Abstract

The strong thermooptic effect in silicon enables low-power and low-loss reconfiguration of large-scale silicon photonics. Thermal reconfiguration through the integration of metallic microheaters has been one of the more widely used reconfiguration techniques in silicon photonics. In this paper, structural and material optimizations are carried out through heat transport modeling to improve the reconfiguration speed of such devices, and the results are experimentally verified. Around 4 µs reconfiguration time are shown for the optimized structures. Moreover, sub-microsecond reconfiguration time is experimentally demonstrated through the pulsed excitation of the microheaters. The limitation of this pulsed excitation scheme is also discussed through an accurate system-level model developed for the microheater response.

© 2010 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Sub-100-nanosecond thermal reconfiguration of silicon photonic devices

Amir H. Atabaki, Ali A. Eftekhar, Siva Yegnanarayanan, and Ali Adibi
Opt. Express 21(13) 15706-15718 (2013)

Thermally-efficient reconfigurable narrowband RF-photonic filter

Ning-Ning Feng, Po Dong, Dazeng Feng, Wei Qian, Hong Liang, Daniel C. Lee, Jonathan B. Luff, Anjali Agarwal, Tom Banwell, Ron Menendez, Paul Toliver, Ted K. Woodward, and Mehdi Asghari
Opt. Express 18(24) 24648-24653 (2010)

Efficient, compact and low loss thermo-optic phase shifter in silicon

Nicholas C. Harris, Yangjin Ma, Jacob Mower, Tom Baehr-Jones, Dirk Englund, Michael Hochberg, and Christophe Galland
Opt. Express 22(9) 10487-10493 (2014)

