Abstract

We report the first observation of sub-terahertz bulk-magnetization precession, using terahertz time-domain spectroscopy. The magnetization precession in gallium-substituted ε-iron oxide nano-ferromagnets under zero magnetic field is induced by the impulsive magnetic field of the THz wave through the gyromagnetic effect. Just at the resonance frequency, the linear to circular polarized wave conversion is realized. This is understood as the free induction decay signal radiated from a rotating magnetic dipole corresponding to the natural resonance. Furthermore, this demonstration reveals that the series of gallium-substituted ε-iron oxide nano-ferromagnets is very prospective for magneto-optic devices, which work at room temperature without external magnetic field, in next-generation wireless communication.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Fujishima, “Recent trends and future prospective on millimeter-wave CMOS circuits,” IEICE Electron. Express 6(11), 721–735 (2009).
    [CrossRef]
  2. A. Vilcot, B. Cabon, and J. Chazelas, “Microwave Photonics” (Kluwer: Boston, 1996).
  3. R. E. Camley, Z. Celinski, T. Fal, A. V. Glushchenko, I. R. Harward, V. Veerakumar, and V. V. Zagorodnii, “High-frequency signal processing using magnetic layered structures,” J. Magn. Magn. Mater. 321(14), 2048–2054 (2009).
    [CrossRef]
  4. T. X. Kraemer, M. Rudolph, F. J. Schmueckle, J. Wuerfl, and G. Traenkle, “InP DHBT Process in Transferred-Technology With ft and fmax Over,” IEEE Trans. Electron. Dev. 56, 1897 (2009).
    [CrossRef]
  5. M. J. W. Rodwell, “High Speed Integrated Circuit Technology, towards 100 GHz Logic” (World Scientific, Singapore, 2001).
  6. V. G. Harris, A. Geiler, Y. Chen, S. D. Yoon, M. Wu, A. Yang, Z. Chen, P. He, P. V. Parimi, X. Zuo, C. E. Patton, M. Abe, O. Acher, and C. Vittoria, “Recent advances in processing and applications of microwave ferrites,” J. Magn. Magn. Mater. 321(14), 2035–2047 (2009).
    [CrossRef]
  7. Y. Naito and K. Suetake, “Application of Ferrite to Electromagnetic Wave Absorber and its Characteristics,” IEEE Trans. Microw. Theory Tech. 19(1), 65–72 (1971).
    [CrossRef]
  8. J. L. Snoek, “Dispersion and absorption in magnetic ferrites at frequencies above one Mc/s,” Physica 14(4), 207–217 (1948).
    [CrossRef]
  9. F. Wang, K. Ishii, and B. Y. Tsui, “Ferrimagnetic resonance of single-crystal Barium Ferrite in the Millimeter Wave Region,” J. Appl. Phys. 32(8), 1621–1622 (1961).
    [CrossRef]
  10. Y. Chen, A. L. Geiler, T. Chen, T. Sakai, C. Vittoria, and V. G. Harris, “Low-loss barium ferrite quasi-single-crystals for microwave application,” J. Appl. Phys. 101, 501 (2007).
  11. Committee on identification of research needs relating to potential biological or adverse health effects of wireless communications devices, National Research Council. Identification of Research Needs Relating to Potential Biological or Adverse Health Effects of Wireless Communication (National Academies Press, WA, 2008).
  12. S. Ohkoshi, S. Kuroki, S. Sakurai, K. Matsumoto, K. Sato, and S. A. Sasaki, “Millimeter-Wave Absorber Based on Gallium-Substituted-Iron Oxide Nanomagnets,” Angew. Chem. Int. Ed. 46(44), 8392–8395 (2007).
    [CrossRef]
  13. A. Namai, S. Sakurai, M. Nakajima, T. Suemoto, K. Matsumoto, M. Goto, S. Sasaki, and S. Ohkoshi, “Synthesis of an electromagnetic wave absorber for high-speed wireless communication,” J. Am. Chem. Soc. 131(3), 1170–1173 (2009).
    [CrossRef] [PubMed]
  14. J. Slageren, S. Vongtragool, A. Mukhin, B. Gorshunov, and M. Dressel, “Terahertz Faraday effect in single molecule magnets,” Phys. Rev. B 72(2), 020401 (2005).
    [CrossRef]
  15. M. C. Langner, C. L. S. Kantner, Y. H. Chu, L. M. Martin, P. Yu, J. Seidel, R. Ramesh, and J. Orenstein, “Observation of ferromagnetic resonance in SrRuO3 by the time-resolved magneto-optical Kerr effect,” Phys. Rev. Lett. 102(17), 177601 (2009).
    [CrossRef] [PubMed]
  16. E. Tronc, C. Chanéac, and J. P. Jolivet, “Structure and magnetic characteristic of epsilon-Fe2O3,” J. Solid State Chem. 139(1), 93–104 (1998).
    [CrossRef]
  17. J. Jin, S. Ohkoshi, and K. Hashimoto, “Giant Coercive Field of Nanometer- Sized Iron Oxide,” Adv. Mater. 16(1), 48–51 (2004).
    [CrossRef]
  18. A. Namai, S. Sakurai, and S. Ohkoshi, “Synthesis, crystal structure, and magnetic properties of ε-GaIIIxFeIII2-xO3 nanorods,” J. Appl. Phys. 105(7), 516 (2009).
    [CrossRef]
  19. A. Namai, S. Kurahashi, H. Hachiya, K. Tomita, S. Sakurai, K. Matsumoto, T. Goto, and S. Ohkoshi, “High magnetic permeability of ε-GaxFe2−xO3 magnets in the millimeter wave region,” J. Appl. Phys. 107(9), 955 (2010).
    [CrossRef]
  20. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [CrossRef]
  21. B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
    [CrossRef]
  22. R. Shimano, Y. Ino, Yu. P. Svirko, and M. Kuwata-Gonokami, “Terahertz frequency hall measurement by magneto-optical Kerr spectroscopy in InAs,” Appl. Phys. Lett. 81(2), 199–201 (2002).
    [CrossRef]
  23. O. Morikawa, A. Quema, S. Nashima, H. Sumikura, T. Nagashima, and M. Hangyo, “Faraday ellipticity and Faraday rotation of a doped-silicon wafer studied by terahertz time-domain spectroscopy,” J. Appl. Phys. 100(3), 033105 (2006).
    [CrossRef]
  24. A. V. Kimel, A. Kirilyuk, A. Tsvetkov, R. V. Pisarev, and Th. Rasing, “Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO3.,” Nature 429(6994), 850–853 (2004).
    [CrossRef] [PubMed]
  25. A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature 435(7042), 655–657 (2005).
    [CrossRef] [PubMed]
  26. S. A. Crooker, J. J. Baumberg, F. Flack, N. Samarth, and D. D. Awschalom, “Terahertz Spin Precession and Coherent Transfer of Angular Momenta in Magnetic Quantum Wells,” Phys. Rev. Lett. 77(13), 2814–2817 (1996).
    [CrossRef] [PubMed]
  27. H. Kosaka, T. Inagaki, Y. Rikitake, H. Imamura, Y. Mitsumori, and K. Edamatsu, “Spin state tomography of optically injected electrons in a semiconductor,” Nature 457(7230), 702–705 (2009).
    [CrossRef] [PubMed]
  28. C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and Th. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
    [CrossRef] [PubMed]
  29. S. Chikazumi, “Physics of Ferromagnetism” (Oxford University Press, New York, 1997).
  30. M. Born, and E. Wolf, “The principle of optics” (Pergamon Press, 1959).

