Abstract

This paper proposes a novel architecture for next-generation passive optical network (PON) based on electrical code division multiplexing orthogonal frequency division multiplexing (ECDM-OFDM) access. The feasibility of bidirectional transmission with the same wavelength has been experimentally demonstrated under this architecture. An error-free transmission of two PON channels has been successfully demonstrated in the experiment.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M.-F. Huang, J. Yu, D. Qian, and G.-K. Chang, “Lightwave Centralized WDM-OFDM-PON,” in Proc. ECOC, Belgium, paper Th.1.F.5 (2008).
  2. T. Duong, N. Genay, P. Chanclou, B. Charbonnier, A. Pizzinat, and R. Brenot, “Experimental demonstration of 10 Gbit/s upstream transmission by remote modulation of 1 GHz RSOA using Adaptively Modulated Optical OFDM for WDM-PON single fiber architecture,” in Proc. ECOC, Belgium, paper.Th.3.F.1(2008).
  3. J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized Lightwave WDM-PON Employing 16-QAM Intensity Modulated OFDM Downstream and OOK Modulated Upstream Signals,” IEEE Photon. Technol. Lett. 20(18), 1545–1547 (2008).
    [CrossRef]
  4. C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal Remodulation of OFDM-QAM for Long Reach Carrier Distributed Passive Optical Networks,” IEEE Photon. Technol. Lett. 21(11), 715–717 (2009).
    [CrossRef]
  5. E. Giacoumidis, J. L. Wei, X. L. Yang, A. Tsokanos, and J. M. Tang, “Adaptive-Modulation-Enabled WDM Impairment Reduction in Multichannel Optical OFDM Transmission Systems for Next-Generation PONs,” Photon. J. 2(2), 130–140 (2010).
    [CrossRef]
  6. X. Liu, F. Buchali, and R. W. Tkach, “Improving the Nonlinear Tolerance of Polarization-Division-Multiplexed CO-OFDM in Long-Haul Fiber Transmission,” J. Lightwave Technol. 27(16), 3632–3640 (2009).
    [CrossRef]
  7. Y.-M. Lin, P.-L. Tien, M. C. Yuang, S. S. W. Lee, J. J. Chen, S.-Y. Chen, Y.-M. Huang, J.-L. Shih, and C.-H. Hsu, “A Novel Passive Optical Network Architecture Supporting Seamless Integration of RoF and OFDMA Signals,” IEEE Photon. Technol. Lett. 22(6), 419–421 (2010).
    [CrossRef]
  8. D. Qian, J. Hu, P. N. Ji, and T. Wang, “10.8-Gb/s OFDMA-PON Transmission Performance Study,” in Proc. OFC, USA, paper NME6(2009).
  9. Y.-M. Lin, P. L. T. Yuang, M. C. Lee, and S. S. W. Chen, “A novel optical access network architecture supporting seamless integration of RoF and OFDMA signals,” in Proc. ECOC, paper. P6.13 (2009).
  10. D. Qian, N. Cvijetic, Y. Huang, J. Yu, and T. Wang, “100km Long Reach Upstream 36Gb/s-OFDMA-PON over a Single Wavelength with Source-Free ONUs, ” in Proc. ECOC, Austria, paper 8.5.1(2009).
  11. B. Liu, X. Xin, L. Zhang, J. Yu, Q. Zhang, and C. Yu, “A WDM-OFDM-PON architecture with centralized lightwave and PolSK-modulated multicast overlay,” Opt. Express 18(3), 2137–2143 (2010).
    [CrossRef] [PubMed]
  12. M. Attygalle, Y. J. Wen, J. Shankar, A. Nirmalathas, X. Cheng, and Y. Wang, “Increasing upstream capacity in TDM-PON with multiple-wavelength transmission using Fabry-Perot laser diodes,” Opt. Express 15(16), 10247–10252 (2007).
    [CrossRef] [PubMed]
  13. S. L. Woodward and S. Ariyavisitakul, “Transporting CDMA signals over an analog optical link,” IEEE Trans. Vehicular Technol. 48(4), 1033–1038 (1999).
    [CrossRef]
  14. Y. Kotani, H. Iwamura, H. Tamai, M. Sarashina, and M. Kashima, “Demonstration of 1.25 Gb/s $, times, $8-Channels ECDM Using Eight-Chip Electrical Coding,” IEEE Photon. Technol. Lett. 22(12), 875–877 (2010).
    [CrossRef]

