2005).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

Y. O. Popov, “Evaporative deposition patterns: spatial dimensions of the deposit,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036313 (2005).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101(16), 5856–5861 (2004).
[CrossRef] [PubMed]

Science (1)

S. Park, J. H. Lim, S. W. Chung, and C. A. Mirkin, “Self-assembly of mesoscopic metal-polymer amphiphiles,” Science 303(5656), 348–351 (2004).
[CrossRef] [PubMed]

Trans. Faraday Soc. (1)

A. B. D. Cassie and S. Baxter, “Wettability of porous surfaces,” Trans. Faraday Soc. 40, 546–551 (1944).
[CrossRef]

Supplementary Material (1)

» Media 1: AVI (171 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Fabrication process of 3D flowerlike nanostructures: deposition of a PMMA layer on a GaN/LiALO2 substrate, laser processing and hydrothermal growth of ZnO nanostructure. The right side shows the schematic diagram of photoreaction apparatus.

Fig. 3
Fig. 3

CCD images of CA measurements of ZnO grid surfaces at different time: (a) 0 min, (b) 10 min, (c) 20 min, (d) 30 min, (e) 40 min, respectively (Media 1). (f) Water CA spectra of ZnO grid as a function of time, the time interval is 2 min.

Fig. 2
Fig. 2

FE-SEM images of ZnO flowerlike nanostructures (a) single flower, (b) flower with different size, (c) flower matrix, (d) continuous line-mode structures, (e) ZnO grid, (f) EDX analysis took from the flower petals, and the substrate (the inset), respectively.

Fig. 4
Fig. 4

(a) UV-vis adsorption spectra of RB solution catalyzed by the ZnO nanostructure films under UV irradiation. (b) Degradation of the RB under UV irradiation as a function of time.

Metrics