2010 (1)

A. Namai, S. Kurahashi, H. Hachiya, K. Tomita, S. Sakurai, K. Matsumoto, T. Goto, and S. Ohkoshi, “High magnetic permeability of ε-GaxFe2−xO3 magnets in the millimeter wave region,” J. Appl. Phys. 107(9), 955 (2010).
[CrossRef]

2009 (8)

M. C. Langner, C. L. S. Kantner, Y. H. Chu, L. M. Martin, P. Yu, J. Seidel, R. Ramesh, and J. Orenstein, “Observation of ferromagnetic resonance in SrRuO3 by the time-resolved magneto-optical Kerr effect,” Phys. Rev. Lett. 102(17), 177601 (2009).
[CrossRef] [PubMed]

M. Fujishima, “Recent trends and future prospective on millimeter-wave CMOS circuits,” IEICE Electron. Express 6(11), 721–735 (2009).
[CrossRef]

R. E. Camley, Z. Celinski, T. Fal, A. V. Glushchenko, I. R. Harward, V. Veerakumar, and V. V. Zagorodnii, “High-frequency signal processing using magnetic layered structures,” J. Magn. Magn. Mater. 321(14), 2048–2054 (2009).
[CrossRef]

T. X. Kraemer, M. Rudolph, F. J. Schmueckle, J. Wuerfl, and G. Traenkle, “InP DHBT Process in Transferred-Technology With ft and fmax Over,” IEEE Trans. Electron. Dev. 56, 1897 (2009).
[CrossRef]

V. G. Harris, A. Geiler, Y. Chen, S. D. Yoon, M. Wu, A. Yang, Z. Chen, P. He, P. V. Parimi, X. Zuo, C. E. Patton, M. Abe, O. Acher, and C. Vittoria, “Recent advances in processing and applications of microwave ferrites,” J. Magn. Magn. Mater. 321(14), 2035–2047 (2009).
[CrossRef]

A. Namai, S. Sakurai, M. Nakajima, T. Suemoto, K. Matsumoto, M. Goto, S. Sasaki, and S. Ohkoshi, “Synthesis of an electromagnetic wave absorber for high-speed wireless communication,” J. Am. Chem. Soc. 131(3), 1170–1173 (2009).
[CrossRef] [PubMed]

H. Kosaka, T. Inagaki, Y. Rikitake, H. Imamura, Y. Mitsumori, and K. Edamatsu, “Spin state tomography of optically injected electrons in a semiconductor,” Nature 457(7230), 702–705 (2009).
[CrossRef] [PubMed]

A. Namai, S. Sakurai, and S. Ohkoshi, “Synthesis, crystal structure, and magnetic properties of ε-GaIIIxFeIII2-xO3 nanorods,” J. Appl. Phys. 105(7), 516 (2009).
[CrossRef]

2007 (4)

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and Th. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[CrossRef] [PubMed]

Y. Chen, A. L. Geiler, T. Chen, T. Sakai, C. Vittoria, and V. G. Harris, “Low-loss barium ferrite quasi-single-crystals for microwave application,” J. Appl. Phys. 101, 501 (2007).

S. Ohkoshi, S. Kuroki, S. Sakurai, K. Matsumoto, K. Sato, and S. A. Sasaki, “Millimeter-Wave Absorber Based on Gallium-Substituted-Iron Oxide Nanomagnets,” Angew. Chem. Int. Ed. 46(44), 8392–8395 (2007).
[CrossRef]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

2006 (1)

O. Morikawa, A. Quema, S. Nashima, H. Sumikura, T. Nagashima, and M. Hangyo, “Faraday ellipticity and Faraday rotation of a doped-silicon wafer studied by terahertz time-domain spectroscopy,” J. Appl. Phys. 100(3), 033105 (2006).
[CrossRef]

2005 (2)

A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature 435(7042), 655–657 (2005).
[CrossRef] [PubMed]

J. Slageren, S. Vongtragool, A. Mukhin, B. Gorshunov, and M. Dressel, “Terahertz Faraday effect in single molecule magnets,” Phys. Rev. B 72(2), 020401 (2005).
[CrossRef]

2004 (2)

J. Jin, S. Ohkoshi, and K. Hashimoto, “Giant Coercive Field of Nanometer- Sized Iron Oxide,” Adv. Mater. 16(1), 48–51 (2004).
[CrossRef]

A. V. Kimel, A. Kirilyuk, A. Tsvetkov, R. V. Pisarev, and Th. Rasing, “Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO3.,” Nature 429(6994), 850–853 (2004).
[CrossRef] [PubMed]

2002 (2)

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef]

R. Shimano, Y. Ino, Yu. P. Svirko, and M. Kuwata-Gonokami, “Terahertz frequency hall measurement by magneto-optical Kerr spectroscopy in InAs,” Appl. Phys. Lett. 81(2), 199–201 (2002).
[CrossRef]

1998 (1)

E. Tronc, C. Chanéac, and J. P. Jolivet, “Structure and magnetic characteristic of epsilon-Fe2O3,” J. Solid State Chem. 139(1), 93–104 (1998).
[CrossRef]

1996 (1)

S. A. Crooker, J. J. Baumberg, F. Flack, N. Samarth, and D. D. Awschalom, “Terahertz Spin Precession and Coherent Transfer of Angular Momenta in Magnetic Quantum Wells,” Phys. Rev. Lett. 77(13), 2814–2817 (1996).
[CrossRef] [PubMed]

1971 (1)

Y. Naito and K. Suetake, “Application of Ferrite to Electromagnetic Wave Absorber and its Characteristics,” IEEE Trans. Microw. Theory Tech. 19(1), 65–72 (1971).
[CrossRef]

1961 (1)

F. Wang, K. Ishii, and B. Y. Tsui, “Ferrimagnetic resonance of single-crystal Barium Ferrite in the Millimeter Wave Region,” J. Appl. Phys. 32(8), 1621–1622 (1961).
[CrossRef]

1948 (1)

J. L. Snoek, “Dispersion and absorption in magnetic ferrites at frequencies above one Mc/s,” Physica 14(4), 207–217 (1948).
[CrossRef]

Abe, M.

V. G. Harris, A. Geiler, Y. Chen, S. D. Yoon, M. Wu, A. Yang, Z. Chen, P. He, P. V. Parimi, X. Zuo, C. E. Patton, M. Abe, O. Acher, and C. Vittoria, “Recent advances in processing and applications of microwave ferrites,” J. Magn. Magn. Mater. 321(14), 2035–2047 (2009).
[CrossRef]

Acher, O.

V. G. Harris, A. Geiler, Y. Chen, S. D. Yoon, M. Wu, A. Yang, Z. Chen, P. He, P. V. Parimi, X. Zuo, C. E. Patton, M. Abe, O. Acher, and C. Vittoria, “Recent advances in processing and applications of microwave ferrites,” J. Magn. Magn. Mater. 321(14), 2035–2047 (2009).
[CrossRef]

Awschalom, D. D.

S. A. Crooker, J. J. Baumberg, F. Flack, N. Samarth, and D. D. Awschalom, “Terahertz Spin Precession and Coherent Transfer of Angular Momenta in Magnetic Quantum Wells,” Phys. Rev. Lett. 77(13), 2814–2817 (1996).
[CrossRef] [PubMed]

Balbashov, A. M.

A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature 435(7042), 655–657 (2005).
[CrossRef] [PubMed]

Baumberg, J. J.

