Abstract

Amorphous thin films of Ge2Sb2Te5, sputter-deposited on a ZnS-SiO2 dielectric layer, are investigated for the purpose of understanding the structural phase-transitions that occur under the influence of tightly-focused laser beams. Selective chemical etching of recorded marks in conjunction with optical, atomic force, and electron microscopy as well as local electron diffraction analysis are used to discern the complex structural features created under a broad range of laser powers and pulse durations. Clarifying the nature of phase transitions associated with laser-recorded marks in chalcogenide Ge2Sb2Te5 thin films provides useful information for reversible optical and electronic data storage, as well as for phase-change (thermal) lithography.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69(5), 2849–2856 (1991).
    [CrossRef]
  2. J. H. Coombs, A. P. J. M. Jongenelis, W. van Es-Spiekman, and B. A. J. Jacobs, “Laser-induced crystallization phenomena in GeTe-based alloys. I. Characterization of nucleation and growth,” J. Appl. Phys. 78(8), 4906–4917 (1995).
    [CrossRef]
  3. T. Ohta, K. Nishiuchi, K. Narumi, Y. Kitaoka, H. Ishibashi, N. Yamada, and T. Kozaki, “Overview and the future of phase-change optical disk technology,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 770–774 (2000).
    [CrossRef]
  4. K. Nakayama, K. Kojima, Y. Imai, T. Kasai, S. Fukushima, A. Kitagawa, M. Kumeda, Y. Kakimoto, and M. Suzuki, “Nonvolatile memory based on phase change in Se-Sb-Te glass,” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 404–408 (2003).
    [CrossRef]
  5. A. L. Pirovano, A. L. Lacaita, A. Benvenuti, F. Pellizzer, and R. Bez, “Electronic switching in phase-change memories,” IEEE Trans. Electron. Dev. 51(3), 452–459 (2004).
    [CrossRef]
  6. W. Welnic and M. Wuttig, “Reversible switching in phase-change materials,” Mater. Today 11(6), 20–27 (2008).
    [CrossRef]
  7. T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett. 85(4), 639–641 (2004).
    [CrossRef]
  8. Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89(4), 3 (2006).
    [CrossRef]
  9. C. P. Liu, C. C. Hsu, T. R. Jeng, and J. P. Chen, “Enhancing nanoscale patterning on Ge-Sb-Sn-O inorganic resist film by introducing oxygen during blue laser-induced thermal lithography,” J. Alloy. Comp. 488(1), 190–194 (2009).
    [CrossRef]
  10. T. Ohta, K. Nagata, I. Satoh, and R. Imanaka, “Overwritable phase-change optical disk recording,” IEEE Trans. Magn. 34(2), 426–431 (1998).
    [CrossRef]
  11. G. R. Elliott, D. W. Hewak, G. S. Murugan, and J. S. Wilkinson, “Chalcogenide glass microspheres; their production, characterization and potential,” Opt. Express 15(26), 17542–17553 (2007).
    [CrossRef] [PubMed]
  12. T. Kato and K. Tanaka, “Electronic properties of amorphous and crystalline Ge2Sb2Te5 films,” Jpn. J. Appl. Phys. 44(10), 7340–7344 (2005).
    [CrossRef]
  13. S. K. Lin, I. C. Lin, and D. P. Tsai, “Characterization of nano recorded marks at different writing strategies on phase-change recording layer of optical disks,” Opt. Express 14(10), 4452–4458 (2006).
    [CrossRef] [PubMed]
  14. M. M. Aziz and C. D. Wright, “An analytical model for nanoscale electrothermal probe recording on phase-change media,” J. Appl. Phys. 99(3), 12 (2006).
    [CrossRef]
  15. K. C. Silva, O. A. Sakai, A. Steimacher, F. Pedrochi, M. L. Baesso, A. C. Bento, A. N. Medina, S. M. Lima, R. C. Oliveira, J. C. S. Moraes, K. Yukimitu, E. B. Araújo, M. Petrovich, and D. W. Hewak, “Temperature and wavelength dependence of the thermo-optical properties of tellurite and chalcogenide glasses,” J. Appl. Phys. 102(7), 073507 (2007).
    [CrossRef]
  16. H. J. Borg, M. van Schijndel, J. C. N. Rijpers, M. H. R. Lankhorst, G. F. Zhou, M. J. Dekker, I. P. D. Ubbens, and M. Kuijper, “Phase-change media for high-numerical-aperture and blue-wavelength recording,” Jpn. J. Appl. Phys. 40(Part 1, No. 3B), 1592–1597 (2001).
    [CrossRef]
  17. T. Ohta, “Phase-change optical memory promotes the DVD optical disk,” J. Optoelectron. Adv. Mater. 3, 609–626 (2001).
  18. H. F. Hamann, M. O’Boyle, Y. C. Martin, M. Rooks, and H. K. Wickramasinghe, “Ultra-high-density phase-change storage and memory,” Nat. Mater. 5(5), 383–387 (2006).
    [CrossRef] [PubMed]
  19. D. Krebs, S. Raoux, C. T. Rettner, G. W. Burr, M. Salinga, and M. Wuttig, “Threshold field of phase change memory materials measured using phase change bridge devices,” Appl. Phys. Lett. 95(8), 3 (2009).
    [CrossRef]
  20. E. R. Meinders, R. Rastogi, M. Van der Veer, P. Peeters, H. El Majdoubi, H. Bulle, A. Millet, and D. Bruls, “Phase-transition mastering of high-density optical media,” Jpn. J. Appl. Phys. 46(No. 6B), 3987–3992 (2007).
    [CrossRef]
  21. C. P. Liu, Y. X. Huang, C. C. Hsu, T. R. Jeng, and J. P. Chen, “Nanoscale Fabrication Using Thermal Lithography Technique With Blue Laser,” IEEE Trans. Magn. 45(5), 2206–2208 (2009).
    [CrossRef]
  22. N. Yamada and T. Matsunaga, “Structure of laser-crystallized Ge2Sb2+xTe5 sputtered thin films for use in optical memory,” J. Appl. Phys. 88(12), 7020–7028 (2000).
    [CrossRef]
  23. V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb2Te5 films,” J. Appl. Phys. 89(6), 3168–3176 (2001).
    [CrossRef]
  24. C. H. Chu, B. J. Wu, T. S. Kao, Y. H. Fu, H. P. Chiang, and D. P. Tsai, “Imaging of Recording Marks and Their Jitters With Different Writing Strategy and Terminal Resistance of Optical Output,” IEEE Trans. Magn. 45(5), 2221–2223 (2009).
    [CrossRef]
  25. J. Tominaga, T. Nakano, and N. Atoda, “An approach for recording and readout beyond the diffraction limit with an Sb thin film,” Appl. Phys. Lett. 73(15), 2078–2080 (1998).
    [CrossRef]
  26. T. Fukaya, D. Buchel, S. Shinbori, J. Tominaga, N. Atoda, D. P. Tsai, and W. C. Lin, “Micro-optical nonlinearity of a silver oxide layer,” J. Appl. Phys. 89(11), 6139–6144 (2001).
    [CrossRef]
  27. J. Kim, I. Hwang, D. Yoon, I. Park, D. Shin, T. Kikukawa, T. Shima, and J. Tominaga, “Super-resolution by elliptical bubble formation with PtOx and AgInSbTe layers,” Appl. Phys. Lett. 83(9), 1701–1703 (2003).
    [CrossRef]
  28. W. C. Lin, T. S. Kao, H. H. Chang, Y. H. Lin, Y. H. Fu, C. T. Wu, K. H. Chen, and D. P. Tsai, “Study of a super-resolution optical structure: Polycarbonate/ZnS-SiO2/ZnO/ZnS-SiO2/Ge2Sb2Te5/ZnS-SiO2,” Jpn. J. Appl. Phys. 42(Part 1, No. 2B), 1029–1030 (2003).
    [CrossRef]
  29. J. W. Fang, C. C. Wu, A. Liao, W. C. Lin, and D. P. Tsai, “Implementation of practical super-resolution near-field structure system using commercial drive,” Jpn. J. Appl. Phys. 45(No. 2B), 1383–1384 (2006).
    [CrossRef]
  30. T. S. Kao, Y. H. Fu, H. W. Hsu, and D. P. Tsai, “Study of the optical response of phase-change recording layer with zinc oxide nanostructured thin film,” J. Microsc. 229(3), 561–566 (2008).
    [CrossRef] [PubMed]
  31. K. P. Chiu, K. F. Lai, and D. P. Tsai, “Application of surface polariton coupling between nano recording marks to optical data storage,” Opt. Express 16(18), 13885–13892 (2008).
    [CrossRef] [PubMed]
  32. V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Atomic force microscopy study of laser induced phase transitions in Ge2Sb2Te5,” J. Appl. Phys. 86(10), 5879–5887 (1999).
    [CrossRef]
  33. J. S. Wei, X. B. Jiao, F. X. Gan, and M. F. Xiao, “Laser pulse induced bumps in chalcogenide phase change films,” J. Appl. Phys. 103(12), 5 (2008).
    [CrossRef]
  34. S. K. Lin, P. L. Yang, I. C. Lin, H. W. Hsu, and D. P. Tsai, “Resolving nano scale recording bits on phase-change rewritable optical disk,” Jpn. J. Appl. Phys. 45(No. 2B), 1431–1434 (2006).
    [CrossRef]
  35. L. Y. Wang, B. Liu, Z. T. Song, S. L. Feng, Y. H. Xiang, and F. X. Zhang, “Basic Wet-Etching Solutions for Ge2Sb2Te5 Phase Change Material,” J. Electrochem. Soc. 157(4), H470–H473 (2010).
    [CrossRef]
  36. S. K. Lin, I. C. Lin, S. Y. Chen, H. W. Hsu, and D. P. Tsai, “Study of nanoscale recorded marks on phase-change recording layers and the interactions with surroundings,” IEEE Trans. Magn. 43(2), 861–863 (2007).
    [CrossRef]
  37. D. P. Tsai and W. R. Guo, “Near-field optical recording on the cyanine dye layer of a commercial compact disk-recordable,” J. Vac. Sci. Technol. A-Vac, Surf. Films 15(3), 1442–1445 (1997).
    [CrossRef]
  38. S. H. Chen, S. P. Hou, J. H. Hsieh, H. K. Chen, and D. P. Tsai, “Writing and erasing efficiency analysis on optical-storage media using scanning surface potential microscopy,” J. Vac. Sci. Technol. A 24(6), 2003–2007 (2006).
    [CrossRef]

2010 (1)

L. Y. Wang, B. Liu, Z. T. Song, S. L. Feng, Y. H. Xiang, and F. X. Zhang, “Basic Wet-Etching Solutions for Ge2Sb2Te5 Phase Change Material,” J. Electrochem. Soc. 157(4), H470–H473 (2010).
[CrossRef]

2009 (4)

C. P. Liu, C. C. Hsu, T. R. Jeng, and J. P. Chen, “Enhancing nanoscale patterning on Ge-Sb-Sn-O inorganic resist film by introducing oxygen during blue laser-induced thermal lithography,” J. Alloy. Comp. 488(1), 190–194 (2009).
[CrossRef]

D. Krebs, S. Raoux, C. T. Rettner, G. W. Burr, M. Salinga, and M. Wuttig, “Threshold field of phase change memory materials measured using phase change bridge devices,” Appl. Phys. Lett. 95(8), 3 (2009).
[CrossRef]