References

  • View by:
  • |
  • |
  • |

  1. G. Reed and A. Knights, Silicon Photonics: an introduction (Wiley, 2004).
    [Crossref]
  2. L. Pavesi and D. Lockwood, Silicon photonics (Springer Verlag, 2004).
  3. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
    [Crossref]
  4. H. Lira, S. Manipatruni, and M. Lipson, “Broad band hitless silicon electro-optic switch for on-chip optical networks,” Opt. Express 17, 22271–22280 (2009).
    [Crossref]
  5. C. Li, L. Zhou, and A. Poon, “Silicon microring carrier-injection-based modulators/switches with tunable extinction ratios and OR-logic switching by using waveguide cross-coupling,” Opt. Express 15, 5069–5076 (2007).
    [Crossref] [PubMed]
  6. J. Takayesu, M. Hochberg, T. Baehr-Jones, E. Chan, G. Wang, P. Sullivan, Y. Liao, J. Davies, L. Dalton, A. Scherer, and W. Krug, “A Hybrid Electrooptic Microring Resonator-Based 1×4×1 ROADM for Wafer Scale Optical Interconnects,” J. Lightwave Technol. 27, 440–448 (2009).
    [Crossref]
  7. M. S. Rasras, D. M. Gill, S. S. Patel, K.-Y. Tu, Y.-K. Chen, A. E. White, A. T. S. Pomerene, D. N. Carothers, M. J. Grove, D. K. Sparacin, J. Michel, M. A. Beals, and L. C. Kimerling, “Demonstration of a fourth-order pole-zero optical filter integrated using CMOS processes,” J. Lightwave Technol. 25, 87–92 (2007).
    [Crossref]
  8. M. Geng, L. Jia, L. Zhang, L. Yang, P. Chen, T. Wang, and Y. Liu, “Four-channel reconfigurable optical add-drop multiplexer based on photonic wire waveguide,” Opt. Express 17, 5502–5516 (2009).
    [Crossref] [PubMed]
  9. E. Klein, D. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photon. Technol. Lett. 17, 2358–2360 (2005).
    [Crossref]
  10. R. Jones, J. Doylend, P. Ebrahimi, S. Ayotte, O. Raday, and O. Cohen, “Silicon photonic tunable optical dispersion compensator,” Opt. Express 15, 15836–15841 (2007).
    [Crossref] [PubMed]
  11. F. Horst, R. Germann, U. Bapst, D. Wiesmann, B. Offrein, and G. Bona, “Compact tunable FIR dispersion compensator in SiON technology,” IEEE Photon. Technol. Lett. 15, 1570–1572 (2003).
    [Crossref]
  12. X. Wang, J. A. Martinez, M. S. Nawrocka, and R. R. Panepucci, “Compact thermally tunable silicon wavelength switch: Modeling and characterization,” IEEE Photon. Technol. Lett. 20, 936–938 (2008).
    [Crossref]
  13. H.-Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, “1×4 wavelength reconfigurable photonic switch using thermally tuned microring resonators fabricated on silicon substrate,” IEEE Photon. Technol. Lett. 19, 704–706 (2007).
    [Crossref]
  14. I. Kiyat, A. Aydinli, and N. Dagli, “Low-power thermooptical tuning of SOI resonator switch,” IEEE Photon. Technol. Lett. 18, 364–366 (2006).
    [Crossref]
  15. T. Chu, H. Yamada, S. Ishida, and Y. Arakawa, “Compact 1 × N thermo-optic switches based on silicon photonic wire waveguides,” Opt. Express 13, 10109–10114 (2005).
    [Crossref] [PubMed]
  16. D. Geuzebroek, E. Klein, H. Kelderman, N. Baker, and A. Driessen, “Compact wavelength-selective switch for gigabit filtering in access networks,” IEEE Photon. Technol. Lett. 17, 336–338 (2005).
    [Crossref]
  17. T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, “Low loss and high extinction ratio strictly nonblocking 16 × 16 thermooptic matrix switch on 6-in wafer using silica-based planar lightwave circuit technology,” J. Lightwave Technol. 19, 371–379 (2001).
    [Crossref]
  18. M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, “Sub-mu s switching time in silicon-on-insulator Mach-Zehnder thermooptic switch,” IEEE Photon. Technol. Lett. 16, 2039–2041 (2004).
    [Crossref]
  19. A. Bilotti, “Static temperature distribution in IC chips with isothermal heat sources,” IEEE Trans. Electron. Dev. 21, 217–226 (1974).
    [Crossref]
  20. F. Yu, M. Cheng, P. Habitz, and G. Ahmadi, “Modeling of thermal behavior in SOI structures,” IEEE Trans. Electron. Dev. 51, 83–91 (2004).
    [Crossref]
  21. M. Pruessner, T. Stievater, M. Ferraro, and W. Rabinovich, “Thermo-optic tuning and switching in SOI waveguide Fabry-Perot microcavities,” Opt. Express 15, 7557–7563 (2007).
    [Crossref] [PubMed]
  22. F. Kreith and M. Bohn, Principles of heat transfer (Harper & Row New York, 1986).
  23. Y. Ju and K. Goodson, “Process-dependent thermal transport properties of silicon-dioxide films deposited using low-pressure chemical vapor deposition,” Appl. Phys. 85, 7130 (1999).
    [Crossref]
  24. R. Amatya, C. W. Holzwarth, H. I. Smith, and R. J. Ram, “Precision Tunable Silicon Compatible Microring Filters,” IEEE Photon. Technol. Lett. 20, 1739–1741 (2008).
    [Crossref]
  25. X. Zhang and C. Grigoropoulos, “Thermal conductivity and diffusivity of free-standing silicon nitride thin films,” Rev. Sci. Instrum. 66, 1115 (1995).
    [Crossref]
  26. M. Geis, S. Spector, R. Williamson, and T. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photon. Technol. Lett. 16, 2514–2516 (2004).
    [Crossref]
  27. A. H. Atabaki, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Novel micro-heater structure for low-power and fast photonic reconfiguration,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2010), p. CWP6.
  28. M. A. Popovic, “Theory and design of high-index-contrast microphotonic circuits,” Ph.D. thesis, Massachusetts Institute of Technology (2008).
  29. B. Momeni, J. Huang, M. Soltani, M. Askari, S. Mohammadi, M. Rakhshandehroo, and A. Adibi, “Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms,” Opt. Express14, 2413–2422 (2006).
    [Crossref] [PubMed]

2009 (3)

2008 (2)

X. Wang, J. A. Martinez, M. S. Nawrocka, and R. R. Panepucci, “Compact thermally tunable silicon wavelength switch: Modeling and characterization,” IEEE Photon. Technol. Lett. 20, 936–938 (2008).
[Crossref]