S. A. Crooker, J. J. Baumberg, F. Flack, N. Samarth, and D. D. Awschalom, “Terahertz Spin Precession and Coherent Transfer of Angular Momenta in Magnetic Quantum Wells,” Phys. Rev. Lett. 77(13), 2814–2817 (1996).
[CrossRef] [PubMed]

Camley, R. E.

R. E. Camley, Z. Celinski, T. Fal, A. V. Glushchenko, I. R. Harward, V. Veerakumar, and V. V. Zagorodnii, “High-frequency signal processing using magnetic layered structures,” J. Magn. Magn. Mater. 321(14), 2048–2054 (2009).
[CrossRef]

Celinski, Z.

R. E. Camley, Z. Celinski, T. Fal, A. V. Glushchenko, I. R. Harward, V. Veerakumar, and V. V. Zagorodnii, “High-frequency signal processing using magnetic layered structures,” J. Magn. Magn. Mater. 321(14), 2048–2054 (2009).
[CrossRef]

Chanéac, C.

E. Tronc, C. Chanéac, and J. P. Jolivet, “Structure and magnetic characteristic of epsilon-Fe2O3,” J. Solid State Chem. 139(1), 93–104 (1998).
[CrossRef]

Chen, T.

Y. Chen, A. L. Geiler, T. Chen, T. Sakai, C. Vittoria, and V. G. Harris, “Low-loss barium ferrite quasi-single-crystals for microwave application,” J. Appl. Phys. 101, 501 (2007).

Chen, Y.

V. G. Harris, A. Geiler, Y. Chen, S. D. Yoon, M. Wu, A. Yang, Z. Chen, P. He, P. V. Parimi, X. Zuo, C. E. Patton, M. Abe, O. Acher, and C. Vittoria, “Recent advances in processing and applications of microwave ferrites,” J. Magn. Magn. Mater. 321(14), 2035–2047 (2009).
[CrossRef]

Y. Chen, A. L. Geiler, T. Chen, T. Sakai, C. Vittoria, and V. G. Harris, “Low-loss barium ferrite quasi-single-crystals for microwave application,” J. Appl. Phys. 101, 501 (2007).

Chen, Z.

V. G. Harris, A. Geiler, Y. Chen, S. D. Yoon, M. Wu, A. Yang, Z. Chen, P. He, P. V. Parimi, X. Zuo, C. E. Patton, M. Abe, O. Acher, and C. Vittoria, “Recent advances in processing and applications of microwave ferrites,” J. Magn. Magn. Mater. 321(14), 2035–2047 (2009).
[CrossRef]

Chu, Y. H.

M. C. Langner, C. L. S. Kantner, Y. H. Chu, L. M. Martin, P. Yu, J. Seidel, R. Ramesh, and J. Orenstein, “Observation of ferromagnetic resonance in SrRuO3 by the time-resolved magneto-optical Kerr effect,” Phys. Rev. Lett. 102(17), 177601 (2009).
[CrossRef] [PubMed]

Crooker, S. A.

S. A. Crooker, J. J. Baumberg, F. Flack, N. Samarth, and D. D. Awschalom, “Terahertz Spin Precession and Coherent Transfer of Angular Momenta in Magnetic Quantum Wells,” Phys. Rev. Lett. 77(13), 2814–2817 (1996).
[CrossRef] [PubMed]

Dressel, M.

J. Slageren, S. Vongtragool, A. Mukhin, B. Gorshunov, and M. Dressel, “Terahertz Faraday effect in single molecule magnets,” Phys. Rev. B 72(2), 020401 (2005).
[CrossRef]

Edamatsu, K.

H. Kosaka, T. Inagaki, Y. Rikitake, H. Imamura, Y. Mitsumori, and K. Edamatsu, “Spin state tomography of optically injected electrons in a semiconductor,” Nature 457(7230), 702–705 (2009).
[CrossRef] [PubMed]

Fal, T.

R. E. Camley, Z. Celinski, T. Fal, A. V. Glushchenko, I. R. Harward, V. Veerakumar, and V. V. Zagorodnii, “High-frequency signal processing using magnetic layered structures,” J. Magn. Magn. Mater. 321(14), 2048–2054 (2009).
[CrossRef]

Ferguson, B.

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef]

Flack, F.

S. A. Crooker, J. J. Baumberg, F. Flack, N. Samarth, and D. D. Awschalom, “Terahertz Spin Precession and Coherent Transfer of Angular Momenta in Magnetic Quantum Wells,” Phys. Rev. Lett. 77(13), 2814–2817 (1996).
[CrossRef] [PubMed]

Fujishima, M.

M. Fujishima, “Recent trends and future prospective on millimeter-wave CMOS circuits,” IEICE Electron. Express 6(11), 721–735 (2009).
[CrossRef]

Geiler, A.

V. G. Harris, A. Geiler, Y. Chen, S. D. Yoon, M. Wu, A. Yang, Z. Chen, P. He, P. V. Parimi, X. Zuo, C. E. Patton, M. Abe, O. Acher, and C. Vittoria, “Recent advances in processing and applications of microwave ferrites,” J. Magn. Magn. Mater. 321(14), 2035–2047 (2009).
[CrossRef]

Geiler, A. L.

Y. Chen, A. L. Geiler, T. Chen, T. Sakai, C. Vittoria, and V. G. Harris, “Low-loss barium ferrite quasi-single-crystals for microwave application,” J. Appl. Phys. 101, 501 (2007).

Glushchenko, A. V.

R. E. Camley, Z. Celinski, T. Fal, A. V. Glushchenko, I. R. Harward, V. Veerakumar, and V. V. Zagorodnii, “High-frequency signal processing using magnetic layered structures,” J. Magn. Magn. Mater. 321(14), 2048–2054 (2009).
[CrossRef]

Gorshunov, B.

J. Slageren, S. Vongtragool, A. Mukhin, B. Gorshunov, and M. Dressel, “Terahertz Faraday effect in single molecule magnets,” Phys. Rev. B 72(2), 020401 (2005).
[CrossRef]

Goto, M.

A. Namai, S. Sakurai, M. Nakajima, T. Suemoto, K. Matsumoto, M. Goto, S. Sasaki, and S. Ohkoshi, “Synthesis of an electromagnetic wave absorber for high-speed wireless communication,” J. Am. Chem. Soc. 131(3), 1170–1173 (2009).
[CrossRef] [PubMed]

Goto, T.

A. Namai, S. Kurahashi, H. Hachiya, K. Tomita, S. Sakurai, K. Matsumoto, T. Goto, and S. Ohkoshi, “High magnetic permeability of ε-GaxFe2−xO3 magnets in the millimeter wave region,” J. Appl. Phys. 107(9), 955 (2010).
[CrossRef]

Hachiya, H.

A. Namai, S. Kurahashi, H. Hachiya, K. Tomita, S. Sakurai, K. Matsumoto, T. Goto, and S. Ohkoshi, “High magnetic permeability of ε-GaxFe2−xO3 magnets in the millimeter wave region,” J. Appl. Phys. 107(9), 955 (2010).
[CrossRef]

Hangyo, M.

O. Morikawa, A. Quema, S. Nashima, H. Sumikura, T. Nagashima, and M. Hangyo, “Faraday ellipticity and Faraday rotation of a doped-silicon wafer studied by terahertz time-domain spectroscopy,” J. Appl. Phys. 100(3), 033105 (2006).
[CrossRef]

Hansteen, F.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and Th. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[CrossRef] [PubMed]

Harris, V. G.