C. P. Liu, Y. X. Huang, C. C. Hsu, T. R. Jeng, and J. P. Chen, “Nanoscale Fabrication Using Thermal Lithography Technique With Blue Laser,” IEEE Trans. Magn. 45(5), 2206–2208 (2009).
[CrossRef]

C. H. Chu, B. J. Wu, T. S. Kao, Y. H. Fu, H. P. Chiang, and D. P. Tsai, “Imaging of Recording Marks and Their Jitters With Different Writing Strategy and Terminal Resistance of Optical Output,” IEEE Trans. Magn. 45(5), 2221–2223 (2009).
[CrossRef]

2008 (4)

T. S. Kao, Y. H. Fu, H. W. Hsu, and D. P. Tsai, “Study of the optical response of phase-change recording layer with zinc oxide nanostructured thin film,” J. Microsc. 229(3), 561–566 (2008).
[CrossRef] [PubMed]

J. S. Wei, X. B. Jiao, F. X. Gan, and M. F. Xiao, “Laser pulse induced bumps in chalcogenide phase change films,” J. Appl. Phys. 103(12), 5 (2008).
[CrossRef]

W. Welnic and M. Wuttig, “Reversible switching in phase-change materials,” Mater. Today 11(6), 20–27 (2008).
[CrossRef]

K. P. Chiu, K. F. Lai, and D. P. Tsai, “Application of surface polariton coupling between nano recording marks to optical data storage,” Opt. Express 16(18), 13885–13892 (2008).
[CrossRef] [PubMed]

2007 (4)

G. R. Elliott, D. W. Hewak, G. S. Murugan, and J. S. Wilkinson, “Chalcogenide glass microspheres; their production, characterization and potential,” Opt. Express 15(26), 17542–17553 (2007).
[CrossRef] [PubMed]

S. K. Lin, I. C. Lin, S. Y. Chen, H. W. Hsu, and D. P. Tsai, “Study of nanoscale recorded marks on phase-change recording layers and the interactions with surroundings,” IEEE Trans. Magn. 43(2), 861–863 (2007).
[CrossRef]

E. R. Meinders, R. Rastogi, M. Van der Veer, P. Peeters, H. El Majdoubi, H. Bulle, A. Millet, and D. Bruls, “Phase-transition mastering of high-density optical media,” Jpn. J. Appl. Phys. 46(No. 6B), 3987–3992 (2007).
[CrossRef]

K. C. Silva, O. A. Sakai, A. Steimacher, F. Pedrochi, M. L. Baesso, A. C. Bento, A. N. Medina, S. M. Lima, R. C. Oliveira, J. C. S. Moraes, K. Yukimitu, E. B. Araújo, M. Petrovich, and D. W. Hewak, “Temperature and wavelength dependence of the thermo-optical properties of tellurite and chalcogenide glasses,” J. Appl. Phys. 102(7), 073507 (2007).
[CrossRef]

2006 (7)

M. M. Aziz and C. D. Wright, “An analytical model for nanoscale electrothermal probe recording on phase-change media,” J. Appl. Phys. 99(3), 12 (2006).
[CrossRef]

H. F. Hamann, M. O’Boyle, Y. C. Martin, M. Rooks, and H. K. Wickramasinghe, “Ultra-high-density phase-change storage and memory,” Nat. Mater. 5(5), 383–387 (2006).
[CrossRef] [PubMed]

S. H. Chen, S. P. Hou, J. H. Hsieh, H. K. Chen, and D. P. Tsai, “Writing and erasing efficiency analysis on optical-storage media using scanning surface potential microscopy,” J. Vac. Sci. Technol. A 24(6), 2003–2007 (2006).
[CrossRef]

S. K. Lin, P. L. Yang, I. C. Lin, H. W. Hsu, and D. P. Tsai, “Resolving nano scale recording bits on phase-change rewritable optical disk,” Jpn. J. Appl. Phys. 45(No. 2B), 1431–1434 (2006).
[CrossRef]

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89(4), 3 (2006).
[CrossRef]

J. W. Fang, C. C. Wu, A. Liao, W. C. Lin, and D. P. Tsai, “Implementation of practical super-resolution near-field structure system using commercial drive,” Jpn. J. Appl. Phys. 45(No. 2B), 1383–1384 (2006).
[CrossRef]

S. K. Lin, I. C. Lin, and D. P. Tsai, “Characterization of nano recorded marks at different writing strategies on phase-change recording layer of optical disks,” Opt. Express 14(10), 4452–4458 (2006).
[CrossRef] [PubMed]

2005 (1)

T. Kato and K. Tanaka, “Electronic properties of amorphous and crystalline Ge2Sb2Te5 films,” Jpn. J. Appl. Phys. 44(10), 7340–7344 (2005).
[CrossRef]

2004 (2)

A. L. Pirovano, A. L. Lacaita, A. Benvenuti, F. Pellizzer, and R. Bez, “Electronic switching in phase-change memories,” IEEE Trans. Electron. Dev. 51(3), 452–459 (2004).
[CrossRef]

T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett. 85(4), 639–641 (2004).
[CrossRef]

2003 (3)

K. Nakayama, K. Kojima, Y. Imai, T. Kasai, S. Fukushima, A. Kitagawa, M. Kumeda, Y. Kakimoto, and M. Suzuki, “Nonvolatile memory based on phase change in Se-Sb-Te glass,” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 404–408 (2003).
[CrossRef]

J. Kim, I. Hwang, D. Yoon, I. Park, D. Shin, T. Kikukawa, T. Shima, and J. Tominaga, “Super-resolution by elliptical bubble formation with PtOx and AgInSbTe layers,” Appl. Phys. Lett. 83(9), 1701–1703 (2003).
[CrossRef]

W. C. Lin, T. S. Kao, H. H. Chang, Y. H. Lin, Y. H. Fu, C. T. Wu, K. H. Chen, and D. P. Tsai, “Study of a super-resolution optical structure: Polycarbonate/ZnS-SiO2/ZnO/ZnS-SiO2/Ge2Sb2Te5/ZnS-SiO2,” Jpn. J. Appl. Phys. 42(Part 1, No. 2B), 1029–1030 (2003).
[CrossRef]

2001 (4)

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb2Te5 films,” J. Appl. Phys. 89(6), 3168–3176 (2001).
[CrossRef]

T. Fukaya, D. Buchel, S. Shinbori, J. Tominaga, N. Atoda, D. P. Tsai, and W. C. Lin, “Micro-optical nonlinearity of a silver oxide layer,” J. Appl. Phys. 89(11), 6139–6144 (2001).
[CrossRef]

H. J. Borg, M. van Schijndel, J. C. N. Rijpers, M. H. R. Lankhorst, G. F. Zhou, M. J. Dekker, I. P. D. Ubbens, and M. Kuijper, “Phase-change media for high-numerical-aperture and blue-wavelength recording,” Jpn. J. Appl. Phys. 40(Part 1, No. 3B), 1592–1597 (2001).
[CrossRef]

T. Ohta, “Phase-change optical memory promotes the DVD optical disk,” J. Optoelectron. Adv. Mater. 3, 609–626 (2001).

2000 (2)

N. Yamada and T. Matsunaga, “Structure of laser-crystallized Ge2Sb2+xTe5 sputtered thin films for use in optical memory,” J. Appl. Phys. 88(12), 7020–7028 (2000).
[CrossRef]

T. Ohta, K. Nishiuchi, K. Narumi, Y. Kitaoka, H. Ishibashi, N. Yamada, and T. Kozaki, “Overview and the future of phase-change optical disk technology,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 770–774 (2000).
[CrossRef]

1999 (1)

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Atomic force microscopy study of laser induced phase transitions in Ge2Sb2Te5,” J. Appl. Phys. 86(10), 5879–5887 (1999).
[CrossRef]

1998 (2)

T. Ohta, K. Nagata, I. Satoh, and R. Imanaka, “Overwritable phase-change optical disk recording,” IEEE Trans. Magn. 34(2), 426–431 (1998).
[CrossRef]

J. Tominaga, T. Nakano, and N. Atoda, “An approach for recording and readout beyond the diffraction limit with an Sb thin film,” Appl. Phys. Lett. 73(15), 2078–2080 (1998).
[CrossRef]

1997 (1)

D. P. Tsai and W. R. Guo, “Near-field optical recording on the cyanine dye layer of a commercial compact disk-recordable,” J. Vac. Sci. Technol. A-Vac, Surf. Films 15(3), 1442–1445 (1997).
[CrossRef]

1995 (1)

J. H. Coombs, A. P. J. M. Jongenelis, W. van Es-Spiekman, and B. A. J. Jacobs, “Laser-induced crystallization phenomena in GeTe-based alloys. I. Characterization of nucleation and growth,” J. Appl. Phys. 78(8), 4906–4917 (1995).
[CrossRef]

1991 (1)

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69(5), 2849–2856 (1991).
[CrossRef]

Akahira, N.

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69(5), 2849–2856 (1991).
[CrossRef]

Anzai, Y.

T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett. 85(4), 639–641 (2004).
[CrossRef]

Araújo, E. B.

K. C. Silva, O. A. Sakai, A. Steimacher, F. Pedrochi, M. L. Baesso, A. C. Bento, A. N. Medina, S. M. Lima, R. C. Oliveira, J. C. S. Moraes, K. Yukimitu, E. B. Araújo, M. Petrovich, and D. W. Hewak, “Temperature and wavelength dependence of the thermo-optical properties of tellurite and chalcogenide glasses,” J. Appl. Phys. 102(7), 073507 (2007).
[CrossRef]

Atoda, N.

T. Fukaya, D. Buchel, S. Shinbori, J. Tominaga, N. Atoda, D. P. Tsai, and W. C. Lin, “Micro-optical nonlinearity of a silver oxide layer,” J. Appl. Phys. 89(11), 6139–6144 (2001).
[CrossRef]

J. Tominaga, T. Nakano, and N. Atoda, “An approach for recording and readout beyond the diffraction limit with an Sb thin film,” Appl. Phys. Lett. 73(15), 2078–2080 (1998).
[CrossRef]

Aziz, M. M.

M. M. Aziz and C. D. Wright, “An analytical model for nanoscale electrothermal probe recording on phase-change media,” J. Appl. Phys. 99(3), 12 (2006).
[CrossRef]

Baesso, M. L.

K. C. Silva, O. A. Sakai, A. Steimacher, F. Pedrochi, M. L. Baesso, A. C. Bento, A. N. Medina, S. M. Lima, R. C. Oliveira, J. C. S. Moraes, K. Yukimitu, E. B. Araújo, M. Petrovich, and D. W. Hewak, “Temperature and wavelength dependence of the thermo-optical properties of tellurite and chalcogenide glasses,” J. Appl. Phys. 102(7), 073507 (2007).
[CrossRef]

Bento, A. C.

K. C. Silva, O. A. Sakai, A. Steimacher, F. Pedrochi, M. L. Baesso, A. C. Bento, A. N. Medina, S. M. Lima, R. C. Oliveira, J. C. S. Moraes, K. Yukimitu, E. B. Araújo, M. Petrovich, and D. W. Hewak, “Temperature and wavelength dependence of the thermo-optical properties of tellurite and chalcogenide glasses,” J. Appl. Phys. 102(7), 073507 (2007).
[CrossRef]

Benvenuti, A.