2010

E. Giacoumidis, J. L. Wei, X. L. Yang, A. Tsokanos, and J. M. Tang, “Adaptive-Modulation-Enabled WDM Impairment Reduction in Multichannel Optical OFDM Transmission Systems for Next-Generation PONs,” Photon. J. 2(2), 130–140 (2010).
[CrossRef]

Y.-M. Lin, P.-L. Tien, M. C. Yuang, S. S. W. Lee, J. J. Chen, S.-Y. Chen, Y.-M. Huang, J.-L. Shih, and C.-H. Hsu, “A Novel Passive Optical Network Architecture Supporting Seamless Integration of RoF and OFDMA Signals,” IEEE Photon. Technol. Lett. 22(6), 419–421 (2010).
[CrossRef]

Y. Kotani, H. Iwamura, H. Tamai, M. Sarashina, and M. Kashima, “Demonstration of 1.25 Gb/s $, times, $8-Channels ECDM Using Eight-Chip Electrical Coding,” IEEE Photon. Technol. Lett. 22(12), 875–877 (2010).
[CrossRef]

B. Liu, X. Xin, L. Zhang, J. Yu, Q. Zhang, and C. Yu, “A WDM-OFDM-PON architecture with centralized lightwave and PolSK-modulated multicast overlay,” Opt. Express 18(3), 2137–2143 (2010).
[CrossRef] [PubMed]

2009

X. Liu, F. Buchali, and R. W. Tkach, “Improving the Nonlinear Tolerance of Polarization-Division-Multiplexed CO-OFDM in Long-Haul Fiber Transmission,” J. Lightwave Technol. 27(16), 3632–3640 (2009).
[CrossRef]

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal Remodulation of OFDM-QAM for Long Reach Carrier Distributed Passive Optical Networks,” IEEE Photon. Technol. Lett. 21(11), 715–717 (2009).
[CrossRef]

2008

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized Lightwave WDM-PON Employing 16-QAM Intensity Modulated OFDM Downstream and OOK Modulated Upstream Signals,” IEEE Photon. Technol. Lett. 20(18), 1545–1547 (2008).
[CrossRef]

2007

1999

S. L. Woodward and S. Ariyavisitakul, “Transporting CDMA signals over an analog optical link,” IEEE Trans. Vehicular Technol. 48(4), 1033–1038 (1999).
[CrossRef]

Ariyavisitakul, S.

S. L. Woodward and S. Ariyavisitakul, “Transporting CDMA signals over an analog optical link,” IEEE Trans. Vehicular Technol. 48(4), 1033–1038 (1999).
[CrossRef]

Attygalle, M.

Buchali, F.

Chang, G.-K.

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized Lightwave WDM-PON Employing 16-QAM Intensity Modulated OFDM Downstream and OOK Modulated Upstream Signals,” IEEE Photon. Technol. Lett. 20(18), 1545–1547 (2008).
[CrossRef]

Chen, J. J.

Y.-M. Lin, P.-L. Tien, M. C. Yuang, S. S. W. Lee, J. J. Chen, S.-Y. Chen, Y.-M. Huang, J.-L. Shih, and C.-H. Hsu, “A Novel Passive Optical Network Architecture Supporting Seamless Integration of RoF and OFDMA Signals,” IEEE Photon. Technol. Lett. 22(6), 419–421 (2010).
[CrossRef]

Chen, L.

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized Lightwave WDM-PON Employing 16-QAM Intensity Modulated OFDM Downstream and OOK Modulated Upstream Signals,” IEEE Photon. Technol. Lett. 20(18), 1545–1547 (2008).
[CrossRef]

Chen, S.-Y.

Y.-M. Lin, P.-L. Tien, M. C. Yuang, S. S. W. Lee, J. J. Chen, S.-Y. Chen, Y.-M. Huang, J.-L. Shih, and C.-H. Hsu, “A Novel Passive Optical Network Architecture Supporting Seamless Integration of RoF and OFDMA Signals,” IEEE Photon. Technol. Lett. 22(6), 419–421 (2010).
[CrossRef]

Cheng, X.

Chi, S.

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal Remodulation of OFDM-QAM for Long Reach Carrier Distributed Passive Optical Networks,” IEEE Photon. Technol. Lett. 21(11), 715–717 (2009).
[CrossRef]

Chow, C. W.