V. G. Harris, A. Geiler, Y. Chen, S. D. Yoon, M. Wu, A. Yang, Z. Chen, P. He, P. V. Parimi, X. Zuo, C. E. Patton, M. Abe, O. Acher, and C. Vittoria, “Recent advances in processing and applications of microwave ferrites,” J. Magn. Magn. Mater. 321(14), 2035–2047 (2009).
[CrossRef]

Y. Chen, A. L. Geiler, T. Chen, T. Sakai, C. Vittoria, and V. G. Harris, “Low-loss barium ferrite quasi-single-crystals for microwave application,” J. Appl. Phys. 101, 501 (2007).

Harward, I. R.

R. E. Camley, Z. Celinski, T. Fal, A. V. Glushchenko, I. R. Harward, V. Veerakumar, and V. V. Zagorodnii, “High-frequency signal processing using magnetic layered structures,” J. Magn. Magn. Mater. 321(14), 2048–2054 (2009).
[CrossRef]

Hashimoto, K.

J. Jin, S. Ohkoshi, and K. Hashimoto, “Giant Coercive Field of Nanometer- Sized Iron Oxide,” Adv. Mater. 16(1), 48–51 (2004).
[CrossRef]

He, P.

V. G. Harris, A. Geiler, Y. Chen, S. D. Yoon, M. Wu, A. Yang, Z. Chen, P. He, P. V. Parimi, X. Zuo, C. E. Patton, M. Abe, O. Acher, and C. Vittoria, “Recent advances in processing and applications of microwave ferrites,” J. Magn. Magn. Mater. 321(14), 2035–2047 (2009).
[CrossRef]

Imamura, H.

H. Kosaka, T. Inagaki, Y. Rikitake, H. Imamura, Y. Mitsumori, and K. Edamatsu, “Spin state tomography of optically injected electrons in a semiconductor,” Nature 457(7230), 702–705 (2009).
[CrossRef] [PubMed]

Inagaki, T.

H. Kosaka, T. Inagaki, Y. Rikitake, H. Imamura, Y. Mitsumori, and K. Edamatsu, “Spin state tomography of optically injected electrons in a semiconductor,” Nature 457(7230), 702–705 (2009).
[CrossRef] [PubMed]

Ino, Y.

R. Shimano, Y. Ino, Yu. P. Svirko, and M. Kuwata-Gonokami, “Terahertz frequency hall measurement by magneto-optical Kerr spectroscopy in InAs,” Appl. Phys. Lett. 81(2), 199–201 (2002).
[CrossRef]

Ishii, K.

F. Wang, K. Ishii, and B. Y. Tsui, “Ferrimagnetic resonance of single-crystal Barium Ferrite in the Millimeter Wave Region,” J. Appl. Phys. 32(8), 1621–1622 (1961).
[CrossRef]

Itoh, A.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and Th. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[CrossRef] [PubMed]

Jin, J.

J. Jin, S. Ohkoshi, and K. Hashimoto, “Giant Coercive Field of Nanometer- Sized Iron Oxide,” Adv. Mater. 16(1), 48–51 (2004).
[CrossRef]

Jolivet, J. P.

E. Tronc, C. Chanéac, and J. P. Jolivet, “Structure and magnetic characteristic of epsilon-Fe2O3,” J. Solid State Chem. 139(1), 93–104 (1998).
[CrossRef]

Kantner, C. L. S.

M. C. Langner, C. L. S. Kantner, Y. H. Chu, L. M. Martin, P. Yu, J. Seidel, R. Ramesh, and J. Orenstein, “Observation of ferromagnetic resonance in SrRuO3 by the time-resolved magneto-optical Kerr effect,” Phys. Rev. Lett. 102(17), 177601 (2009).
[CrossRef] [PubMed]

Kimel, A. V.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and Th. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[CrossRef] [PubMed]

A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature 435(7042), 655–657 (2005).
[CrossRef] [PubMed]

A. V. Kimel, A. Kirilyuk, A. Tsvetkov, R. V. Pisarev, and Th. Rasing, “Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO3.,” Nature 429(6994), 850–853 (2004).
[CrossRef] [PubMed]

Kirilyuk, A.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and Th. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[CrossRef] [PubMed]

A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature 435(7042), 655–657 (2005).
[CrossRef] [PubMed]

A. V. Kimel, A. Kirilyuk, A. Tsvetkov, R. V. Pisarev, and Th. Rasing, “Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO3.,” Nature 429(6994), 850–853 (2004).
[CrossRef] [PubMed]

Kosaka, H.

H. Kosaka, T. Inagaki, Y. Rikitake, H. Imamura, Y. Mitsumori, and K. Edamatsu, “Spin state tomography of optically injected electrons in a semiconductor,” Nature 457(7230), 702–705 (2009).
[CrossRef] [PubMed]

Kraemer, T. X.

T. X. Kraemer, M. Rudolph, F. J. Schmueckle, J. Wuerfl, and G. Traenkle, “InP DHBT Process in Transferred-Technology With ft and fmax Over,” IEEE Trans. Electron. Dev. 56, 1897 (2009).
[CrossRef]

Kurahashi, S.

A. Namai, S. Kurahashi, H. Hachiya, K. Tomita, S. Sakurai, K. Matsumoto, T. Goto, and S. Ohkoshi, “High magnetic permeability of ε-GaxFe2−xO3 magnets in the millimeter wave region,” J. Appl. Phys. 107(9), 955 (2010).
[CrossRef]

Kuroki, S.

S. Ohkoshi, S. Kuroki, S. Sakurai, K. Matsumoto, K. Sato, and S. A. Sasaki, “Millimeter-Wave Absorber Based on Gallium-Substituted-Iron Oxide Nanomagnets,” Angew. Chem. Int. Ed. 46(44), 8392–8395 (2007).
[CrossRef]

Kuwata-Gonokami, M.

R. Shimano, Y. Ino, Yu. P. Svirko, and M. Kuwata-Gonokami, “Terahertz frequency hall measurement by magneto-optical Kerr spectroscopy in InAs,” Appl. Phys. Lett. 81(2), 199–201 (2002).
[CrossRef]

Langner, M. C.

M. C. Langner, C. L. S. Kantner, Y. H. Chu, L. M. Martin, P. Yu, J. Seidel, R. Ramesh, and J. Orenstein, “Observation of ferromagnetic resonance in SrRuO3 by the time-resolved magneto-optical Kerr effect,” Phys. Rev. Lett. 102(17), 177601 (2009).
[CrossRef] [PubMed]

Martin, L. M.

M. C. Langner, C. L. S. Kantner, Y. H. Chu, L. M. Martin, P. Yu, J. Seidel, R. Ramesh, and J. Orenstein, “Observation of ferromagnetic resonance in SrRuO3 by the time-resolved magneto-optical Kerr effect,” Phys. Rev. Lett. 102(17), 177601 (2009).
[CrossRef] [PubMed]

Matsumoto, K.

A. Namai, S. Kurahashi, H. Hachiya, K. Tomita, S. Sakurai, K. Matsumoto, T. Goto, and S. Ohkoshi, “High magnetic permeability of ε-GaxFe2−xO3 magnets in the millimeter wave region,” J. Appl. Phys. 107(9), 955 (2010).
[CrossRef]

A. Namai, S. Sakurai, M. Nakajima, T. Suemoto, K. Matsumoto, M. Goto, S. Sasaki, and S. Ohkoshi, “Synthesis of an electromagnetic wave absorber for high-speed wireless communication,” J. Am. Chem. Soc. 131(3), 1170–1173 (2009).
[CrossRef] [PubMed]

S. Ohkoshi, S. Kuroki, S. Sakurai, K. Matsumoto, K. Sato, and S. A. Sasaki, “Millimeter-Wave Absorber Based on Gallium-Substituted-Iron Oxide Nanomagnets,” Angew. Chem. Int. Ed. 46(44), 8392–8395 (2007).
[CrossRef]

Mitsumori, Y.