A. L. Pirovano, A. L. Lacaita, A. Benvenuti, F. Pellizzer, and R. Bez, “Electronic switching in phase-change memories,” IEEE Trans. Electron. Dev. 51(3), 452–459 (2004).
[CrossRef]

Bez, R.

A. L. Pirovano, A. L. Lacaita, A. Benvenuti, F. Pellizzer, and R. Bez, “Electronic switching in phase-change memories,” IEEE Trans. Electron. Dev. 51(3), 452–459 (2004).
[CrossRef]

Borg, H. J.

H. J. Borg, M. van Schijndel, J. C. N. Rijpers, M. H. R. Lankhorst, G. F. Zhou, M. J. Dekker, I. P. D. Ubbens, and M. Kuijper, “Phase-change media for high-numerical-aperture and blue-wavelength recording,” Jpn. J. Appl. Phys. 40(Part 1, No. 3B), 1592–1597 (2001).
[CrossRef]

Bruls, D.

E. R. Meinders, R. Rastogi, M. Van der Veer, P. Peeters, H. El Majdoubi, H. Bulle, A. Millet, and D. Bruls, “Phase-transition mastering of high-density optical media,” Jpn. J. Appl. Phys. 46(No. 6B), 3987–3992 (2007).
[CrossRef]

Buchel, D.

T. Fukaya, D. Buchel, S. Shinbori, J. Tominaga, N. Atoda, D. P. Tsai, and W. C. Lin, “Micro-optical nonlinearity of a silver oxide layer,” J. Appl. Phys. 89(11), 6139–6144 (2001).
[CrossRef]

Bulle, H.

E. R. Meinders, R. Rastogi, M. Van der Veer, P. Peeters, H. El Majdoubi, H. Bulle, A. Millet, and D. Bruls, “Phase-transition mastering of high-density optical media,” Jpn. J. Appl. Phys. 46(No. 6B), 3987–3992 (2007).
[CrossRef]

Burr, G. W.

D. Krebs, S. Raoux, C. T. Rettner, G. W. Burr, M. Salinga, and M. Wuttig, “Threshold field of phase change memory materials measured using phase change bridge devices,” Appl. Phys. Lett. 95(8), 3 (2009).
[CrossRef]

Chang, H. H.

W. C. Lin, T. S. Kao, H. H. Chang, Y. H. Lin, Y. H. Fu, C. T. Wu, K. H. Chen, and D. P. Tsai, “Study of a super-resolution optical structure: Polycarbonate/ZnS-SiO2/ZnO/ZnS-SiO2/Ge2Sb2Te5/ZnS-SiO2,” Jpn. J. Appl. Phys. 42(Part 1, No. 2B), 1029–1030 (2003).
[CrossRef]

Chen, G. X.

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89(4), 3 (2006).
[CrossRef]

Chen, H. K.

S. H. Chen, S. P. Hou, J. H. Hsieh, H. K. Chen, and D. P. Tsai, “Writing and erasing efficiency analysis on optical-storage media using scanning surface potential microscopy,” J. Vac. Sci. Technol. A 24(6), 2003–2007 (2006).
[CrossRef]

Chen, J. P.

C. P. Liu, C. C. Hsu, T. R. Jeng, and J. P. Chen, “Enhancing nanoscale patterning on Ge-Sb-Sn-O inorganic resist film by introducing oxygen during blue laser-induced thermal lithography,” J. Alloy. Comp. 488(1), 190–194 (2009).
[CrossRef]

C. P. Liu, Y. X. Huang, C. C. Hsu, T. R. Jeng, and J. P. Chen, “Nanoscale Fabrication Using Thermal Lithography Technique With Blue Laser,” IEEE Trans. Magn. 45(5), 2206–2208 (2009).
[CrossRef]

Chen, K. H.

W. C. Lin, T. S. Kao, H. H. Chang, Y. H. Lin, Y. H. Fu, C. T. Wu, K. H. Chen, and D. P. Tsai, “Study of a super-resolution optical structure: Polycarbonate/ZnS-SiO2/ZnO/ZnS-SiO2/Ge2Sb2Te5/ZnS-SiO2,” Jpn. J. Appl. Phys. 42(Part 1, No. 2B), 1029–1030 (2003).
[CrossRef]

Chen, S. H.

S. H. Chen, S. P. Hou, J. H. Hsieh, H. K. Chen, and D. P. Tsai, “Writing and erasing efficiency analysis on optical-storage media using scanning surface potential microscopy,” J. Vac. Sci. Technol. A 24(6), 2003–2007 (2006).
[CrossRef]

Chen, S. Y.

S. K. Lin, I. C. Lin, S. Y. Chen, H. W. Hsu, and D. P. Tsai, “Study of nanoscale recorded marks on phase-change recording layers and the interactions with surroundings,” IEEE Trans. Magn. 43(2), 861–863 (2007).
[CrossRef]

Chiang, H. P.

C. H. Chu, B. J. Wu, T. S. Kao, Y. H. Fu, H. P. Chiang, and D. P. Tsai, “Imaging of Recording Marks and Their Jitters With Different Writing Strategy and Terminal Resistance of Optical Output,” IEEE Trans. Magn. 45(5), 2221–2223 (2009).
[CrossRef]

Chiu, K. P.

Chong, T. C.

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89(4), 3 (2006).
[CrossRef]

Chu, C. H.

C. H. Chu, B. J. Wu, T. S. Kao, Y. H. Fu, H. P. Chiang, and D. P. Tsai, “Imaging of Recording Marks and Their Jitters With Different Writing Strategy and Terminal Resistance of Optical Output,” IEEE Trans. Magn. 45(5), 2221–2223 (2009).
[CrossRef]

Coombs, J. H.

J. H. Coombs, A. P. J. M. Jongenelis, W. van Es-Spiekman, and B. A. J. Jacobs, “Laser-induced crystallization phenomena in GeTe-based alloys. I. Characterization of nucleation and growth,” J. Appl. Phys. 78(8), 4906–4917 (1995).
[CrossRef]

Dekker, M. J.

H. J. Borg, M. van Schijndel, J. C. N. Rijpers, M. H. R. Lankhorst, G. F. Zhou, M. J. Dekker, I. P. D. Ubbens, and M. Kuijper, “Phase-change media for high-numerical-aperture and blue-wavelength recording,” Jpn. J. Appl. Phys. 40(Part 1, No. 3B), 1592–1597 (2001).
[CrossRef]

El Majdoubi, H.

E. R. Meinders, R. Rastogi, M. Van der Veer, P. Peeters, H. El Majdoubi, H. Bulle, A. Millet, and D. Bruls, “Phase-transition mastering of high-density optical media,” Jpn. J. Appl. Phys. 46(No. 6B), 3987–3992 (2007).
[CrossRef]

Elliott, G. R.

Fang, J. W.

J. W. Fang, C. C. Wu, A. Liao, W. C. Lin, and D. P. Tsai, “Implementation of practical super-resolution near-field structure system using commercial drive,” Jpn. J. Appl. Phys. 45(No. 2B), 1383–1384 (2006).
[CrossRef]

Feng, S. L.

L. Y. Wang, B. Liu, Z. T. Song, S. L. Feng, Y. H. Xiang, and F. X. Zhang, “Basic Wet-Etching Solutions for Ge2Sb2Te5 Phase Change Material,” J. Electrochem. Soc. 157(4), H470–H473 (2010).
[CrossRef]

Friedrich, I.

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb2Te5 films,” J. Appl. Phys. 89(6), 3168–3176 (2001).
[CrossRef]

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Atomic force microscopy study of laser induced phase transitions in Ge2Sb2Te5,” J. Appl. Phys. 86(10), 5879–5887 (1999).
[CrossRef]

Fu, Y. H.

C. H. Chu, B. J. Wu, T. S. Kao, Y. H. Fu, H. P. Chiang, and D. P. Tsai, “Imaging of Recording Marks and Their Jitters With Different Writing Strategy and Terminal Resistance of Optical Output,” IEEE Trans. Magn. 45(5), 2221–2223 (2009).
[CrossRef]

T. S. Kao, Y. H. Fu, H. W. Hsu, and D. P. Tsai, “Study of the optical response of phase-change recording layer with zinc oxide nanostructured thin film,” J. Microsc. 229(3), 561–566 (2008).
[CrossRef] [PubMed]

W. C. Lin, T. S. Kao, H. H. Chang, Y. H. Lin, Y. H. Fu, C. T. Wu, K. H. Chen, and D. P. Tsai, “Study of a super-resolution optical structure: Polycarbonate/ZnS-SiO2/ZnO/ZnS-SiO2/Ge2Sb2Te5/ZnS-SiO2,” Jpn. J. Appl. Phys. 42(Part 1, No. 2B), 1029–1030 (2003).
[CrossRef]

Fukaya, T.

T. Fukaya, D. Buchel, S. Shinbori, J. Tominaga, N. Atoda, D. P. Tsai, and W. C. Lin, “Micro-optical nonlinearity of a silver oxide layer,” J. Appl. Phys. 89(11), 6139–6144 (2001).
[CrossRef]

Fukushima, S.

K. Nakayama, K. Kojima, Y. Imai, T. Kasai, S. Fukushima, A. Kitagawa, M. Kumeda, Y. Kakimoto, and M. Suzuki, “Nonvolatile memory based on phase change in Se-Sb-Te glass,” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 404–408 (2003).
[CrossRef]

Gan, F. X.

J. S. Wei, X. B. Jiao, F. X. Gan, and M. F. Xiao, “Laser pulse induced bumps in chalcogenide phase change films,” J. Appl. Phys. 103(12), 5 (2008).
[CrossRef]

Guo, W. R.

D. P. Tsai and W. R. Guo, “Near-field optical recording on the cyanine dye layer of a commercial compact disk-recordable,” J. Vac. Sci. Technol. A-Vac, Surf. Films 15(3), 1442–1445 (1997).
[CrossRef]

Hamann, H. F.

H. F. Hamann, M. O’Boyle, Y. C. Martin, M. Rooks, and H. K. Wickramasinghe, “Ultra-high-density phase-change storage and memory,” Nat. Mater. 5(5), 383–387 (2006).
[CrossRef] [PubMed]

Hewak, D. W.

G. R. Elliott, D. W. Hewak, G. S. Murugan, and J. S. Wilkinson, “Chalcogenide glass microspheres; their production, characterization and potential,” Opt. Express 15(26), 17542–17553 (2007).
[CrossRef] [PubMed]

K. C. Silva, O. A. Sakai, A. Steimacher, F. Pedrochi, M. L. Baesso, A. C. Bento, A. N. Medina, S. M. Lima, R. C. Oliveira, J. C. S. Moraes, K. Yukimitu, E. B. Araújo, M. Petrovich, and D. W. Hewak, “Temperature and wavelength dependence of the thermo-optical properties of tellurite and chalcogenide glasses,” J. Appl. Phys. 102(7), 073507 (2007).
[CrossRef]

Hong, M. H.

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89(4), 3 (2006).
[CrossRef]

Hou, S. P.