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal Remodulation of OFDM-QAM for Long Reach Carrier Distributed Passive Optical Networks,” IEEE Photon. Technol. Lett. 21(11), 715–717 (2009).
[CrossRef]

Giacoumidis, E.

E. Giacoumidis, J. L. Wei, X. L. Yang, A. Tsokanos, and J. M. Tang, “Adaptive-Modulation-Enabled WDM Impairment Reduction in Multichannel Optical OFDM Transmission Systems for Next-Generation PONs,” Photon. J. 2(2), 130–140 (2010).
[CrossRef]

Hsu, C.-H.

Y.-M. Lin, P.-L. Tien, M. C. Yuang, S. S. W. Lee, J. J. Chen, S.-Y. Chen, Y.-M. Huang, J.-L. Shih, and C.-H. Hsu, “A Novel Passive Optical Network Architecture Supporting Seamless Integration of RoF and OFDMA Signals,” IEEE Photon. Technol. Lett. 22(6), 419–421 (2010).
[CrossRef]

Huang, M.-F.

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized Lightwave WDM-PON Employing 16-QAM Intensity Modulated OFDM Downstream and OOK Modulated Upstream Signals,” IEEE Photon. Technol. Lett. 20(18), 1545–1547 (2008).
[CrossRef]

Huang, Y.-M.

Y.-M. Lin, P.-L. Tien, M. C. Yuang, S. S. W. Lee, J. J. Chen, S.-Y. Chen, Y.-M. Huang, J.-L. Shih, and C.-H. Hsu, “A Novel Passive Optical Network Architecture Supporting Seamless Integration of RoF and OFDMA Signals,” IEEE Photon. Technol. Lett. 22(6), 419–421 (2010).
[CrossRef]

Iwamura, H.

Y. Kotani, H. Iwamura, H. Tamai, M. Sarashina, and M. Kashima, “Demonstration of 1.25 Gb/s $, times, $8-Channels ECDM Using Eight-Chip Electrical Coding,” IEEE Photon. Technol. Lett. 22(12), 875–877 (2010).
[CrossRef]

Kashima, M.

Y. Kotani, H. Iwamura, H. Tamai, M. Sarashina, and M. Kashima, “Demonstration of 1.25 Gb/s $, times, $8-Channels ECDM Using Eight-Chip Electrical Coding,” IEEE Photon. Technol. Lett. 22(12), 875–877 (2010).
[CrossRef]

Kotani, Y.

Y. Kotani, H. Iwamura, H. Tamai, M. Sarashina, and M. Kashima, “Demonstration of 1.25 Gb/s $, times, $8-Channels ECDM Using Eight-Chip Electrical Coding,” IEEE Photon. Technol. Lett. 22(12), 875–877 (2010).
[CrossRef]

Lee, S. S. W.

Y.-M. Lin, P.-L. Tien, M. C. Yuang, S. S. W. Lee, J. J. Chen, S.-Y. Chen, Y.-M. Huang, J.-L. Shih, and C.-H. Hsu, “A Novel Passive Optical Network Architecture Supporting Seamless Integration of RoF and OFDMA Signals,” IEEE Photon. Technol. Lett. 22(6), 419–421 (2010).
[CrossRef]

Lin, Y.-M.

Y.-M. Lin, P.-L. Tien, M. C. Yuang, S. S. W. Lee, J. J. Chen, S.-Y. Chen, Y.-M. Huang, J.-L. Shih, and C.-H. Hsu, “A Novel Passive Optical Network Architecture Supporting Seamless Integration of RoF and OFDMA Signals,” IEEE Photon. Technol. Lett. 22(6), 419–421 (2010).
[CrossRef]

Liu, B.

Liu, X.

Nirmalathas, A.

Qian, D.

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized Lightwave WDM-PON Employing 16-QAM Intensity Modulated OFDM Downstream and OOK Modulated Upstream Signals,” IEEE Photon. Technol. Lett. 20(18), 1545–1547 (2008).
[CrossRef]

Sarashina, M.

Y. Kotani, H. Iwamura, H. Tamai, M. Sarashina, and M. Kashima, “Demonstration of 1.25 Gb/s $, times, $8-Channels ECDM Using Eight-Chip Electrical Coding,” IEEE Photon. Technol. Lett. 22(12), 875–877 (2010).
[CrossRef]

Shankar, J.