H. Kosaka, T. Inagaki, Y. Rikitake, H. Imamura, Y. Mitsumori, and K. Edamatsu, “Spin state tomography of optically injected electrons in a semiconductor,” Nature 457(7230), 702–705 (2009).
[CrossRef] [PubMed]

Morikawa, O.

O. Morikawa, A. Quema, S. Nashima, H. Sumikura, T. Nagashima, and M. Hangyo, “Faraday ellipticity and Faraday rotation of a doped-silicon wafer studied by terahertz time-domain spectroscopy,” J. Appl. Phys. 100(3), 033105 (2006).
[CrossRef]

Mukhin, A.

J. Slageren, S. Vongtragool, A. Mukhin, B. Gorshunov, and M. Dressel, “Terahertz Faraday effect in single molecule magnets,” Phys. Rev. B 72(2), 020401 (2005).
[CrossRef]

Nagashima, T.

O. Morikawa, A. Quema, S. Nashima, H. Sumikura, T. Nagashima, and M. Hangyo, “Faraday ellipticity and Faraday rotation of a doped-silicon wafer studied by terahertz time-domain spectroscopy,” J. Appl. Phys. 100(3), 033105 (2006).
[CrossRef]

Naito, Y.

Y. Naito and K. Suetake, “Application of Ferrite to Electromagnetic Wave Absorber and its Characteristics,” IEEE Trans. Microw. Theory Tech. 19(1), 65–72 (1971).
[CrossRef]

Nakajima, M.

A. Namai, S. Sakurai, M. Nakajima, T. Suemoto, K. Matsumoto, M. Goto, S. Sasaki, and S. Ohkoshi, “Synthesis of an electromagnetic wave absorber for high-speed wireless communication,” J. Am. Chem. Soc. 131(3), 1170–1173 (2009).
[CrossRef] [PubMed]

Namai, A.

A. Namai, S. Kurahashi, H. Hachiya, K. Tomita, S. Sakurai, K. Matsumoto, T. Goto, and S. Ohkoshi, “High magnetic permeability of ε-GaxFe2−xO3 magnets in the millimeter wave region,” J. Appl. Phys. 107(9), 955 (2010).
[CrossRef]

A. Namai, S. Sakurai, and S. Ohkoshi, “Synthesis, crystal structure, and magnetic properties of ε-GaIIIxFeIII2-xO3 nanorods,” J. Appl. Phys. 105(7), 516 (2009).
[CrossRef]

A. Namai, S. Sakurai, M. Nakajima, T. Suemoto, K. Matsumoto, M. Goto, S. Sasaki, and S. Ohkoshi, “Synthesis of an electromagnetic wave absorber for high-speed wireless communication,” J. Am. Chem. Soc. 131(3), 1170–1173 (2009).
[CrossRef] [PubMed]

Nashima, S.

O. Morikawa, A. Quema, S. Nashima, H. Sumikura, T. Nagashima, and M. Hangyo, “Faraday ellipticity and Faraday rotation of a doped-silicon wafer studied by terahertz time-domain spectroscopy,” J. Appl. Phys. 100(3), 033105 (2006).
[CrossRef]

Ohkoshi, S.

A. Namai, S. Kurahashi, H. Hachiya, K. Tomita, S. Sakurai, K. Matsumoto, T. Goto, and S. Ohkoshi, “High magnetic permeability of ε-GaxFe2−xO3 magnets in the millimeter wave region,” J. Appl. Phys. 107(9), 955 (2010).
[CrossRef]

A. Namai, S. Sakurai, and S. Ohkoshi, “Synthesis, crystal structure, and magnetic properties of ε-GaIIIxFeIII2-xO3 nanorods,” J. Appl. Phys. 105(7), 516 (2009).
[CrossRef]

A. Namai, S. Sakurai, M. Nakajima, T. Suemoto, K. Matsumoto, M. Goto, S. Sasaki, and S. Ohkoshi, “Synthesis of an electromagnetic wave absorber for high-speed wireless communication,” J. Am. Chem. Soc. 131(3), 1170–1173 (2009).
[CrossRef] [PubMed]

S. Ohkoshi, S. Kuroki, S. Sakurai, K. Matsumoto, K. Sato, and S. A. Sasaki, “Millimeter-Wave Absorber Based on Gallium-Substituted-Iron Oxide Nanomagnets,” Angew. Chem. Int. Ed. 46(44), 8392–8395 (2007).
[CrossRef]

J. Jin, S. Ohkoshi, and K. Hashimoto, “Giant Coercive Field of Nanometer- Sized Iron Oxide,” Adv. Mater. 16(1), 48–51 (2004).
[CrossRef]

Orenstein, J.

M. C. Langner, C. L. S. Kantner, Y. H. Chu, L. M. Martin, P. Yu, J. Seidel, R. Ramesh, and J. Orenstein, “Observation of ferromagnetic resonance in SrRuO3 by the time-resolved magneto-optical Kerr effect,” Phys. Rev. Lett. 102(17), 177601 (2009).
[CrossRef] [PubMed]

Parimi, P. V.

V. G. Harris, A. Geiler, Y. Chen, S. D. Yoon, M. Wu, A. Yang, Z. Chen, P. He, P. V. Parimi, X. Zuo, C. E. Patton, M. Abe, O. Acher, and C. Vittoria, “Recent advances in processing and applications of microwave ferrites,” J. Magn. Magn. Mater. 321(14), 2035–2047 (2009).
[CrossRef]

Patton, C. E.

V. G. Harris, A. Geiler, Y. Chen, S. D. Yoon, M. Wu, A. Yang, Z. Chen, P. He, P. V. Parimi, X. Zuo, C. E. Patton, M. Abe, O. Acher, and C. Vittoria, “Recent advances in processing and applications of microwave ferrites,” J. Magn. Magn. Mater. 321(14), 2035–2047 (2009).
[CrossRef]

Pisarev, R. V.

A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature 435(7042), 655–657 (2005).
[CrossRef] [PubMed]

A. V. Kimel, A. Kirilyuk, A. Tsvetkov, R. V. Pisarev, and Th. Rasing, “Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO3.,” Nature 429(6994), 850–853 (2004).
[CrossRef] [PubMed]

Quema, A.

O. Morikawa, A. Quema, S. Nashima, H. Sumikura, T. Nagashima, and M. Hangyo, “Faraday ellipticity and Faraday rotation of a doped-silicon wafer studied by terahertz time-domain spectroscopy,” J. Appl. Phys. 100(3), 033105 (2006).
[CrossRef]

Ramesh, R.

M. C. Langner, C. L. S. Kantner, Y. H. Chu, L. M. Martin, P. Yu, J. Seidel, R. Ramesh, and J. Orenstein, “Observation of ferromagnetic resonance in SrRuO3 by the time-resolved magneto-optical Kerr effect,” Phys. Rev. Lett. 102(17), 177601 (2009).
[CrossRef] [PubMed]

Rasing, T.

A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature 435(7042), 655–657 (2005).
[CrossRef] [PubMed]

Rasing, Th.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and Th. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[CrossRef] [PubMed]

A. V. Kimel, A. Kirilyuk, A. Tsvetkov, R. V. Pisarev, and Th. Rasing, “Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO3.,” Nature 429(6994), 850–853 (2004).
[CrossRef] [PubMed]

Rikitake, Y.