S. H. Chen, S. P. Hou, J. H. Hsieh, H. K. Chen, and D. P. Tsai, “Writing and erasing efficiency analysis on optical-storage media using scanning surface potential microscopy,” J. Vac. Sci. Technol. A 24(6), 2003–2007 (2006).
[CrossRef]

Hsieh, J. H.

S. H. Chen, S. P. Hou, J. H. Hsieh, H. K. Chen, and D. P. Tsai, “Writing and erasing efficiency analysis on optical-storage media using scanning surface potential microscopy,” J. Vac. Sci. Technol. A 24(6), 2003–2007 (2006).
[CrossRef]

Hsu, C. C.

C. P. Liu, C. C. Hsu, T. R. Jeng, and J. P. Chen, “Enhancing nanoscale patterning on Ge-Sb-Sn-O inorganic resist film by introducing oxygen during blue laser-induced thermal lithography,” J. Alloy. Comp. 488(1), 190–194 (2009).
[CrossRef]

C. P. Liu, Y. X. Huang, C. C. Hsu, T. R. Jeng, and J. P. Chen, “Nanoscale Fabrication Using Thermal Lithography Technique With Blue Laser,” IEEE Trans. Magn. 45(5), 2206–2208 (2009).
[CrossRef]

Hsu, H. W.

T. S. Kao, Y. H. Fu, H. W. Hsu, and D. P. Tsai, “Study of the optical response of phase-change recording layer with zinc oxide nanostructured thin film,” J. Microsc. 229(3), 561–566 (2008).
[CrossRef] [PubMed]

S. K. Lin, I. C. Lin, S. Y. Chen, H. W. Hsu, and D. P. Tsai, “Study of nanoscale recorded marks on phase-change recording layers and the interactions with surroundings,” IEEE Trans. Magn. 43(2), 861–863 (2007).
[CrossRef]

S. K. Lin, P. L. Yang, I. C. Lin, H. W. Hsu, and D. P. Tsai, “Resolving nano scale recording bits on phase-change rewritable optical disk,” Jpn. J. Appl. Phys. 45(No. 2B), 1431–1434 (2006).
[CrossRef]

Huang, Y. X.

C. P. Liu, Y. X. Huang, C. C. Hsu, T. R. Jeng, and J. P. Chen, “Nanoscale Fabrication Using Thermal Lithography Technique With Blue Laser,” IEEE Trans. Magn. 45(5), 2206–2208 (2009).
[CrossRef]

Hwang, I.

J. Kim, I. Hwang, D. Yoon, I. Park, D. Shin, T. Kikukawa, T. Shima, and J. Tominaga, “Super-resolution by elliptical bubble formation with PtOx and AgInSbTe layers,” Appl. Phys. Lett. 83(9), 1701–1703 (2003).
[CrossRef]

Imai, Y.

K. Nakayama, K. Kojima, Y. Imai, T. Kasai, S. Fukushima, A. Kitagawa, M. Kumeda, Y. Kakimoto, and M. Suzuki, “Nonvolatile memory based on phase change in Se-Sb-Te glass,” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 404–408 (2003).
[CrossRef]

Imanaka, R.

T. Ohta, K. Nagata, I. Satoh, and R. Imanaka, “Overwritable phase-change optical disk recording,” IEEE Trans. Magn. 34(2), 426–431 (1998).
[CrossRef]

Ishibashi, H.

T. Ohta, K. Nishiuchi, K. Narumi, Y. Kitaoka, H. Ishibashi, N. Yamada, and T. Kozaki, “Overview and the future of phase-change optical disk technology,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 770–774 (2000).
[CrossRef]

Jacobs, B. A. J.

J. H. Coombs, A. P. J. M. Jongenelis, W. van Es-Spiekman, and B. A. J. Jacobs, “Laser-induced crystallization phenomena in GeTe-based alloys. I. Characterization of nucleation and growth,” J. Appl. Phys. 78(8), 4906–4917 (1995).
[CrossRef]

Jeng, T. R.

C. P. Liu, C. C. Hsu, T. R. Jeng, and J. P. Chen, “Enhancing nanoscale patterning on Ge-Sb-Sn-O inorganic resist film by introducing oxygen during blue laser-induced thermal lithography,” J. Alloy. Comp. 488(1), 190–194 (2009).
[CrossRef]

C. P. Liu, Y. X. Huang, C. C. Hsu, T. R. Jeng, and J. P. Chen, “Nanoscale Fabrication Using Thermal Lithography Technique With Blue Laser,” IEEE Trans. Magn. 45(5), 2206–2208 (2009).
[CrossRef]

Jiao, X. B.

J. S. Wei, X. B. Jiao, F. X. Gan, and M. F. Xiao, “Laser pulse induced bumps in chalcogenide phase change films,” J. Appl. Phys. 103(12), 5 (2008).
[CrossRef]

Jongenelis, A. P. J. M.

J. H. Coombs, A. P. J. M. Jongenelis, W. van Es-Spiekman, and B. A. J. Jacobs, “Laser-induced crystallization phenomena in GeTe-based alloys. I. Characterization of nucleation and growth,” J. Appl. Phys. 78(8), 4906–4917 (1995).
[CrossRef]

Kakimoto, Y.

K. Nakayama, K. Kojima, Y. Imai, T. Kasai, S. Fukushima, A. Kitagawa, M. Kumeda, Y. Kakimoto, and M. Suzuki, “Nonvolatile memory based on phase change in Se-Sb-Te glass,” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 404–408 (2003).
[CrossRef]

Kao, T. S.

C. H. Chu, B. J. Wu, T. S. Kao, Y. H. Fu, H. P. Chiang, and D. P. Tsai, “Imaging of Recording Marks and Their Jitters With Different Writing Strategy and Terminal Resistance of Optical Output,” IEEE Trans. Magn. 45(5), 2221–2223 (2009).
[CrossRef]

T. S. Kao, Y. H. Fu, H. W. Hsu, and D. P. Tsai, “Study of the optical response of phase-change recording layer with zinc oxide nanostructured thin film,” J. Microsc. 229(3), 561–566 (2008).
[CrossRef] [PubMed]

W. C. Lin, T. S. Kao, H. H. Chang, Y. H. Lin, Y. H. Fu, C. T. Wu, K. H. Chen, and D. P. Tsai, “Study of a super-resolution optical structure: Polycarbonate/ZnS-SiO2/ZnO/ZnS-SiO2/Ge2Sb2Te5/ZnS-SiO2,” Jpn. J. Appl. Phys. 42(Part 1, No. 2B), 1029–1030 (2003).
[CrossRef]

Kasai, T.

K. Nakayama, K. Kojima, Y. Imai, T. Kasai, S. Fukushima, A. Kitagawa, M. Kumeda, Y. Kakimoto, and M. Suzuki, “Nonvolatile memory based on phase change in Se-Sb-Te glass,” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 404–408 (2003).
[CrossRef]

Kato, T.

T. Kato and K. Tanaka, “Electronic properties of amorphous and crystalline Ge2Sb2Te5 films,” Jpn. J. Appl. Phys. 44(10), 7340–7344 (2005).
[CrossRef]

Kikukawa, T.

J. Kim, I. Hwang, D. Yoon, I. Park, D. Shin, T. Kikukawa, T. Shima, and J. Tominaga, “Super-resolution by elliptical bubble formation with PtOx and AgInSbTe layers,” Appl. Phys. Lett. 83(9), 1701–1703 (2003).
[CrossRef]

Kim, J.

J. Kim, I. Hwang, D. Yoon, I. Park, D. Shin, T. Kikukawa, T. Shima, and J. Tominaga, “Super-resolution by elliptical bubble formation with PtOx and AgInSbTe layers,” Appl. Phys. Lett. 83(9), 1701–1703 (2003).
[CrossRef]

Kitagawa, A.

K. Nakayama, K. Kojima, Y. Imai, T. Kasai, S. Fukushima, A. Kitagawa, M. Kumeda, Y. Kakimoto, and M. Suzuki, “Nonvolatile memory based on phase change in Se-Sb-Te glass,” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 404–408 (2003).
[CrossRef]

Kitaoka, Y.

T. Ohta, K. Nishiuchi, K. Narumi, Y. Kitaoka, H. Ishibashi, N. Yamada, and T. Kozaki, “Overview and the future of phase-change optical disk technology,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 770–774 (2000).
[CrossRef]

Kojima, K.

K. Nakayama, K. Kojima, Y. Imai, T. Kasai, S. Fukushima, A. Kitagawa, M. Kumeda, Y. Kakimoto, and M. Suzuki, “Nonvolatile memory based on phase change in Se-Sb-Te glass,” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 404–408 (2003).
[CrossRef]

Kozaki, T.

T. Ohta, K. Nishiuchi, K. Narumi, Y. Kitaoka, H. Ishibashi, N. Yamada, and T. Kozaki, “Overview and the future of phase-change optical disk technology,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 770–774 (2000).
[CrossRef]

Krebs, D.

D. Krebs, S. Raoux, C. T. Rettner, G. W. Burr, M. Salinga, and M. Wuttig, “Threshold field of phase change memory materials measured using phase change bridge devices,” Appl. Phys. Lett. 95(8), 3 (2009).
[CrossRef]

Kuijper, M.

H. J. Borg, M. van Schijndel, J. C. N. Rijpers, M. H. R. Lankhorst, G. F. Zhou, M. J. Dekker, I. P. D. Ubbens, and M. Kuijper, “Phase-change media for high-numerical-aperture and blue-wavelength recording,” Jpn. J. Appl. Phys. 40(Part 1, No. 3B), 1592–1597 (2001).
[CrossRef]

Kumeda, M.

K. Nakayama, K. Kojima, Y. Imai, T. Kasai, S. Fukushima, A. Kitagawa, M. Kumeda, Y. Kakimoto, and M. Suzuki, “Nonvolatile memory based on phase change in Se-Sb-Te glass,” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 404–408 (2003).
[CrossRef]

Lacaita, A. L.

A. L. Pirovano, A. L. Lacaita, A. Benvenuti, F. Pellizzer, and R. Bez, “Electronic switching in phase-change memories,” IEEE Trans. Electron. Dev. 51(3), 452–459 (2004).
[CrossRef]

Lai, K. F.

Lankhorst, M. H. R.

H. J. Borg, M. van Schijndel, J. C. N. Rijpers, M. H. R. Lankhorst, G. F. Zhou, M. J. Dekker, I. P. D. Ubbens, and M. Kuijper, “Phase-change media for high-numerical-aperture and blue-wavelength recording,” Jpn. J. Appl. Phys. 40(Part 1, No. 3B), 1592–1597 (2001).
[CrossRef]

Liao, A.

J. W. Fang, C. C. Wu, A. Liao, W. C. Lin, and D. P. Tsai, “Implementation of practical super-resolution near-field structure system using commercial drive,” Jpn. J. Appl. Phys. 45(No. 2B), 1383–1384 (2006).
[CrossRef]

Lim, C. S.

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89(4), 3 (2006).
[CrossRef]

Lima, S. M.

K. C. Silva, O. A. Sakai, A. Steimacher, F. Pedrochi, M. L. Baesso, A. C. Bento, A. N. Medina, S. M. Lima, R. C. Oliveira, J. C. S. Moraes, K. Yukimitu, E. B. Araújo, M. Petrovich, and D. W. Hewak, “Temperature and wavelength dependence of the thermo-optical properties of tellurite and chalcogenide glasses,” J. Appl. Phys. 102(7), 073507 (2007).
[CrossRef]

Lin, I. C.