R. Amatya, C. W. Holzwarth, H. I. Smith, and R. J. Ram, “Precision Tunable Silicon Compatible Microring Filters,” IEEE Photon. Technol. Lett. 20, 1739–1741 (2008).
[Crossref]

2007 (5)

2006 (2)

I. Kiyat, A. Aydinli, and N. Dagli, “Low-power thermooptical tuning of SOI resonator switch,” IEEE Photon. Technol. Lett. 18, 364–366 (2006).
[Crossref]

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

2005 (3)

T. Chu, H. Yamada, S. Ishida, and Y. Arakawa, “Compact 1 × N thermo-optic switches based on silicon photonic wire waveguides,” Opt. Express 13, 10109–10114 (2005).
[Crossref] [PubMed]

D. Geuzebroek, E. Klein, H. Kelderman, N. Baker, and A. Driessen, “Compact wavelength-selective switch for gigabit filtering in access networks,” IEEE Photon. Technol. Lett. 17, 336–338 (2005).
[Crossref]

E. Klein, D. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photon. Technol. Lett. 17, 2358–2360 (2005).
[Crossref]

2004 (3)

F. Yu, M. Cheng, P. Habitz, and G. Ahmadi, “Modeling of thermal behavior in SOI structures,” IEEE Trans. Electron. Dev. 51, 83–91 (2004).
[Crossref]

M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, “Sub-mu s switching time in silicon-on-insulator Mach-Zehnder thermooptic switch,” IEEE Photon. Technol. Lett. 16, 2039–2041 (2004).
[Crossref]

M. Geis, S. Spector, R. Williamson, and T. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photon. Technol. Lett. 16, 2514–2516 (2004).
[Crossref]

2003 (1)

F. Horst, R. Germann, U. Bapst, D. Wiesmann, B. Offrein, and G. Bona, “Compact tunable FIR dispersion compensator in SiON technology,” IEEE Photon. Technol. Lett. 15, 1570–1572 (2003).
[Crossref]

2001 (1)

1999 (1)

Y. Ju and K. Goodson, “Process-dependent thermal transport properties of silicon-dioxide films deposited using low-pressure chemical vapor deposition,” Appl. Phys. 85, 7130 (1999).
[Crossref]

1995 (1)

X. Zhang and C. Grigoropoulos, “Thermal conductivity and diffusivity of free-standing silicon nitride thin films,” Rev. Sci. Instrum. 66, 1115 (1995).
[Crossref]

1974 (1)

A. Bilotti, “Static temperature distribution in IC chips with isothermal heat sources,” IEEE Trans. Electron. Dev. 21, 217–226 (1974).
[Crossref]

Aalto, T.

M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, “Sub-mu s switching time in silicon-on-insulator Mach-Zehnder thermooptic switch,” IEEE Photon. Technol. Lett. 16, 2039–2041 (2004).
[Crossref]

Adibi, A.

A. H. Atabaki, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Novel micro-heater structure for low-power and fast photonic reconfiguration,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2010), p. CWP6.

B. Momeni, J. Huang, M. Soltani, M. Askari, S. Mohammadi, M. Rakhshandehroo, and A. Adibi, “Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms,” Opt. Express14, 2413–2422 (2006).
[Crossref] [PubMed]

Ahmadi, G.

F. Yu, M. Cheng, P. Habitz, and G. Ahmadi, “Modeling of thermal behavior in SOI structures,” IEEE Trans. Electron. Dev. 51, 83–91 (2004).
[Crossref]

Amatya, R.

R. Amatya, C. W. Holzwarth, H. I. Smith, and R. J. Ram, “Precision Tunable Silicon Compatible Microring Filters,” IEEE Photon. Technol. Lett. 20, 1739–1741 (2008).
[Crossref]

Arakawa, Y.

Askari, M.

B. Momeni, J. Huang, M. Soltani, M. Askari, S. Mohammadi, M. Rakhshandehroo, and A. Adibi, “Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms,” Opt. Express14, 2413–2422 (2006).
[Crossref] [PubMed]

Atabaki, A. H.

A. H. Atabaki, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Novel micro-heater structure for low-power and fast photonic reconfiguration,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2010), p. CWP6.

Aydinli, A.

I. Kiyat, A. Aydinli, and N. Dagli, “Low-power thermooptical tuning of SOI resonator switch,” IEEE Photon. Technol. Lett. 18, 364–366 (2006).
[Crossref]

Ayotte, S.