H. Kosaka, T. Inagaki, Y. Rikitake, H. Imamura, Y. Mitsumori, and K. Edamatsu, “Spin state tomography of optically injected electrons in a semiconductor,” Nature 457(7230), 702–705 (2009).
[CrossRef] [PubMed]

Rudolph, M.

T. X. Kraemer, M. Rudolph, F. J. Schmueckle, J. Wuerfl, and G. Traenkle, “InP DHBT Process in Transferred-Technology With ft and fmax Over,” IEEE Trans. Electron. Dev. 56, 1897 (2009).
[CrossRef]

Sakai, T.

Y. Chen, A. L. Geiler, T. Chen, T. Sakai, C. Vittoria, and V. G. Harris, “Low-loss barium ferrite quasi-single-crystals for microwave application,” J. Appl. Phys. 101, 501 (2007).

Sakurai, S.

A. Namai, S. Kurahashi, H. Hachiya, K. Tomita, S. Sakurai, K. Matsumoto, T. Goto, and S. Ohkoshi, “High magnetic permeability of ε-GaxFe2−xO3 magnets in the millimeter wave region,” J. Appl. Phys. 107(9), 955 (2010).
[CrossRef]

A. Namai, S. Sakurai, and S. Ohkoshi, “Synthesis, crystal structure, and magnetic properties of ε-GaIIIxFeIII2-xO3 nanorods,” J. Appl. Phys. 105(7), 516 (2009).
[CrossRef]

A. Namai, S. Sakurai, M. Nakajima, T. Suemoto, K. Matsumoto, M. Goto, S. Sasaki, and S. Ohkoshi, “Synthesis of an electromagnetic wave absorber for high-speed wireless communication,” J. Am. Chem. Soc. 131(3), 1170–1173 (2009).
[CrossRef] [PubMed]

S. Ohkoshi, S. Kuroki, S. Sakurai, K. Matsumoto, K. Sato, and S. A. Sasaki, “Millimeter-Wave Absorber Based on Gallium-Substituted-Iron Oxide Nanomagnets,” Angew. Chem. Int. Ed. 46(44), 8392–8395 (2007).
[CrossRef]

Samarth, N.

S. A. Crooker, J. J. Baumberg, F. Flack, N. Samarth, and D. D. Awschalom, “Terahertz Spin Precession and Coherent Transfer of Angular Momenta in Magnetic Quantum Wells,” Phys. Rev. Lett. 77(13), 2814–2817 (1996).
[CrossRef] [PubMed]

Sasaki, S.

A. Namai, S. Sakurai, M. Nakajima, T. Suemoto, K. Matsumoto, M. Goto, S. Sasaki, and S. Ohkoshi, “Synthesis of an electromagnetic wave absorber for high-speed wireless communication,” J. Am. Chem. Soc. 131(3), 1170–1173 (2009).
[CrossRef] [PubMed]

Sasaki, S. A.

S. Ohkoshi, S. Kuroki, S. Sakurai, K. Matsumoto, K. Sato, and S. A. Sasaki, “Millimeter-Wave Absorber Based on Gallium-Substituted-Iron Oxide Nanomagnets,” Angew. Chem. Int. Ed. 46(44), 8392–8395 (2007).
[CrossRef]

Sato, K.

S. Ohkoshi, S. Kuroki, S. Sakurai, K. Matsumoto, K. Sato, and S. A. Sasaki, “Millimeter-Wave Absorber Based on Gallium-Substituted-Iron Oxide Nanomagnets,” Angew. Chem. Int. Ed. 46(44), 8392–8395 (2007).
[CrossRef]

Schmueckle, F. J.

T. X. Kraemer, M. Rudolph, F. J. Schmueckle, J. Wuerfl, and G. Traenkle, “InP DHBT Process in Transferred-Technology With ft and fmax Over,” IEEE Trans. Electron. Dev. 56, 1897 (2009).
[CrossRef]

Seidel, J.

M. C. Langner, C. L. S. Kantner, Y. H. Chu, L. M. Martin, P. Yu, J. Seidel, R. Ramesh, and J. Orenstein, “Observation of ferromagnetic resonance in SrRuO3 by the time-resolved magneto-optical Kerr effect,” Phys. Rev. Lett. 102(17), 177601 (2009).
[CrossRef] [PubMed]

Shimano, R.

R. Shimano, Y. Ino, Yu. P. Svirko, and M. Kuwata-Gonokami, “Terahertz frequency hall measurement by magneto-optical Kerr spectroscopy in InAs,” Appl. Phys. Lett. 81(2), 199–201 (2002).
[CrossRef]

Slageren, J.

J. Slageren, S. Vongtragool, A. Mukhin, B. Gorshunov, and M. Dressel, “Terahertz Faraday effect in single molecule magnets,” Phys. Rev. B 72(2), 020401 (2005).
[CrossRef]

Snoek, J. L.

J. L. Snoek, “Dispersion and absorption in magnetic ferrites at frequencies above one Mc/s,” Physica 14(4), 207–217 (1948).
[CrossRef]

Stanciu, C. D.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and Th. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[CrossRef] [PubMed]

Suemoto, T.

A. Namai, S. Sakurai, M. Nakajima, T. Suemoto, K. Matsumoto, M. Goto, S. Sasaki, and S. Ohkoshi, “Synthesis of an electromagnetic wave absorber for high-speed wireless communication,” J. Am. Chem. Soc. 131(3), 1170–1173 (2009).
[CrossRef] [PubMed]

Suetake, K.

Y. Naito and K. Suetake, “Application of Ferrite to Electromagnetic Wave Absorber and its Characteristics,” IEEE Trans. Microw. Theory Tech. 19(1), 65–72 (1971).
[CrossRef]

Sumikura, H.

O. Morikawa, A. Quema, S. Nashima, H. Sumikura, T. Nagashima, and M. Hangyo, “Faraday ellipticity and Faraday rotation of a doped-silicon wafer studied by terahertz time-domain spectroscopy,” J. Appl. Phys. 100(3), 033105 (2006).
[CrossRef]

Svirko, Yu. P.

R. Shimano, Y. Ino, Yu. P. Svirko, and M. Kuwata-Gonokami, “Terahertz frequency hall measurement by magneto-optical Kerr spectroscopy in InAs,” Appl. Phys. Lett. 81(2), 199–201 (2002).
[CrossRef]

Tomita, K.

A. Namai, S. Kurahashi, H. Hachiya, K. Tomita, S. Sakurai, K. Matsumoto, T. Goto, and S. Ohkoshi, “High magnetic permeability of ε-GaxFe2−xO3 magnets in the millimeter wave region,” J. Appl. Phys. 107(9), 955 (2010).
[CrossRef]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

Traenkle, G.

T. X. Kraemer, M. Rudolph, F. J. Schmueckle, J. Wuerfl, and G. Traenkle, “InP DHBT Process in Transferred-Technology With ft and fmax Over,” IEEE Trans. Electron. Dev. 56, 1897 (2009).
[CrossRef]

Tronc, E.

E. Tronc, C. Chanéac, and J. P. Jolivet, “Structure and magnetic characteristic of epsilon-Fe2O3,” J. Solid State Chem. 139(1), 93–104 (1998).
[CrossRef]

Tsui, B. Y.