S. K. Lin, I. C. Lin, S. Y. Chen, H. W. Hsu, and D. P. Tsai, “Study of nanoscale recorded marks on phase-change recording layers and the interactions with surroundings,” IEEE Trans. Magn. 43(2), 861–863 (2007).
[CrossRef]

S. K. Lin, P. L. Yang, I. C. Lin, H. W. Hsu, and D. P. Tsai, “Resolving nano scale recording bits on phase-change rewritable optical disk,” Jpn. J. Appl. Phys. 45(No. 2B), 1431–1434 (2006).
[CrossRef]

S. K. Lin, I. C. Lin, and D. P. Tsai, “Characterization of nano recorded marks at different writing strategies on phase-change recording layer of optical disks,” Opt. Express 14(10), 4452–4458 (2006).
[CrossRef] [PubMed]

Lin, S. K.

S. K. Lin, I. C. Lin, S. Y. Chen, H. W. Hsu, and D. P. Tsai, “Study of nanoscale recorded marks on phase-change recording layers and the interactions with surroundings,” IEEE Trans. Magn. 43(2), 861–863 (2007).
[CrossRef]

S. K. Lin, I. C. Lin, and D. P. Tsai, “Characterization of nano recorded marks at different writing strategies on phase-change recording layer of optical disks,” Opt. Express 14(10), 4452–4458 (2006).
[CrossRef] [PubMed]

S. K. Lin, P. L. Yang, I. C. Lin, H. W. Hsu, and D. P. Tsai, “Resolving nano scale recording bits on phase-change rewritable optical disk,” Jpn. J. Appl. Phys. 45(No. 2B), 1431–1434 (2006).
[CrossRef]

Lin, W. C.

J. W. Fang, C. C. Wu, A. Liao, W. C. Lin, and D. P. Tsai, “Implementation of practical super-resolution near-field structure system using commercial drive,” Jpn. J. Appl. Phys. 45(No. 2B), 1383–1384 (2006).
[CrossRef]

W. C. Lin, T. S. Kao, H. H. Chang, Y. H. Lin, Y. H. Fu, C. T. Wu, K. H. Chen, and D. P. Tsai, “Study of a super-resolution optical structure: Polycarbonate/ZnS-SiO2/ZnO/ZnS-SiO2/Ge2Sb2Te5/ZnS-SiO2,” Jpn. J. Appl. Phys. 42(Part 1, No. 2B), 1029–1030 (2003).
[CrossRef]

T. Fukaya, D. Buchel, S. Shinbori, J. Tominaga, N. Atoda, D. P. Tsai, and W. C. Lin, “Micro-optical nonlinearity of a silver oxide layer,” J. Appl. Phys. 89(11), 6139–6144 (2001).
[CrossRef]

Lin, Y.

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89(4), 3 (2006).
[CrossRef]

Lin, Y. H.

W. C. Lin, T. S. Kao, H. H. Chang, Y. H. Lin, Y. H. Fu, C. T. Wu, K. H. Chen, and D. P. Tsai, “Study of a super-resolution optical structure: Polycarbonate/ZnS-SiO2/ZnO/ZnS-SiO2/Ge2Sb2Te5/ZnS-SiO2,” Jpn. J. Appl. Phys. 42(Part 1, No. 2B), 1029–1030 (2003).
[CrossRef]

Liu, B.

L. Y. Wang, B. Liu, Z. T. Song, S. L. Feng, Y. H. Xiang, and F. X. Zhang, “Basic Wet-Etching Solutions for Ge2Sb2Te5 Phase Change Material,” J. Electrochem. Soc. 157(4), H470–H473 (2010).
[CrossRef]

Liu, C. P.

C. P. Liu, Y. X. Huang, C. C. Hsu, T. R. Jeng, and J. P. Chen, “Nanoscale Fabrication Using Thermal Lithography Technique With Blue Laser,” IEEE Trans. Magn. 45(5), 2206–2208 (2009).
[CrossRef]

C. P. Liu, C. C. Hsu, T. R. Jeng, and J. P. Chen, “Enhancing nanoscale patterning on Ge-Sb-Sn-O inorganic resist film by introducing oxygen during blue laser-induced thermal lithography,” J. Alloy. Comp. 488(1), 190–194 (2009).
[CrossRef]

Martin, Y. C.

H. F. Hamann, M. O’Boyle, Y. C. Martin, M. Rooks, and H. K. Wickramasinghe, “Ultra-high-density phase-change storage and memory,” Nat. Mater. 5(5), 383–387 (2006).
[CrossRef] [PubMed]

Matsunaga, T.

N. Yamada and T. Matsunaga, “Structure of laser-crystallized Ge2Sb2+xTe5 sputtered thin films for use in optical memory,” J. Appl. Phys. 88(12), 7020–7028 (2000).
[CrossRef]

Medina, A. N.

K. C. Silva, O. A. Sakai, A. Steimacher, F. Pedrochi, M. L. Baesso, A. C. Bento, A. N. Medina, S. M. Lima, R. C. Oliveira, J. C. S. Moraes, K. Yukimitu, E. B. Araújo, M. Petrovich, and D. W. Hewak, “Temperature and wavelength dependence of the thermo-optical properties of tellurite and chalcogenide glasses,” J. Appl. Phys. 102(7), 073507 (2007).
[CrossRef]

Meinders, E. R.

E. R. Meinders, R. Rastogi, M. Van der Veer, P. Peeters, H. El Majdoubi, H. Bulle, A. Millet, and D. Bruls, “Phase-transition mastering of high-density optical media,” Jpn. J. Appl. Phys. 46(No. 6B), 3987–3992 (2007).
[CrossRef]

Millet, A.

E. R. Meinders, R. Rastogi, M. Van der Veer, P. Peeters, H. El Majdoubi, H. Bulle, A. Millet, and D. Bruls, “Phase-transition mastering of high-density optical media,” Jpn. J. Appl. Phys. 46(No. 6B), 3987–3992 (2007).
[CrossRef]

Minemura, H.

T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett. 85(4), 639–641 (2004).
[CrossRef]

Miyamoto, H.

T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett. 85(4), 639–641 (2004).
[CrossRef]

Moraes, J. C. S.

K. C. Silva, O. A. Sakai, A. Steimacher, F. Pedrochi, M. L. Baesso, A. C. Bento, A. N. Medina, S. M. Lima, R. C. Oliveira, J. C. S. Moraes, K. Yukimitu, E. B. Araújo, M. Petrovich, and D. W. Hewak, “Temperature and wavelength dependence of the thermo-optical properties of tellurite and chalcogenide glasses,” J. Appl. Phys. 102(7), 073507 (2007).
[CrossRef]

Murugan, G. S.

Nagata, K.

T. Ohta, K. Nagata, I. Satoh, and R. Imanaka, “Overwritable phase-change optical disk recording,” IEEE Trans. Magn. 34(2), 426–431 (1998).
[CrossRef]

Nakano, T.

J. Tominaga, T. Nakano, and N. Atoda, “An approach for recording and readout beyond the diffraction limit with an Sb thin film,” Appl. Phys. Lett. 73(15), 2078–2080 (1998).
[CrossRef]

Nakayama, K.

K. Nakayama, K. Kojima, Y. Imai, T. Kasai, S. Fukushima, A. Kitagawa, M. Kumeda, Y. Kakimoto, and M. Suzuki, “Nonvolatile memory based on phase change in Se-Sb-Te glass,” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 404–408 (2003).
[CrossRef]

Narumi, K.

T. Ohta, K. Nishiuchi, K. Narumi, Y. Kitaoka, H. Ishibashi, N. Yamada, and T. Kozaki, “Overview and the future of phase-change optical disk technology,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 770–774 (2000).
[CrossRef]

Nishiuchi, K.

T. Ohta, K. Nishiuchi, K. Narumi, Y. Kitaoka, H. Ishibashi, N. Yamada, and T. Kozaki, “Overview and the future of phase-change optical disk technology,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 770–774 (2000).
[CrossRef]

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69(5), 2849–2856 (1991).
[CrossRef]

O’Boyle, M.

H. F. Hamann, M. O’Boyle, Y. C. Martin, M. Rooks, and H. K. Wickramasinghe, “Ultra-high-density phase-change storage and memory,” Nat. Mater. 5(5), 383–387 (2006).
[CrossRef] [PubMed]

Ohno, E.

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69(5), 2849–2856 (1991).
[CrossRef]

Ohta, T.

T. Ohta, “Phase-change optical memory promotes the DVD optical disk,” J. Optoelectron. Adv. Mater. 3, 609–626 (2001).

T. Ohta, K. Nishiuchi, K. Narumi, Y. Kitaoka, H. Ishibashi, N. Yamada, and T. Kozaki, “Overview and the future of phase-change optical disk technology,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 770–774 (2000).
[CrossRef]

T. Ohta, K. Nagata, I. Satoh, and R. Imanaka, “Overwritable phase-change optical disk recording,” IEEE Trans. Magn. 34(2), 426–431 (1998).
[CrossRef]

Oliveira, R. C.

K. C. Silva, O. A. Sakai, A. Steimacher, F. Pedrochi, M. L. Baesso, A. C. Bento, A. N. Medina, S. M. Lima, R. C. Oliveira, J. C. S. Moraes, K. Yukimitu, E. B. Araújo, M. Petrovich, and D. W. Hewak, “Temperature and wavelength dependence of the thermo-optical properties of tellurite and chalcogenide glasses,” J. Appl. Phys. 102(7), 073507 (2007).
[CrossRef]

Park, I.

J. Kim, I. Hwang, D. Yoon, I. Park, D. Shin, T. Kikukawa, T. Shima, and J. Tominaga, “Super-resolution by elliptical bubble formation with PtOx and AgInSbTe layers,” Appl. Phys. Lett. 83(9), 1701–1703 (2003).
[CrossRef]

Pedrochi, F.

K. C. Silva, O. A. Sakai, A. Steimacher, F. Pedrochi, M. L. Baesso, A. C. Bento, A. N. Medina, S. M. Lima, R. C. Oliveira, J. C. S. Moraes, K. Yukimitu, E. B. Araújo, M. Petrovich, and D. W. Hewak, “Temperature and wavelength dependence of the thermo-optical properties of tellurite and chalcogenide glasses,” J. Appl. Phys. 102(7), 073507 (2007).
[CrossRef]

Peeters, P.

E. R. Meinders, R. Rastogi, M. Van der Veer, P. Peeters, H. El Majdoubi, H. Bulle, A. Millet, and D. Bruls, “Phase-transition mastering of high-density optical media,” Jpn. J. Appl. Phys. 46(No. 6B), 3987–3992 (2007).
[CrossRef]

Pellizzer, F.

A. L. Pirovano, A. L. Lacaita, A. Benvenuti, F. Pellizzer, and R. Bez, “Electronic switching in phase-change memories,” IEEE Trans. Electron. Dev. 51(3), 452–459 (2004).
[CrossRef]

Petrovich, M.

K. C. Silva, O. A. Sakai, A. Steimacher, F. Pedrochi, M. L. Baesso, A. C. Bento, A. N. Medina, S. M. Lima, R. C. Oliveira, J. C. S. Moraes, K. Yukimitu, E. B. Araújo, M. Petrovich, and D. W. Hewak, “Temperature and wavelength dependence of the thermo-optical properties of tellurite and chalcogenide glasses,” J. Appl. Phys. 102(7), 073507 (2007).
[CrossRef]

Pirovano, A. L.