Baehr-Jones, T.

Baker, N.

E. Klein, D. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photon. Technol. Lett. 17, 2358–2360 (2005).
[Crossref]

D. Geuzebroek, E. Klein, H. Kelderman, N. Baker, and A. Driessen, “Compact wavelength-selective switch for gigabit filtering in access networks,” IEEE Photon. Technol. Lett. 17, 336–338 (2005).
[Crossref]

Bapst, U.

F. Horst, R. Germann, U. Bapst, D. Wiesmann, B. Offrein, and G. Bona, “Compact tunable FIR dispersion compensator in SiON technology,” IEEE Photon. Technol. Lett. 15, 1570–1572 (2003).
[Crossref]

Beals, M. A.

Bilotti, A.

A. Bilotti, “Static temperature distribution in IC chips with isothermal heat sources,” IEEE Trans. Electron. Dev. 21, 217–226 (1974).
[Crossref]

Bohn, M.

F. Kreith and M. Bohn, Principles of heat transfer (Harper & Row New York, 1986).

Bona, G.

F. Horst, R. Germann, U. Bapst, D. Wiesmann, B. Offrein, and G. Bona, “Compact tunable FIR dispersion compensator in SiON technology,” IEEE Photon. Technol. Lett. 15, 1570–1572 (2003).
[Crossref]

Carothers, D. N.

Chan, E.

Chen, P.

Chen, Y.-K.

Cheng, M.

F. Yu, M. Cheng, P. Habitz, and G. Ahmadi, “Modeling of thermal behavior in SOI structures,” IEEE Trans. Electron. Dev. 51, 83–91 (2004).
[Crossref]

Chu, T.

Cohen, O.

Dagli, N.

I. Kiyat, A. Aydinli, and N. Dagli, “Low-power thermooptical tuning of SOI resonator switch,” IEEE Photon. Technol. Lett. 18, 364–366 (2006).
[Crossref]

Dalton, L.

Davies, J.

Doylend, J.

Driessen, A.

E. Klein, D. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photon. Technol. Lett. 17, 2358–2360 (2005).
[Crossref]

D. Geuzebroek, E. Klein, H. Kelderman, N. Baker, and A. Driessen, “Compact wavelength-selective switch for gigabit filtering in access networks,” IEEE Photon. Technol. Lett. 17, 336–338 (2005).
[Crossref]

Ebrahimi, P.

Eftekhar, A. A.

A. H. Atabaki, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Novel micro-heater structure for low-power and fast photonic reconfiguration,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2010), p. CWP6.

Ferraro, M.

Geis, M.

M. Geis, S. Spector, R. Williamson, and T. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photon. Technol. Lett. 16, 2514–2516 (2004).
[Crossref]

Geng, M.

Germann, R.

F. Horst, R. Germann, U. Bapst, D. Wiesmann, B. Offrein, and G. Bona, “Compact tunable FIR dispersion compensator in SiON technology,” IEEE Photon. Technol. Lett. 15, 1570–1572 (2003).
[Crossref]

Geuzebroek, D.

E. Klein, D. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photon. Technol. Lett. 17, 2358–2360 (2005).
[Crossref]

D. Geuzebroek, E. Klein, H. Kelderman, N. Baker, and A. Driessen, “Compact wavelength-selective switch for gigabit filtering in access networks,” IEEE Photon. Technol. Lett. 17, 336–338 (2005).
[Crossref]

Gill, D. M.

Goh, T.

Goodson, K.

Y. Ju and K. Goodson, “Process-dependent thermal transport properties of silicon-dioxide films deposited using low-pressure chemical vapor deposition,” Appl. Phys. 85, 7130 (1999).
[Crossref]

Grigoropoulos, C.

X. Zhang and C. Grigoropoulos, “Thermal conductivity and diffusivity of free-standing silicon nitride thin films,” Rev. Sci. Instrum. 66, 1115 (1995).
[Crossref]

Grove, M. J.

Habitz, P.

F. Yu, M. Cheng, P. Habitz, and G. Ahmadi, “Modeling of thermal behavior in SOI structures,” IEEE Trans. Electron. Dev. 51, 83–91 (2004).
[Crossref]

Harjanne, M.