F. Wang, K. Ishii, and B. Y. Tsui, “Ferrimagnetic resonance of single-crystal Barium Ferrite in the Millimeter Wave Region,” J. Appl. Phys. 32(8), 1621–1622 (1961).
[CrossRef]

Tsukamoto, A.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and Th. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[CrossRef] [PubMed]

Tsvetkov, A.

A. V. Kimel, A. Kirilyuk, A. Tsvetkov, R. V. Pisarev, and Th. Rasing, “Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO3.,” Nature 429(6994), 850–853 (2004).
[CrossRef] [PubMed]

Usachev, P. A.

A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature 435(7042), 655–657 (2005).
[CrossRef] [PubMed]

Veerakumar, V.

R. E. Camley, Z. Celinski, T. Fal, A. V. Glushchenko, I. R. Harward, V. Veerakumar, and V. V. Zagorodnii, “High-frequency signal processing using magnetic layered structures,” J. Magn. Magn. Mater. 321(14), 2048–2054 (2009).
[CrossRef]

Vittoria, C.

V. G. Harris, A. Geiler, Y. Chen, S. D. Yoon, M. Wu, A. Yang, Z. Chen, P. He, P. V. Parimi, X. Zuo, C. E. Patton, M. Abe, O. Acher, and C. Vittoria, “Recent advances in processing and applications of microwave ferrites,” J. Magn. Magn. Mater. 321(14), 2035–2047 (2009).
[CrossRef]

Y. Chen, A. L. Geiler, T. Chen, T. Sakai, C. Vittoria, and V. G. Harris, “Low-loss barium ferrite quasi-single-crystals for microwave application,” J. Appl. Phys. 101, 501 (2007).

Vongtragool, S.

J. Slageren, S. Vongtragool, A. Mukhin, B. Gorshunov, and M. Dressel, “Terahertz Faraday effect in single molecule magnets,” Phys. Rev. B 72(2), 020401 (2005).
[CrossRef]

Wang, F.

F. Wang, K. Ishii, and B. Y. Tsui, “Ferrimagnetic resonance of single-crystal Barium Ferrite in the Millimeter Wave Region,” J. Appl. Phys. 32(8), 1621–1622 (1961).
[CrossRef]

Wu, M.

V. G. Harris, A. Geiler, Y. Chen, S. D. Yoon, M. Wu, A. Yang, Z. Chen, P. He, P. V. Parimi, X. Zuo, C. E. Patton, M. Abe, O. Acher, and C. Vittoria, “Recent advances in processing and applications of microwave ferrites,” J. Magn. Magn. Mater. 321(14), 2035–2047 (2009).
[CrossRef]

Wuerfl, J.

T. X. Kraemer, M. Rudolph, F. J. Schmueckle, J. Wuerfl, and G. Traenkle, “InP DHBT Process in Transferred-Technology With ft and fmax Over,” IEEE Trans. Electron. Dev. 56, 1897 (2009).
[CrossRef]

Yang, A.

V. G. Harris, A. Geiler, Y. Chen, S. D. Yoon, M. Wu, A. Yang, Z. Chen, P. He, P. V. Parimi, X. Zuo, C. E. Patton, M. Abe, O. Acher, and C. Vittoria, “Recent advances in processing and applications of microwave ferrites,” J. Magn. Magn. Mater. 321(14), 2035–2047 (2009).
[CrossRef]

Yoon, S. D.

V. G. Harris, A. Geiler, Y. Chen, S. D. Yoon, M. Wu, A. Yang, Z. Chen, P. He, P. V. Parimi, X. Zuo, C. E. Patton, M. Abe, O. Acher, and C. Vittoria, “Recent advances in processing and applications of microwave ferrites,” J. Magn. Magn. Mater. 321(14), 2035–2047 (2009).
[CrossRef]

Yu, P.

M. C. Langner, C. L. S. Kantner, Y. H. Chu, L. M. Martin, P. Yu, J. Seidel, R. Ramesh, and J. Orenstein, “Observation of ferromagnetic resonance in SrRuO3 by the time-resolved magneto-optical Kerr effect,” Phys. Rev. Lett. 102(17), 177601 (2009).
[CrossRef] [PubMed]

Zagorodnii, V. V.

R. E. Camley, Z. Celinski, T. Fal, A. V. Glushchenko, I. R. Harward, V. Veerakumar, and V. V. Zagorodnii, “High-frequency signal processing using magnetic layered structures,” J. Magn. Magn. Mater. 321(14), 2048–2054 (2009).
[CrossRef]

Zhang, X.-C.

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef]

Zuo, X.

V. G. Harris, A. Geiler, Y. Chen, S. D. Yoon, M. Wu, A. Yang, Z. Chen, P. He, P. V. Parimi, X. Zuo, C. E. Patton, M. Abe, O. Acher, and C. Vittoria, “Recent advances in processing and applications of microwave ferrites,” J. Magn. Magn. Mater. 321(14), 2035–2047 (2009).
[CrossRef]

Adv. Mater. (1)

J. Jin, S. Ohkoshi, and K. Hashimoto, “Giant Coercive Field of Nanometer- Sized Iron Oxide,” Adv. Mater. 16(1), 48–51 (2004).
[CrossRef]

Angew. Chem. Int. Ed. (1)

S. Ohkoshi, S. Kuroki, S. Sakurai, K. Matsumoto, K. Sato, and S. A. Sasaki, “Millimeter-Wave Absorber Based on Gallium-Substituted-Iron Oxide Nanomagnets,” Angew. Chem. Int. Ed. 46(44), 8392–8395 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

R. Shimano, Y. Ino, Yu. P. Svirko, and M. Kuwata-Gonokami, “Terahertz frequency hall measurement by magneto-optical Kerr spectroscopy in InAs,” Appl. Phys. Lett. 81(2), 199–201 (2002).
[CrossRef]

IEEE Trans. Electron. Dev. (1)

T. X. Kraemer, M. Rudolph, F. J. Schmueckle, J. Wuerfl, and G. Traenkle, “InP DHBT Process in Transferred-Technology With ft and fmax Over,” IEEE Trans. Electron. Dev. 56, 1897 (2009).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

Y. Naito and K. Suetake, “Application of Ferrite to Electromagnetic Wave Absorber and its Characteristics,” IEEE Trans. Microw. Theory Tech. 19(1), 65–72 (1971).
[CrossRef]

IEICE Electron. Express (1)

M. Fujishima, “Recent trends and future prospective on millimeter-wave CMOS circuits,” IEICE Electron. Express 6(11), 721–735 (2009).
[CrossRef]

J. Am. Chem. Soc. (1)

A. Namai, S. Sakurai, M. Nakajima, T. Suemoto, K. Matsumoto, M. Goto, S. Sasaki, and S. Ohkoshi, “Synthesis of an electromagnetic wave absorber for high-speed wireless communication,” J. Am. Chem. Soc. 131(3), 1170–1173 (2009).
[CrossRef] [PubMed]

J. Appl. Phys. (5)

A. Namai, S. Sakurai, and S. Ohkoshi, “Synthesis, crystal structure, and magnetic properties of ε-GaIIIxFeIII2-xO3 nanorods,” J. Appl. Phys. 105(7), 516 (2009).
[CrossRef]

A. Namai, S. Kurahashi, H. Hachiya, K. Tomita, S. Sakurai, K. Matsumoto, T. Goto, and S. Ohkoshi, “High magnetic permeability of ε-GaxFe2−xO3 magnets in the millimeter wave region,” J. Appl. Phys. 107(9), 955 (2010).
[CrossRef]

O. Morikawa, A. Quema, S. Nashima, H. Sumikura, T. Nagashima, and M. Hangyo, “Faraday ellipticity and Faraday rotation of a doped-silicon wafer studied by terahertz time-domain spectroscopy,” J. Appl. Phys. 100(3), 033105 (2006).
[CrossRef]

F. Wang, K. Ishii, and B. Y. Tsui, “Ferrimagnetic resonance of single-crystal Barium Ferrite in the Millimeter Wave Region,” J. Appl. Phys. 32(8), 1621–1622 (1961).
[CrossRef]

Y. Chen, A. L. Geiler, T. Chen, T. Sakai, C. Vittoria, and V. G. Harris, “Low-loss barium ferrite quasi-single-crystals for microwave application,” J. Appl. Phys. 101, 501 (2007).