A. L. Pirovano, A. L. Lacaita, A. Benvenuti, F. Pellizzer, and R. Bez, “Electronic switching in phase-change memories,” IEEE Trans. Electron. Dev. 51(3), 452–459 (2004).
[CrossRef]

Raoux, S.

D. Krebs, S. Raoux, C. T. Rettner, G. W. Burr, M. Salinga, and M. Wuttig, “Threshold field of phase change memory materials measured using phase change bridge devices,” Appl. Phys. Lett. 95(8), 3 (2009).
[CrossRef]

Rastogi, R.

E. R. Meinders, R. Rastogi, M. Van der Veer, P. Peeters, H. El Majdoubi, H. Bulle, A. Millet, and D. Bruls, “Phase-transition mastering of high-density optical media,” Jpn. J. Appl. Phys. 46(No. 6B), 3987–3992 (2007).
[CrossRef]

Rettner, C. T.

D. Krebs, S. Raoux, C. T. Rettner, G. W. Burr, M. Salinga, and M. Wuttig, “Threshold field of phase change memory materials measured using phase change bridge devices,” Appl. Phys. Lett. 95(8), 3 (2009).
[CrossRef]

Rijpers, J. C. N.

H. J. Borg, M. van Schijndel, J. C. N. Rijpers, M. H. R. Lankhorst, G. F. Zhou, M. J. Dekker, I. P. D. Ubbens, and M. Kuijper, “Phase-change media for high-numerical-aperture and blue-wavelength recording,” Jpn. J. Appl. Phys. 40(Part 1, No. 3B), 1592–1597 (2001).
[CrossRef]

Rooks, M.

H. F. Hamann, M. O’Boyle, Y. C. Martin, M. Rooks, and H. K. Wickramasinghe, “Ultra-high-density phase-change storage and memory,” Nat. Mater. 5(5), 383–387 (2006).
[CrossRef] [PubMed]

Sakai, O. A.

K. C. Silva, O. A. Sakai, A. Steimacher, F. Pedrochi, M. L. Baesso, A. C. Bento, A. N. Medina, S. M. Lima, R. C. Oliveira, J. C. S. Moraes, K. Yukimitu, E. B. Araújo, M. Petrovich, and D. W. Hewak, “Temperature and wavelength dependence of the thermo-optical properties of tellurite and chalcogenide glasses,” J. Appl. Phys. 102(7), 073507 (2007).
[CrossRef]

Salinga, M.

D. Krebs, S. Raoux, C. T. Rettner, G. W. Burr, M. Salinga, and M. Wuttig, “Threshold field of phase change memory materials measured using phase change bridge devices,” Appl. Phys. Lett. 95(8), 3 (2009).
[CrossRef]

Satoh, I.

T. Ohta, K. Nagata, I. Satoh, and R. Imanaka, “Overwritable phase-change optical disk recording,” IEEE Trans. Magn. 34(2), 426–431 (1998).
[CrossRef]

Shi, L. P.

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89(4), 3 (2006).
[CrossRef]

Shima, T.

J. Kim, I. Hwang, D. Yoon, I. Park, D. Shin, T. Kikukawa, T. Shima, and J. Tominaga, “Super-resolution by elliptical bubble formation with PtOx and AgInSbTe layers,” Appl. Phys. Lett. 83(9), 1701–1703 (2003).
[CrossRef]

Shin, D.

J. Kim, I. Hwang, D. Yoon, I. Park, D. Shin, T. Kikukawa, T. Shima, and J. Tominaga, “Super-resolution by elliptical bubble formation with PtOx and AgInSbTe layers,” Appl. Phys. Lett. 83(9), 1701–1703 (2003).
[CrossRef]

Shinbori, S.

T. Fukaya, D. Buchel, S. Shinbori, J. Tominaga, N. Atoda, D. P. Tsai, and W. C. Lin, “Micro-optical nonlinearity of a silver oxide layer,” J. Appl. Phys. 89(11), 6139–6144 (2001).
[CrossRef]

Shintani, T.

T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett. 85(4), 639–641 (2004).
[CrossRef]

Silva, K. C.

K. C. Silva, O. A. Sakai, A. Steimacher, F. Pedrochi, M. L. Baesso, A. C. Bento, A. N. Medina, S. M. Lima, R. C. Oliveira, J. C. S. Moraes, K. Yukimitu, E. B. Araújo, M. Petrovich, and D. W. Hewak, “Temperature and wavelength dependence of the thermo-optical properties of tellurite and chalcogenide glasses,” J. Appl. Phys. 102(7), 073507 (2007).
[CrossRef]

Song, Z. T.

L. Y. Wang, B. Liu, Z. T. Song, S. L. Feng, Y. H. Xiang, and F. X. Zhang, “Basic Wet-Etching Solutions for Ge2Sb2Te5 Phase Change Material,” J. Electrochem. Soc. 157(4), H470–H473 (2010).
[CrossRef]

Steimacher, A.

K. C. Silva, O. A. Sakai, A. Steimacher, F. Pedrochi, M. L. Baesso, A. C. Bento, A. N. Medina, S. M. Lima, R. C. Oliveira, J. C. S. Moraes, K. Yukimitu, E. B. Araújo, M. Petrovich, and D. W. Hewak, “Temperature and wavelength dependence of the thermo-optical properties of tellurite and chalcogenide glasses,” J. Appl. Phys. 102(7), 073507 (2007).
[CrossRef]

Suzuki, M.

K. Nakayama, K. Kojima, Y. Imai, T. Kasai, S. Fukushima, A. Kitagawa, M. Kumeda, Y. Kakimoto, and M. Suzuki, “Nonvolatile memory based on phase change in Se-Sb-Te glass,” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 404–408 (2003).
[CrossRef]

Takao, M.

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69(5), 2849–2856 (1991).
[CrossRef]

Tan, L. S.

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89(4), 3 (2006).
[CrossRef]

Tanaka, K.

T. Kato and K. Tanaka, “Electronic properties of amorphous and crystalline Ge2Sb2Te5 films,” Jpn. J. Appl. Phys. 44(10), 7340–7344 (2005).
[CrossRef]

Tominaga, J.

J. Kim, I. Hwang, D. Yoon, I. Park, D. Shin, T. Kikukawa, T. Shima, and J. Tominaga, “Super-resolution by elliptical bubble formation with PtOx and AgInSbTe layers,” Appl. Phys. Lett. 83(9), 1701–1703 (2003).
[CrossRef]

T. Fukaya, D. Buchel, S. Shinbori, J. Tominaga, N. Atoda, D. P. Tsai, and W. C. Lin, “Micro-optical nonlinearity of a silver oxide layer,” J. Appl. Phys. 89(11), 6139–6144 (2001).
[CrossRef]

J. Tominaga, T. Nakano, and N. Atoda, “An approach for recording and readout beyond the diffraction limit with an Sb thin film,” Appl. Phys. Lett. 73(15), 2078–2080 (1998).
[CrossRef]

Tsai, D. P.

C. H. Chu, B. J. Wu, T. S. Kao, Y. H. Fu, H. P. Chiang, and D. P. Tsai, “Imaging of Recording Marks and Their Jitters With Different Writing Strategy and Terminal Resistance of Optical Output,” IEEE Trans. Magn. 45(5), 2221–2223 (2009).
[CrossRef]

T. S. Kao, Y. H. Fu, H. W. Hsu, and D. P. Tsai, “Study of the optical response of phase-change recording layer with zinc oxide nanostructured thin film,” J. Microsc. 229(3), 561–566 (2008).
[CrossRef] [PubMed]

K. P. Chiu, K. F. Lai, and D. P. Tsai, “Application of surface polariton coupling between nano recording marks to optical data storage,” Opt. Express 16(18), 13885–13892 (2008).
[CrossRef] [PubMed]

S. K. Lin, I. C. Lin, S. Y. Chen, H. W. Hsu, and D. P. Tsai, “Study of nanoscale recorded marks on phase-change recording layers and the interactions with surroundings,” IEEE Trans. Magn. 43(2), 861–863 (2007).
[CrossRef]

J. W. Fang, C. C. Wu, A. Liao, W. C. Lin, and D. P. Tsai, “Implementation of practical super-resolution near-field structure system using commercial drive,” Jpn. J. Appl. Phys. 45(No. 2B), 1383–1384 (2006).
[CrossRef]

S. K. Lin, P. L. Yang, I. C. Lin, H. W. Hsu, and D. P. Tsai, “Resolving nano scale recording bits on phase-change rewritable optical disk,” Jpn. J. Appl. Phys. 45(No. 2B), 1431–1434 (2006).
[CrossRef]

S. H. Chen, S. P. Hou, J. H. Hsieh, H. K. Chen, and D. P. Tsai, “Writing and erasing efficiency analysis on optical-storage media using scanning surface potential microscopy,” J. Vac. Sci. Technol. A 24(6), 2003–2007 (2006).
[CrossRef]

S. K. Lin, I. C. Lin, and D. P. Tsai, “Characterization of nano recorded marks at different writing strategies on phase-change recording layer of optical disks,” Opt. Express 14(10), 4452–4458 (2006).
[CrossRef] [PubMed]

W. C. Lin, T. S. Kao, H. H. Chang, Y. H. Lin, Y. H. Fu, C. T. Wu, K. H. Chen, and D. P. Tsai, “Study of a super-resolution optical structure: Polycarbonate/ZnS-SiO2/ZnO/ZnS-SiO2/Ge2Sb2Te5/ZnS-SiO2,” Jpn. J. Appl. Phys. 42(Part 1, No. 2B), 1029–1030 (2003).
[CrossRef]

T. Fukaya, D. Buchel, S. Shinbori, J. Tominaga, N. Atoda, D. P. Tsai, and W. C. Lin, “Micro-optical nonlinearity of a silver oxide layer,” J. Appl. Phys. 89(11), 6139–6144 (2001).
[CrossRef]

D. P. Tsai and W. R. Guo, “Near-field optical recording on the cyanine dye layer of a commercial compact disk-recordable,” J. Vac. Sci. Technol. A-Vac, Surf. Films 15(3), 1442–1445 (1997).
[CrossRef]

Ubbens, I. P. D.

H. J. Borg, M. van Schijndel, J. C. N. Rijpers, M. H. R. Lankhorst, G. F. Zhou, M. J. Dekker, I. P. D. Ubbens, and M. Kuijper, “Phase-change media for high-numerical-aperture and blue-wavelength recording,” Jpn. J. Appl. Phys. 40(Part 1, No. 3B), 1592–1597 (2001).
[CrossRef]

Ushiyama, J.

T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett. 85(4), 639–641 (2004).
[CrossRef]

Van der Veer, M.

E. R. Meinders, R. Rastogi, M. Van der Veer, P. Peeters, H. El Majdoubi, H. Bulle, A. Millet, and D. Bruls, “Phase-transition mastering of high-density optical media,” Jpn. J. Appl. Phys. 46(No. 6B), 3987–3992 (2007).
[CrossRef]

van Es-Spiekman, W.