M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, “Sub-mu s switching time in silicon-on-insulator Mach-Zehnder thermooptic switch,” IEEE Photon. Technol. Lett. 16, 2039–2041 (2004).
[Crossref]

Hattori, K.

Heimala, P.

M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, “Sub-mu s switching time in silicon-on-insulator Mach-Zehnder thermooptic switch,” IEEE Photon. Technol. Lett. 16, 2039–2041 (2004).
[Crossref]

Himeno, A.

Hochberg, M.

Holzwarth, C. W.

R. Amatya, C. W. Holzwarth, H. I. Smith, and R. J. Ram, “Precision Tunable Silicon Compatible Microring Filters,” IEEE Photon. Technol. Lett. 20, 1739–1741 (2008).
[Crossref]

Horst, F.

F. Horst, R. Germann, U. Bapst, D. Wiesmann, B. Offrein, and G. Bona, “Compact tunable FIR dispersion compensator in SiON technology,” IEEE Photon. Technol. Lett. 15, 1570–1572 (2003).
[Crossref]

Huang, J.

B. Momeni, J. Huang, M. Soltani, M. Askari, S. Mohammadi, M. Rakhshandehroo, and A. Adibi, “Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms,” Opt. Express14, 2413–2422 (2006).
[Crossref] [PubMed]

Ishida, S.

Jia, L.

Jones, R.

Ju, Y.

Y. Ju and K. Goodson, “Process-dependent thermal transport properties of silicon-dioxide films deposited using low-pressure chemical vapor deposition,” Appl. Phys. 85, 7130 (1999).
[Crossref]

Kapulainen, M.

M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, “Sub-mu s switching time in silicon-on-insulator Mach-Zehnder thermooptic switch,” IEEE Photon. Technol. Lett. 16, 2039–2041 (2004).
[Crossref]

Kelderman, H.

D. Geuzebroek, E. Klein, H. Kelderman, N. Baker, and A. Driessen, “Compact wavelength-selective switch for gigabit filtering in access networks,” IEEE Photon. Technol. Lett. 17, 336–338 (2005).
[Crossref]

E. Klein, D. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photon. Technol. Lett. 17, 2358–2360 (2005).
[Crossref]

Kimerling, L. C.

Kiyat, I.

I. Kiyat, A. Aydinli, and N. Dagli, “Low-power thermooptical tuning of SOI resonator switch,” IEEE Photon. Technol. Lett. 18, 364–366 (2006).
[Crossref]

Klein, E.

E. Klein, D. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photon. Technol. Lett. 17, 2358–2360 (2005).
[Crossref]

D. Geuzebroek, E. Klein, H. Kelderman, N. Baker, and A. Driessen, “Compact wavelength-selective switch for gigabit filtering in access networks,” IEEE Photon. Technol. Lett. 17, 336–338 (2005).
[Crossref]

Knights, A.

G. Reed and A. Knights, Silicon Photonics: an introduction (Wiley, 2004).
[Crossref]

Kreith, F.

F. Kreith and M. Bohn, Principles of heat transfer (Harper & Row New York, 1986).

Krug, W.

Li, C.

Li, D.

H.-Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, “1×4 wavelength reconfigurable photonic switch using thermally tuned microring resonators fabricated on silicon substrate,” IEEE Photon. Technol. Lett. 19, 704–706 (2007).
[Crossref]

Liao, Y.

Lipson, M.

Lira, H.

Liu, Y.

Lockwood, D.

L. Pavesi and D. Lockwood, Silicon photonics (Springer Verlag, 2004).

Lyszczarz, T.

M. Geis, S. Spector, R. Williamson, and T. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photon. Technol. Lett. 16, 2514–2516 (2004).
[Crossref]

Manipatruni, S.

Martinez, J.

H.-Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, “1×4 wavelength reconfigurable photonic switch using thermally tuned microring resonators fabricated on silicon substrate,” IEEE Photon. Technol. Lett. 19, 704–706 (2007).
[Crossref]

Martinez, J. A.

X. Wang, J. A. Martinez, M. S. Nawrocka, and R. R. Panepucci, “Compact thermally tunable silicon wavelength switch: Modeling and characterization,” IEEE Photon. Technol. Lett. 20, 936–938 (2008).
[Crossref]

Michel, J.