Shih, F. Y.

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal Remodulation of OFDM-QAM for Long Reach Carrier Distributed Passive Optical Networks,” IEEE Photon. Technol. Lett. 21(11), 715–717 (2009).
[CrossRef]

Shih, J.-L.

Y.-M. Lin, P.-L. Tien, M. C. Yuang, S. S. W. Lee, J. J. Chen, S.-Y. Chen, Y.-M. Huang, J.-L. Shih, and C.-H. Hsu, “A Novel Passive Optical Network Architecture Supporting Seamless Integration of RoF and OFDMA Signals,” IEEE Photon. Technol. Lett. 22(6), 419–421 (2010).
[CrossRef]

Tamai, H.

Y. Kotani, H. Iwamura, H. Tamai, M. Sarashina, and M. Kashima, “Demonstration of 1.25 Gb/s $, times, $8-Channels ECDM Using Eight-Chip Electrical Coding,” IEEE Photon. Technol. Lett. 22(12), 875–877 (2010).
[CrossRef]

Tang, J. M.

E. Giacoumidis, J. L. Wei, X. L. Yang, A. Tsokanos, and J. M. Tang, “Adaptive-Modulation-Enabled WDM Impairment Reduction in Multichannel Optical OFDM Transmission Systems for Next-Generation PONs,” Photon. J. 2(2), 130–140 (2010).
[CrossRef]

Tien, P.-L.

Y.-M. Lin, P.-L. Tien, M. C. Yuang, S. S. W. Lee, J. J. Chen, S.-Y. Chen, Y.-M. Huang, J.-L. Shih, and C.-H. Hsu, “A Novel Passive Optical Network Architecture Supporting Seamless Integration of RoF and OFDMA Signals,” IEEE Photon. Technol. Lett. 22(6), 419–421 (2010).
[CrossRef]

Tkach, R. W.

Tsokanos, A.

E. Giacoumidis, J. L. Wei, X. L. Yang, A. Tsokanos, and J. M. Tang, “Adaptive-Modulation-Enabled WDM Impairment Reduction in Multichannel Optical OFDM Transmission Systems for Next-Generation PONs,” Photon. J. 2(2), 130–140 (2010).
[CrossRef]

Wang, C. H.

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal Remodulation of OFDM-QAM for Long Reach Carrier Distributed Passive Optical Networks,” IEEE Photon. Technol. Lett. 21(11), 715–717 (2009).
[CrossRef]

Wang, Y.

Wei, J. L.

E. Giacoumidis, J. L. Wei, X. L. Yang, A. Tsokanos, and J. M. Tang, “Adaptive-Modulation-Enabled WDM Impairment Reduction in Multichannel Optical OFDM Transmission Systems for Next-Generation PONs,” Photon. J. 2(2), 130–140 (2010).
[CrossRef]

Wen, Y. J.

Woodward, S. L.

S. L. Woodward and S. Ariyavisitakul, “Transporting CDMA signals over an analog optical link,” IEEE Trans. Vehicular Technol. 48(4), 1033–1038 (1999).
[CrossRef]

Xin, X.

Yang, X. L.

E. Giacoumidis, J. L. Wei, X. L. Yang, A. Tsokanos, and J. M. Tang, “Adaptive-Modulation-Enabled WDM Impairment Reduction in Multichannel Optical OFDM Transmission Systems for Next-Generation PONs,” Photon. J. 2(2), 130–140 (2010).
[CrossRef]

Yeh, C. H.

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal Remodulation of OFDM-QAM for Long Reach Carrier Distributed Passive Optical Networks,” IEEE Photon. Technol. Lett. 21(11), 715–717 (2009).
[CrossRef]

Yu, C.

Yu, J.

B. Liu, X. Xin, L. Zhang, J. Yu, Q. Zhang, and C. Yu, “A WDM-OFDM-PON architecture with centralized lightwave and PolSK-modulated multicast overlay,” Opt. Express 18(3), 2137–2143 (2010).
[CrossRef] [PubMed]

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized Lightwave WDM-PON Employing 16-QAM Intensity Modulated OFDM Downstream and OOK Modulated Upstream Signals,” IEEE Photon. Technol. Lett. 20(18), 1545–1547 (2008).
[CrossRef]

Yuang, M. C.