J. H. Coombs, A. P. J. M. Jongenelis, W. van Es-Spiekman, and B. A. J. Jacobs, “Laser-induced crystallization phenomena in GeTe-based alloys. I. Characterization of nucleation and growth,” J. Appl. Phys. 78(8), 4906–4917 (1995).
[CrossRef]

van Schijndel, M.

H. J. Borg, M. van Schijndel, J. C. N. Rijpers, M. H. R. Lankhorst, G. F. Zhou, M. J. Dekker, I. P. D. Ubbens, and M. Kuijper, “Phase-change media for high-numerical-aperture and blue-wavelength recording,” Jpn. J. Appl. Phys. 40(Part 1, No. 3B), 1592–1597 (2001).
[CrossRef]

Wang, L. Y.

L. Y. Wang, B. Liu, Z. T. Song, S. L. Feng, Y. H. Xiang, and F. X. Zhang, “Basic Wet-Etching Solutions for Ge2Sb2Te5 Phase Change Material,” J. Electrochem. Soc. 157(4), H470–H473 (2010).
[CrossRef]

Wang, Z. B.

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89(4), 3 (2006).
[CrossRef]

Wei, J. S.

J. S. Wei, X. B. Jiao, F. X. Gan, and M. F. Xiao, “Laser pulse induced bumps in chalcogenide phase change films,” J. Appl. Phys. 103(12), 5 (2008).
[CrossRef]

Weidenhof, V.

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb2Te5 films,” J. Appl. Phys. 89(6), 3168–3176 (2001).
[CrossRef]

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Atomic force microscopy study of laser induced phase transitions in Ge2Sb2Te5,” J. Appl. Phys. 86(10), 5879–5887 (1999).
[CrossRef]

Welnic, W.

W. Welnic and M. Wuttig, “Reversible switching in phase-change materials,” Mater. Today 11(6), 20–27 (2008).
[CrossRef]

Wickramasinghe, H. K.

H. F. Hamann, M. O’Boyle, Y. C. Martin, M. Rooks, and H. K. Wickramasinghe, “Ultra-high-density phase-change storage and memory,” Nat. Mater. 5(5), 383–387 (2006).
[CrossRef] [PubMed]

Wilkinson, J. S.

Wright, C. D.

M. M. Aziz and C. D. Wright, “An analytical model for nanoscale electrothermal probe recording on phase-change media,” J. Appl. Phys. 99(3), 12 (2006).
[CrossRef]

Wu, B. J.

C. H. Chu, B. J. Wu, T. S. Kao, Y. H. Fu, H. P. Chiang, and D. P. Tsai, “Imaging of Recording Marks and Their Jitters With Different Writing Strategy and Terminal Resistance of Optical Output,” IEEE Trans. Magn. 45(5), 2221–2223 (2009).
[CrossRef]

Wu, C. C.

J. W. Fang, C. C. Wu, A. Liao, W. C. Lin, and D. P. Tsai, “Implementation of practical super-resolution near-field structure system using commercial drive,” Jpn. J. Appl. Phys. 45(No. 2B), 1383–1384 (2006).
[CrossRef]

Wu, C. T.

W. C. Lin, T. S. Kao, H. H. Chang, Y. H. Lin, Y. H. Fu, C. T. Wu, K. H. Chen, and D. P. Tsai, “Study of a super-resolution optical structure: Polycarbonate/ZnS-SiO2/ZnO/ZnS-SiO2/Ge2Sb2Te5/ZnS-SiO2,” Jpn. J. Appl. Phys. 42(Part 1, No. 2B), 1029–1030 (2003).
[CrossRef]

Wuttig, M.

D. Krebs, S. Raoux, C. T. Rettner, G. W. Burr, M. Salinga, and M. Wuttig, “Threshold field of phase change memory materials measured using phase change bridge devices,” Appl. Phys. Lett. 95(8), 3 (2009).
[CrossRef]

W. Welnic and M. Wuttig, “Reversible switching in phase-change materials,” Mater. Today 11(6), 20–27 (2008).
[CrossRef]

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb2Te5 films,” J. Appl. Phys. 89(6), 3168–3176 (2001).
[CrossRef]

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Atomic force microscopy study of laser induced phase transitions in Ge2Sb2Te5,” J. Appl. Phys. 86(10), 5879–5887 (1999).
[CrossRef]

Xiang, Y. H.

L. Y. Wang, B. Liu, Z. T. Song, S. L. Feng, Y. H. Xiang, and F. X. Zhang, “Basic Wet-Etching Solutions for Ge2Sb2Te5 Phase Change Material,” J. Electrochem. Soc. 157(4), H470–H473 (2010).
[CrossRef]

Xiao, M. F.

J. S. Wei, X. B. Jiao, F. X. Gan, and M. F. Xiao, “Laser pulse induced bumps in chalcogenide phase change films,” J. Appl. Phys. 103(12), 5 (2008).
[CrossRef]

Yamada, N.

T. Ohta, K. Nishiuchi, K. Narumi, Y. Kitaoka, H. Ishibashi, N. Yamada, and T. Kozaki, “Overview and the future of phase-change optical disk technology,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 770–774 (2000).
[CrossRef]

N. Yamada and T. Matsunaga, “Structure of laser-crystallized Ge2Sb2+xTe5 sputtered thin films for use in optical memory,” J. Appl. Phys. 88(12), 7020–7028 (2000).
[CrossRef]

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69(5), 2849–2856 (1991).
[CrossRef]

Yang, P. L.

S. K. Lin, P. L. Yang, I. C. Lin, H. W. Hsu, and D. P. Tsai, “Resolving nano scale recording bits on phase-change rewritable optical disk,” Jpn. J. Appl. Phys. 45(No. 2B), 1431–1434 (2006).
[CrossRef]

Yoon, D.

J. Kim, I. Hwang, D. Yoon, I. Park, D. Shin, T. Kikukawa, T. Shima, and J. Tominaga, “Super-resolution by elliptical bubble formation with PtOx and AgInSbTe layers,” Appl. Phys. Lett. 83(9), 1701–1703 (2003).
[CrossRef]

Yukimitu, K.

K. C. Silva, O. A. Sakai, A. Steimacher, F. Pedrochi, M. L. Baesso, A. C. Bento, A. N. Medina, S. M. Lima, R. C. Oliveira, J. C. S. Moraes, K. Yukimitu, E. B. Araújo, M. Petrovich, and D. W. Hewak, “Temperature and wavelength dependence of the thermo-optical properties of tellurite and chalcogenide glasses,” J. Appl. Phys. 102(7), 073507 (2007).
[CrossRef]

Zhang, F. X.

L. Y. Wang, B. Liu, Z. T. Song, S. L. Feng, Y. H. Xiang, and F. X. Zhang, “Basic Wet-Etching Solutions for Ge2Sb2Te5 Phase Change Material,” J. Electrochem. Soc. 157(4), H470–H473 (2010).
[CrossRef]

Zhou, G. F.

H. J. Borg, M. van Schijndel, J. C. N. Rijpers, M. H. R. Lankhorst, G. F. Zhou, M. J. Dekker, I. P. D. Ubbens, and M. Kuijper, “Phase-change media for high-numerical-aperture and blue-wavelength recording,” Jpn. J. Appl. Phys. 40(Part 1, No. 3B), 1592–1597 (2001).
[CrossRef]

Ziegler, S.

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb2Te5 films,” J. Appl. Phys. 89(6), 3168–3176 (2001).
[CrossRef]

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Atomic force microscopy study of laser induced phase transitions in Ge2Sb2Te5,” J. Appl. Phys. 86(10), 5879–5887 (1999).
[CrossRef]

Appl. Phys. Lett. (5)

D. Krebs, S. Raoux, C. T. Rettner, G. W. Burr, M. Salinga, and M. Wuttig, “Threshold field of phase change memory materials measured using phase change bridge devices,” Appl. Phys. Lett. 95(8), 3 (2009).
[CrossRef]

J. Tominaga, T. Nakano, and N. Atoda, “An approach for recording and readout beyond the diffraction limit with an Sb thin film,” Appl. Phys. Lett. 73(15), 2078–2080 (1998).
[CrossRef]

J. Kim, I. Hwang, D. Yoon, I. Park, D. Shin, T. Kikukawa, T. Shima, and J. Tominaga, “Super-resolution by elliptical bubble formation with PtOx and AgInSbTe layers,” Appl. Phys. Lett. 83(9), 1701–1703 (2003).
[CrossRef]

T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, and J. Ushiyama, “Nanosize fabrication using etching of phase-change recording films,” Appl. Phys. Lett. 85(4), 639–641 (2004).
[CrossRef]

Y. Lin, M. H. Hong, T. C. Chong, C. S. Lim, G. X. Chen, L. S. Tan, Z. B. Wang, and L. P. Shi, “Ultrafast-laser-induced parallel phase-change nanolithography,” Appl. Phys. Lett. 89(4), 3 (2006).
[CrossRef]

IEEE Trans. Electron. Dev. (1)

A. L. Pirovano, A. L. Lacaita, A. Benvenuti, F. Pellizzer, and R. Bez, “Electronic switching in phase-change memories,” IEEE Trans. Electron. Dev. 51(3), 452–459 (2004).
[CrossRef]

IEEE Trans. Magn. (4)

C. H. Chu, B. J. Wu, T. S. Kao, Y. H. Fu, H. P. Chiang, and D. P. Tsai, “Imaging of Recording Marks and Their Jitters With Different Writing Strategy and Terminal Resistance of Optical Output,” IEEE Trans. Magn. 45(5), 2221–2223 (2009).
[CrossRef]

T. Ohta, K. Nagata, I. Satoh, and R. Imanaka, “Overwritable phase-change optical disk recording,” IEEE Trans. Magn. 34(2), 426–431 (1998).
[CrossRef]

S. K. Lin, I. C. Lin, S. Y. Chen, H. W. Hsu, and D. P. Tsai, “Study of nanoscale recorded marks on phase-change recording layers and the interactions with surroundings,” IEEE Trans. Magn. 43(2), 861–863 (2007).
[CrossRef]

C. P. Liu, Y. X. Huang, C. C. Hsu, T. R. Jeng, and J. P. Chen, “Nanoscale Fabrication Using Thermal Lithography Technique With Blue Laser,” IEEE Trans. Magn. 45(5), 2206–2208 (2009).
[CrossRef]

J. Alloy. Comp. (1)

C. P. Liu, C. C. Hsu, T. R. Jeng, and J. P. Chen, “Enhancing nanoscale patterning on Ge-Sb-Sn-O inorganic resist film by introducing oxygen during blue laser-induced thermal lithography,” J. Alloy. Comp. 488(1), 190–194 (2009).
[CrossRef]

J. Appl. Phys. (9)

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Atomic force microscopy study of laser induced phase transitions in Ge2Sb2Te5,” J. Appl. Phys. 86(10), 5879–5887 (1999).
[CrossRef]

J. S. Wei, X. B. Jiao, F. X. Gan, and M. F. Xiao, “Laser pulse induced bumps in chalcogenide phase change films,” J. Appl. Phys. 103(12), 5 (2008).
[CrossRef]

N. Yamada and T. Matsunaga, “Structure of laser-crystallized Ge2Sb2+xTe5 sputtered thin films for use in optical memory,” J. Appl. Phys. 88(12), 7020–7028 (2000).
[CrossRef]