Mohammadi, S.

B. Momeni, J. Huang, M. Soltani, M. Askari, S. Mohammadi, M. Rakhshandehroo, and A. Adibi, “Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms,” Opt. Express14, 2413–2422 (2006).
[Crossref] [PubMed]

Momeni, B.

B. Momeni, J. Huang, M. Soltani, M. Askari, S. Mohammadi, M. Rakhshandehroo, and A. Adibi, “Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms,” Opt. Express14, 2413–2422 (2006).
[Crossref] [PubMed]

Nawrocka, M. S.

X. Wang, J. A. Martinez, M. S. Nawrocka, and R. R. Panepucci, “Compact thermally tunable silicon wavelength switch: Modeling and characterization,” IEEE Photon. Technol. Lett. 20, 936–938 (2008).
[Crossref]

Ng, H.-Y.

H.-Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, “1×4 wavelength reconfigurable photonic switch using thermally tuned microring resonators fabricated on silicon substrate,” IEEE Photon. Technol. Lett. 19, 704–706 (2007).
[Crossref]

Offrein, B.

F. Horst, R. Germann, U. Bapst, D. Wiesmann, B. Offrein, and G. Bona, “Compact tunable FIR dispersion compensator in SiON technology,” IEEE Photon. Technol. Lett. 15, 1570–1572 (2003).
[Crossref]

Ohmori, Y.

Okuno, M.

Panepucci, R. R.

X. Wang, J. A. Martinez, M. S. Nawrocka, and R. R. Panepucci, “Compact thermally tunable silicon wavelength switch: Modeling and characterization,” IEEE Photon. Technol. Lett. 20, 936–938 (2008).
[Crossref]

H.-Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, “1×4 wavelength reconfigurable photonic switch using thermally tuned microring resonators fabricated on silicon substrate,” IEEE Photon. Technol. Lett. 19, 704–706 (2007).
[Crossref]

Patel, S. S.

Pathak, K.

H.-Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, “1×4 wavelength reconfigurable photonic switch using thermally tuned microring resonators fabricated on silicon substrate,” IEEE Photon. Technol. Lett. 19, 704–706 (2007).
[Crossref]

Pavesi, L.

L. Pavesi and D. Lockwood, Silicon photonics (Springer Verlag, 2004).

Pomerene, A. T. S.

Poon, A.

Popovic, M. A.

M. A. Popovic, “Theory and design of high-index-contrast microphotonic circuits,” Ph.D. thesis, Massachusetts Institute of Technology (2008).

Pruessner, M.

Rabinovich, W.

Raday, O.

Rakhshandehroo, M.

B. Momeni, J. Huang, M. Soltani, M. Askari, S. Mohammadi, M. Rakhshandehroo, and A. Adibi, “Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms,” Opt. Express14, 2413–2422 (2006).
[Crossref] [PubMed]

Ram, R. J.

R. Amatya, C. W. Holzwarth, H. I. Smith, and R. J. Ram, “Precision Tunable Silicon Compatible Microring Filters,” IEEE Photon. Technol. Lett. 20, 1739–1741 (2008).
[Crossref]

Rasras, M. S.

Reed, G.

G. Reed and A. Knights, Silicon Photonics: an introduction (Wiley, 2004).
[Crossref]

Scherer, A.

Sengo, G.

E. Klein, D. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photon. Technol. Lett. 17, 2358–2360 (2005).
[Crossref]

Smith, H. I.

R. Amatya, C. W. Holzwarth, H. I. Smith, and R. J. Ram, “Precision Tunable Silicon Compatible Microring Filters,” IEEE Photon. Technol. Lett. 20, 1739–1741 (2008).
[Crossref]

Soltani, M.

B. Momeni, J. Huang, M. Soltani, M. Askari, S. Mohammadi, M. Rakhshandehroo, and A. Adibi, “Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms,” Opt. Express14, 2413–2422 (2006).
[Crossref] [PubMed]

Soref, R.

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

Sparacin, D. K.

Spector, S.

M. Geis, S. Spector, R. Williamson, and T. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photon. Technol. Lett. 16, 2514–2516 (2004).
[Crossref]

Stievater, T.

Sullivan, P.

Takayesu, J.