Y.-M. Lin, P.-L. Tien, M. C. Yuang, S. S. W. Lee, J. J. Chen, S.-Y. Chen, Y.-M. Huang, J.-L. Shih, and C.-H. Hsu, “A Novel Passive Optical Network Architecture Supporting Seamless Integration of RoF and OFDMA Signals,” IEEE Photon. Technol. Lett. 22(6), 419–421 (2010).
[CrossRef]

Zhang, L.

Zhang, Q.

IEEE Photon. Technol. Lett.

J. Yu, M.-F. Huang, D. Qian, L. Chen, and G.-K. Chang, “Centralized Lightwave WDM-PON Employing 16-QAM Intensity Modulated OFDM Downstream and OOK Modulated Upstream Signals,” IEEE Photon. Technol. Lett. 20(18), 1545–1547 (2008).
[CrossRef]

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal Remodulation of OFDM-QAM for Long Reach Carrier Distributed Passive Optical Networks,” IEEE Photon. Technol. Lett. 21(11), 715–717 (2009).
[CrossRef]

Y.-M. Lin, P.-L. Tien, M. C. Yuang, S. S. W. Lee, J. J. Chen, S.-Y. Chen, Y.-M. Huang, J.-L. Shih, and C.-H. Hsu, “A Novel Passive Optical Network Architecture Supporting Seamless Integration of RoF and OFDMA Signals,” IEEE Photon. Technol. Lett. 22(6), 419–421 (2010).
[CrossRef]

Y. Kotani, H. Iwamura, H. Tamai, M. Sarashina, and M. Kashima, “Demonstration of 1.25 Gb/s $, times, $8-Channels ECDM Using Eight-Chip Electrical Coding,” IEEE Photon. Technol. Lett. 22(12), 875–877 (2010).
[CrossRef]

IEEE Trans. Vehicular Technol.

S. L. Woodward and S. Ariyavisitakul, “Transporting CDMA signals over an analog optical link,” IEEE Trans. Vehicular Technol. 48(4), 1033–1038 (1999).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Photon. J.

E. Giacoumidis, J. L. Wei, X. L. Yang, A. Tsokanos, and J. M. Tang, “Adaptive-Modulation-Enabled WDM Impairment Reduction in Multichannel Optical OFDM Transmission Systems for Next-Generation PONs,” Photon. J. 2(2), 130–140 (2010).
[CrossRef]

Other

M.-F. Huang, J. Yu, D. Qian, and G.-K. Chang, “Lightwave Centralized WDM-OFDM-PON,” in Proc. ECOC, Belgium, paper Th.1.F.5 (2008).

T. Duong, N. Genay, P. Chanclou, B. Charbonnier, A. Pizzinat, and R. Brenot, “Experimental demonstration of 10 Gbit/s upstream transmission by remote modulation of 1 GHz RSOA using Adaptively Modulated Optical OFDM for WDM-PON single fiber architecture,” in Proc. ECOC, Belgium, paper.Th.3.F.1(2008).

D. Qian, J. Hu, P. N. Ji, and T. Wang, “10.8-Gb/s OFDMA-PON Transmission Performance Study,” in Proc. OFC, USA, paper NME6(2009).

Y.-M. Lin, P. L. T. Yuang, M. C. Lee, and S. S. W. Chen, “A novel optical access network architecture supporting seamless integration of RoF and OFDMA signals,” in Proc. ECOC, paper. P6.13 (2009).

D. Qian, N. Cvijetic, Y. Huang, J. Yu, and T. Wang, “100km Long Reach Upstream 36Gb/s-OFDMA-PON over a Single Wavelength with Source-Free ONUs, ” in Proc. ECOC, Austria, paper 8.5.1(2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The proposed architecture of ECDM-OFDM-PON.(L denotes the length of the code chip.)

Fig. 2
Fig. 2

Downstream experimental setup.

Fig. 3
Fig. 3

Upstream experimental setup.

Fig. 4
Fig. 4

BER curves at different ONU and electrical spectrum of ECDM-OFDM downstream signal (inset).

Fig. 6
Fig. 6

Measured BER of upstream signal.

Fig. 5
Fig. 5

Constellation maps of downstream signal.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

W 2 L = ( W L W L W L W L ) , W 1 = ( 1 )
S i k = m = 1 M i = 1 N 1 { u [ k ] W m + j v [ k ] W m } exp ( j 2 π f i k / N )

Metrics