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb2Te5 films,” J. Appl. Phys. 89(6), 3168–3176 (2001).
[CrossRef]

M. M. Aziz and C. D. Wright, “An analytical model for nanoscale electrothermal probe recording on phase-change media,” J. Appl. Phys. 99(3), 12 (2006).
[CrossRef]

K. C. Silva, O. A. Sakai, A. Steimacher, F. Pedrochi, M. L. Baesso, A. C. Bento, A. N. Medina, S. M. Lima, R. C. Oliveira, J. C. S. Moraes, K. Yukimitu, E. B. Araújo, M. Petrovich, and D. W. Hewak, “Temperature and wavelength dependence of the thermo-optical properties of tellurite and chalcogenide glasses,” J. Appl. Phys. 102(7), 073507 (2007).
[CrossRef]

T. Fukaya, D. Buchel, S. Shinbori, J. Tominaga, N. Atoda, D. P. Tsai, and W. C. Lin, “Micro-optical nonlinearity of a silver oxide layer,” J. Appl. Phys. 89(11), 6139–6144 (2001).
[CrossRef]

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69(5), 2849–2856 (1991).
[CrossRef]

J. H. Coombs, A. P. J. M. Jongenelis, W. van Es-Spiekman, and B. A. J. Jacobs, “Laser-induced crystallization phenomena in GeTe-based alloys. I. Characterization of nucleation and growth,” J. Appl. Phys. 78(8), 4906–4917 (1995).
[CrossRef]

J. Electrochem. Soc. (1)

L. Y. Wang, B. Liu, Z. T. Song, S. L. Feng, Y. H. Xiang, and F. X. Zhang, “Basic Wet-Etching Solutions for Ge2Sb2Te5 Phase Change Material,” J. Electrochem. Soc. 157(4), H470–H473 (2010).
[CrossRef]

J. Microsc. (1)

T. S. Kao, Y. H. Fu, H. W. Hsu, and D. P. Tsai, “Study of the optical response of phase-change recording layer with zinc oxide nanostructured thin film,” J. Microsc. 229(3), 561–566 (2008).
[CrossRef] [PubMed]

J. Optoelectron. Adv. Mater. (1)

T. Ohta, “Phase-change optical memory promotes the DVD optical disk,” J. Optoelectron. Adv. Mater. 3, 609–626 (2001).

J. Vac. Sci. Technol. A (1)

S. H. Chen, S. P. Hou, J. H. Hsieh, H. K. Chen, and D. P. Tsai, “Writing and erasing efficiency analysis on optical-storage media using scanning surface potential microscopy,” J. Vac. Sci. Technol. A 24(6), 2003–2007 (2006).
[CrossRef]

J. Vac. Sci. Technol. A-Vac, Surf. Films (1)

D. P. Tsai and W. R. Guo, “Near-field optical recording on the cyanine dye layer of a commercial compact disk-recordable,” J. Vac. Sci. Technol. A-Vac, Surf. Films 15(3), 1442–1445 (1997).
[CrossRef]

Jpn. J. Appl. Phys. (8)

T. Kato and K. Tanaka, “Electronic properties of amorphous and crystalline Ge2Sb2Te5 films,” Jpn. J. Appl. Phys. 44(10), 7340–7344 (2005).
[CrossRef]

S. K. Lin, P. L. Yang, I. C. Lin, H. W. Hsu, and D. P. Tsai, “Resolving nano scale recording bits on phase-change rewritable optical disk,” Jpn. J. Appl. Phys. 45(No. 2B), 1431–1434 (2006).
[CrossRef]

H. J. Borg, M. van Schijndel, J. C. N. Rijpers, M. H. R. Lankhorst, G. F. Zhou, M. J. Dekker, I. P. D. Ubbens, and M. Kuijper, “Phase-change media for high-numerical-aperture and blue-wavelength recording,” Jpn. J. Appl. Phys. 40(Part 1, No. 3B), 1592–1597 (2001).
[CrossRef]

E. R. Meinders, R. Rastogi, M. Van der Veer, P. Peeters, H. El Majdoubi, H. Bulle, A. Millet, and D. Bruls, “Phase-transition mastering of high-density optical media,” Jpn. J. Appl. Phys. 46(No. 6B), 3987–3992 (2007).
[CrossRef]

T. Ohta, K. Nishiuchi, K. Narumi, Y. Kitaoka, H. Ishibashi, N. Yamada, and T. Kozaki, “Overview and the future of phase-change optical disk technology,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 770–774 (2000).
[CrossRef]

K. Nakayama, K. Kojima, Y. Imai, T. Kasai, S. Fukushima, A. Kitagawa, M. Kumeda, Y. Kakimoto, and M. Suzuki, “Nonvolatile memory based on phase change in Se-Sb-Te glass,” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 404–408 (2003).
[CrossRef]

W. C. Lin, T. S. Kao, H. H. Chang, Y. H. Lin, Y. H. Fu, C. T. Wu, K. H. Chen, and D. P. Tsai, “Study of a super-resolution optical structure: Polycarbonate/ZnS-SiO2/ZnO/ZnS-SiO2/Ge2Sb2Te5/ZnS-SiO2,” Jpn. J. Appl. Phys. 42(Part 1, No. 2B), 1029–1030 (2003).
[CrossRef]

J. W. Fang, C. C. Wu, A. Liao, W. C. Lin, and D. P. Tsai, “Implementation of practical super-resolution near-field structure system using commercial drive,” Jpn. J. Appl. Phys. 45(No. 2B), 1383–1384 (2006).
[CrossRef]

Mater. Today (1)

W. Welnic and M. Wuttig, “Reversible switching in phase-change materials,” Mater. Today 11(6), 20–27 (2008).
[CrossRef]

Nat. Mater. (1)

H. F. Hamann, M. O’Boyle, Y. C. Martin, M. Rooks, and H. K. Wickramasinghe, “Ultra-high-density phase-change storage and memory,” Nat. Mater. 5(5), 383–387 (2006).
[CrossRef] [PubMed]

Opt. Express (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Etching characteristics of sputter-deposited Ge2Sb2Te5 thin films in 1.0 wt% NaOH solution under magnetic stirring at 550 rpm. The initial thickness of the as-deposited (amorphous) sample was 230nm, which is the sum of 130nm for the ZnS-SiO2 dielectric layer and 100nm for the GST film. The annealed (poly-crystalline) sample was slightly thinner, at ~215nm, with its GST film shrunk by almost 15% upon crystallization. The etch-rate for each sample is seen to be constant over time, with the crystalline material being etched away at a rate of ~7.2 Å/min, more than three times that of the amorphous film at ~2.3 Å/min.

Fig. 2
Fig. 2

Optical and atomic-force microscope images of marks recorded with different laser powers and different pulse durations on an as-deposited amorphous Ge2Sb2Te5 thin film. For each mark, the pulse duration (nanoseconds) is indicated on the horizontal axis, while the laser power (milliwatts) appears on the vertical axis. (a) Optical micrograph and (b) atomic-force microscope (AFM) image of a 60 × 90 μm2 area of the sample before etching. (c) AFM image of the same region of the sample following a 60 minute etch.

Fig. 3
Fig. 3

Scanning electron micrographs of recorded marks in a 50nm-thick Ge2Sb2Te5 film on a 130nm-thick ZnS-SiO2 dielectric layer deposited on a glass substrate. The marks imaged in (a) were recorded under the same conditions as those in Fig. 2. (b) Close-up image of several category A marks shows the void at the center of the mark and a ring surrounding the void. (c) SEM image of a category B mark shows a few dark spots near the center of what appears to be a bulged-up region surrounded by a slightly depressed ring. (d) Image of a category C mark is unremarkable except for the appearance of a slightly depressed region in the area previously illuminated by the focused laser beam. (e) Magnified view of a category A mark, written with a 16mW and 1100ns laser pulse, showing a few bright spots at the bottom of the central void, in what appears to be a remnant of the molten pool formed at the center of the mark during laser-writing. (f) SEM image of a category A mark after etching. The exterior boundary of the ring as well as the remnants of the molten pool at the bottom of the void have been etched away. The nature of the small white dots sprinkled all over the ring is not presently understood.

Fig. 4
Fig. 4

(a) Transmission electron micrograph, and (b-f) in situ electron diffraction patterns obtained from various regions of a mark recorded on an as-deposited Ge2Sb2Te5 thin film using a 20mW and 700ns laser pulse. The GST film and its ZnS-SiO2 subbing layer were deposited on a copper grid coated with an extremely thin carbon diaphragm. The recorded mark, although created under conditions that were similar to those used to write the mark of Fig. 3(e), is substantially larger than the latter. Moreover, the relative diameters of the amorphous and crystalline rings are different in the two cases in consequence of the differing heating and cooling cycles each mark has been subjected to. The regions identified with letters “b” through “f” in the TEM image correspond to the diffraction patterns shown in frames (b)-(f), respectively.

Fig. 5
Fig. 5

Transmission electron micrographs and the corresponding electron diffraction patterns (inset) from the central region of two recorded marks on an as-deposited amorphous Ge2Sb2Te5 thin film. Both marks were recorded with a 700ns laser pulse; the laser power was 6mW in (a) and 2mW in (b). The mark recorded at low power is poly-crystalline, with black and white regions in the TEM image indicating the various orientations of the crystalline grains. In contrast, the mark recorded at high power has gone through melting and rapid quenching at its center, where the GST material is once again amorphous, albeit with a random atomic network that is somewhat different from that of the as-deposited material. The dark ring surrounding the bright central part of the TEM image in (a) is in the crystalline state.

Fig. 6
Fig. 6

Atomic force micrograph of a 15×15μm2 area of an as-deposited Ge2Sb2Te5 sample after marks recorded with a number of laser pulses (10-14 mW, 1100-1300 ns) were subjected to a 60-minute etch process under a magnetic stirring rate of 870 rpm. The grayish, doughnut-shaped region within each mark is melt-quenched amorphous material that has survived the etching process. The dark region inside each mark is a hole created in the GST layer during laser writing. The dark rings that surround each doughnut are also voids, but these are created by the etching away of crystallized regions. A few of the (amorphous) doughnuts are seen to have been completely detached from the substrate and floated a little distance away from their original locations within the recorded marks. The voids are around 50nm deep, which is the thickness of the GST film. Also, the white doughnuts that have left their original locations – and are now sitting atop the as-deposited regions of the sample – have a height of 50nm, which is consistent with the original thickness of the GST layer.

Fig. 7
Fig. 7

Graphical description of the structure of various recorded marks before etching (top row) and after etching (bottom row). (a) At high levels of laser power and long pulse durations, the center of the recorded mark evaporates, the interior ring of molten material rapidly quenches into the amorphous state, while the exterior ring cools slowly to form a crystalline region. (b) At moderate laser powers and pulse durations, there is no central hole, and the consolidated amorphous region at the center is surrounded by crystalline material. (c) At low laser powers, the material never melts and, therefore, there is no quenching and re-amorphization. Only a shallow crystalline mark is recorded, whose depth and diameter both increase with an increasing laser power and/or pulse duration. Upon etching, crystalline regions of the recorded marks that are exposed to the etchant are slowly eroded, while the amorphous regions by and large survive the etching process. If etching continues for a longer time, the crystallites underlying the amorphous regions erode even further, causing the amorphous “ring” or “ball” to detach from the substrate.

Metrics