Tu, K.-Y.

Wang, G.

Wang, M. R.

H.-Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, “1×4 wavelength reconfigurable photonic switch using thermally tuned microring resonators fabricated on silicon substrate,” IEEE Photon. Technol. Lett. 19, 704–706 (2007).
[Crossref]

Wang, T.

Wang, X.

X. Wang, J. A. Martinez, M. S. Nawrocka, and R. R. Panepucci, “Compact thermally tunable silicon wavelength switch: Modeling and characterization,” IEEE Photon. Technol. Lett. 20, 936–938 (2008).
[Crossref]

H.-Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, “1×4 wavelength reconfigurable photonic switch using thermally tuned microring resonators fabricated on silicon substrate,” IEEE Photon. Technol. Lett. 19, 704–706 (2007).
[Crossref]

White, A. E.

Wiesmann, D.

F. Horst, R. Germann, U. Bapst, D. Wiesmann, B. Offrein, and G. Bona, “Compact tunable FIR dispersion compensator in SiON technology,” IEEE Photon. Technol. Lett. 15, 1570–1572 (2003).
[Crossref]

Williamson, R.

M. Geis, S. Spector, R. Williamson, and T. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photon. Technol. Lett. 16, 2514–2516 (2004).
[Crossref]

Yamada, H.

Yang, L.

Yasu, M.

Yegnanarayanan, S.

A. H. Atabaki, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Novel micro-heater structure for low-power and fast photonic reconfiguration,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2010), p. CWP6.

Yu, F.

F. Yu, M. Cheng, P. Habitz, and G. Ahmadi, “Modeling of thermal behavior in SOI structures,” IEEE Trans. Electron. Dev. 51, 83–91 (2004).
[Crossref]

Zhang, L.

Zhang, X.

X. Zhang and C. Grigoropoulos, “Thermal conductivity and diffusivity of free-standing silicon nitride thin films,” Rev. Sci. Instrum. 66, 1115 (1995).
[Crossref]

Zhou, L.

Appl. Phys. (1)

Y. Ju and K. Goodson, “Process-dependent thermal transport properties of silicon-dioxide films deposited using low-pressure chemical vapor deposition,” Appl. Phys. 85, 7130 (1999).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006).
[Crossref]

IEEE Photon. Technol. Lett. (9)

E. Klein, D. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, and A. Driessen, “Reconfigurable optical add-drop multiplexer using microring resonators,” IEEE Photon. Technol. Lett. 17, 2358–2360 (2005).
[Crossref]

F. Horst, R. Germann, U. Bapst, D. Wiesmann, B. Offrein, and G. Bona, “Compact tunable FIR dispersion compensator in SiON technology,” IEEE Photon. Technol. Lett. 15, 1570–1572 (2003).
[Crossref]

X. Wang, J. A. Martinez, M. S. Nawrocka, and R. R. Panepucci, “Compact thermally tunable silicon wavelength switch: Modeling and characterization,” IEEE Photon. Technol. Lett. 20, 936–938 (2008).
[Crossref]

H.-Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, and K. Pathak, “1×4 wavelength reconfigurable photonic switch using thermally tuned microring resonators fabricated on silicon substrate,” IEEE Photon. Technol. Lett. 19, 704–706 (2007).
[Crossref]

I. Kiyat, A. Aydinli, and N. Dagli, “Low-power thermooptical tuning of SOI resonator switch,” IEEE Photon. Technol. Lett. 18, 364–366 (2006).
[Crossref]

M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, “Sub-mu s switching time in silicon-on-insulator Mach-Zehnder thermooptic switch,” IEEE Photon. Technol. Lett. 16, 2039–2041 (2004).
[Crossref]

R. Amatya, C. W. Holzwarth, H. I. Smith, and R. J. Ram, “Precision Tunable Silicon Compatible Microring Filters,” IEEE Photon. Technol. Lett. 20, 1739–1741 (2008).
[Crossref]

D. Geuzebroek, E. Klein, H. Kelderman, N. Baker, and A. Driessen, “Compact wavelength-selective switch for gigabit filtering in access networks,” IEEE Photon. Technol. Lett. 17, 336–338 (2005).
[Crossref]

M. Geis, S. Spector, R. Williamson, and T. Lyszczarz, “Submicrosecond submilliwatt silicon-on-insulator thermooptic switch,” IEEE Photon. Technol. Lett. 16, 2514–2516 (2004).
[Crossref]

IEEE Trans. Electron. Dev. (2)

A. Bilotti, “Static temperature distribution in IC chips with isothermal heat sources,” IEEE Trans. Electron. Dev. 21, 217–226 (1974).
[Crossref]

F. Yu, M. Cheng, P. Habitz, and G. Ahmadi, “Modeling of thermal behavior in SOI structures,” IEEE Trans. Electron. Dev. 51, 83–91 (2004).
[Crossref]

J. Lightwave Technol. (3)

Opt. Express (6)

Rev. Sci. Instrum. (1)

X. Zhang and C. Grigoropoulos, “Thermal conductivity and diffusivity of free-standing silicon nitride thin films,” Rev. Sci. Instrum. 66, 1115 (1995).
[Crossref]

Other (6)

A. H. Atabaki, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Novel micro-heater structure for low-power and fast photonic reconfiguration,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2010), p. CWP6.

M. A. Popovic, “Theory and design of high-index-contrast microphotonic circuits,” Ph.D. thesis, Massachusetts Institute of Technology (2008).

B. Momeni, J. Huang, M. Soltani, M. Askari, S. Mohammadi, M. Rakhshandehroo, and A. Adibi, “Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms,” Opt. Express14, 2413–2422 (2006).
[Crossref] [PubMed]

F. Kreith and M. Bohn, Principles of heat transfer (Harper & Row New York, 1986).

G. Reed and A. Knights, Silicon Photonics: an introduction (Wiley, 2004).
[Crossref]

L. Pavesi and D. Lockwood, Silicon photonics (Springer Verlag, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a) Architecture of the metallic microheater over a Si waveguide on an SOI wafer. (b) Distribution of temperature at the cross-section of an SOI waveguide as heat is generated in the metallic microheater. White arrows shows the heat flux in this device.

Fig. 2.
Fig. 2.

(a) Simulation results of the effect of BOX thickness on the rise-time and fall-time of temperature at the center of waveguide (b) Simulation result for the temperature rise at the center of the Si device for mW/µm power dissipation density over the waveguide. The width of the microheater is 0.5 µm in these simulation.

Fig. 3.
Fig. 3.

(a) Optical micrograph of a 20 µm diameter microring with a 0.5 µm wide microheater on top. Resonator is side-coupled to a bus waveguide with width of 480 nm. (b) SEM of the microheater of the same device shown in (a).

Fig. 4.
Fig. 4.

(a) Normalized transmission of the microring shown in Fig. 3(a) for different power dissipations in the microheater. (b) Experimental and simulation results of the normalized step response of the same microheater as in (a).

Fig. 5.
Fig. 5.

(a) Experimental and simulation results for the temperature rise in the core of a 20 µm diameter microring versus microheater width. Vertical axis on the right shows the redshift in the resonance frequency (b) Experimental and simulation results of temperature rise-time and fall-time of microheaters versus microheater width. The rest of the device parameters are the same as those in Table 2.

Fig. 6.
Fig. 6.

(a) Frequency response of microheaters shown in Fig. 3(a) with the width of Wh = 1 µm with PECVD SiO2 and LPCVD SiN cladding. (b) The normalized step-response of the same microheaters as in (a) at the rise and fall edge of the drive signal.

Fig. 7.
Fig. 7.

(a) System-level model for heat transport in the microheater. (b) Experimental result of the normalized impulse response of the microheater with a width of 1 µm and that of the fitted model shown in (a).

Fig. 8.
Fig. 8.

Experimental results of the response of 1 µm wide microheater to a step signal with (blue curve) and without (red curve) pulsed-excitation. Inset shows the power dissipation signals for the two cases.

Fig. 9.
Fig. 9.

Modeling result for the heat propagation delay for different cladding material thermal diffusivity constants. The width of the microheater is 500 nm and the rest of the device parameters are the same as in Table 2. The arrows show the location of different materials on the thermal diffusivity axis.

Tables (2)

Tables Icon

Table 1. Device Parameters

Tables Icon

Table 2. Modeling Parameters

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

. ( k T ) + ρ c T t = q s ,

Metrics