J. Magn. Magn. Mater. (2)

R. E. Camley, Z. Celinski, T. Fal, A. V. Glushchenko, I. R. Harward, V. Veerakumar, and V. V. Zagorodnii, “High-frequency signal processing using magnetic layered structures,” J. Magn. Magn. Mater. 321(14), 2048–2054 (2009).
[CrossRef]

V. G. Harris, A. Geiler, Y. Chen, S. D. Yoon, M. Wu, A. Yang, Z. Chen, P. He, P. V. Parimi, X. Zuo, C. E. Patton, M. Abe, O. Acher, and C. Vittoria, “Recent advances in processing and applications of microwave ferrites,” J. Magn. Magn. Mater. 321(14), 2035–2047 (2009).
[CrossRef]

J. Solid State Chem. (1)

E. Tronc, C. Chanéac, and J. P. Jolivet, “Structure and magnetic characteristic of epsilon-Fe2O3,” J. Solid State Chem. 139(1), 93–104 (1998).
[CrossRef]

Nat. Mater. (1)

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

Nature (3)

A. V. Kimel, A. Kirilyuk, A. Tsvetkov, R. V. Pisarev, and Th. Rasing, “Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO3.,” Nature 429(6994), 850–853 (2004).
[CrossRef] [PubMed]

A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature 435(7042), 655–657 (2005).
[CrossRef] [PubMed]

H. Kosaka, T. Inagaki, Y. Rikitake, H. Imamura, Y. Mitsumori, and K. Edamatsu, “Spin state tomography of optically injected electrons in a semiconductor,” Nature 457(7230), 702–705 (2009).
[CrossRef] [PubMed]

Phys. Rev. B (1)

J. Slageren, S. Vongtragool, A. Mukhin, B. Gorshunov, and M. Dressel, “Terahertz Faraday effect in single molecule magnets,” Phys. Rev. B 72(2), 020401 (2005).
[CrossRef]

Phys. Rev. Lett. (3)

M. C. Langner, C. L. S. Kantner, Y. H. Chu, L. M. Martin, P. Yu, J. Seidel, R. Ramesh, and J. Orenstein, “Observation of ferromagnetic resonance in SrRuO3 by the time-resolved magneto-optical Kerr effect,” Phys. Rev. Lett. 102(17), 177601 (2009).
[CrossRef] [PubMed]

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and Th. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99(4), 047601 (2007).
[CrossRef] [PubMed]

S. A. Crooker, J. J. Baumberg, F. Flack, N. Samarth, and D. D. Awschalom, “Terahertz Spin Precession and Coherent Transfer of Angular Momenta in Magnetic Quantum Wells,” Phys. Rev. Lett. 77(13), 2814–2817 (1996).
[CrossRef] [PubMed]

Physica (1)

J. L. Snoek, “Dispersion and absorption in magnetic ferrites at frequencies above one Mc/s,” Physica 14(4), 207–217 (1948).
[CrossRef]

Other (5)

A. Vilcot, B. Cabon, and J. Chazelas, “Microwave Photonics” (Kluwer: Boston, 1996).

M. J. W. Rodwell, “High Speed Integrated Circuit Technology, towards 100 GHz Logic” (World Scientific, Singapore, 2001).

Committee on identification of research needs relating to potential biological or adverse health effects of wireless communications devices, National Research Council. Identification of Research Needs Relating to Potential Biological or Adverse Health Effects of Wireless Communication (National Academies Press, WA, 2008).

S. Chikazumi, “Physics of Ferromagnetism” (Oxford University Press, New York, 1997).

M. Born, and E. Wolf, “The principle of optics” (Pergamon Press, 1959).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 2
Fig. 2

(a) Crystal structure of ε-Fe2O3 and ε-MxFe2-xO3. This orthorhombic crystal structure in the Pna21 space group has four non-equivalent Fe sites (FeA–FeD sites), that is, the coordination geometries of the FeA–FeC sites are octahedral {FeO6} units and those of the FeD sites are tetrahedral {FeO4} units. ε-GaxFe2-xO3 exhibits ferrimagnetic ordering such that the sublattice magnetizations at the FeA and FeD sites are ordered antiparallel relative to those at the FeB and FeC sites [12]. (b) Magnetization (M) vs. external magnetic field (H) for ε-Ga0.23Fe1.77O3 at 300 K. Inset is a photograph of the pellet sample used in the THz time-domain measurement.

Fig. 1
Fig. 1

(a) Schematic illustration of the natural resonance due to the gyromagnetic effect caused by the impulsive magnetic field of the THz wave. (b) Schematic experimental layout of the THz time domain spectroscopy.

Fig. 3
Fig. 3

(a) Observed electric fields of the THz wave without a sample. Bold and thin curves denote the horizontal and vertical polarizations, respectively. (b) Observed electric fields of the THz wave in ε-Ga0.23Fe1.77O3. Bold and thin curves are the horizontal and vertical polarizations, respectively. (Magnetic pole is antiparallel to the THz light propagating direction.) (c) THz wave for a sample with inverted magnetic pole direction. Blue bold and thin curves are the horizontal and vertical polarizations in ε-Ga0.23Fe1.77O3, respectively. (Magnetic pole is parallel to the THz light propagating direction.)

Fig. 4
Fig. 4

(a) Three-dimensional trajectory plot (red) for the transmitted THz electric fields of ε-Ga0.40Fe1.60O3 with both horizontal and vertical components. (b) Trajectory for a sample with opposite magnetic pole direction.

Fig. 5
Fig. 5

(a) Fourier-transformed spectra of the waveforms in ε-Ga0.23Fe1.77O3 obtained from the waveform between −20 and 40 ps in Fig. 3(b) to avoid the effect of the multiple reflections. (b) Natural resonance frequency vs. coercive field for ε-MxFe2-xO3 (M = Al or Ga). ε-Ga0.23Fe1.77O3 and ε-Ga0.40Fe1.60O3 (closed red circles), ε-GaxFe2-xO3 (open blue squares) [12], and ε-AlxFe2- x O3 (open blue triangles) [13].

Fig. 6
Fig. 6

Spectra of the (a) rotation angle and (b) ellipticity for ε-Ga0.23Fe1.77O3 with 1.9 mm thickness. Spectra are derived from the waveforms between −20 ps and 40 ps.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E x ( t ) = a 1 ( ω ) cos ( ω t + δ 1 ( ω ) ) d ω
E y ( t ) = a 2 ( ω ) cos ( ω t + δ 2 ( ω ) ) d ω
ϕ ( ω ) = 1 2 tan 1 ( 2 a 1 ( ω ) a 2 ( ω ) a 1 2 ( ω ) a 2 2 ( ω ) cos δ ( ω ) )
η ( ω ) = tan { 1 2 sin 1 ( 2 a 1 ( ω ) a 2 ( ω ) a 1 2 ( ω ) + a 2 2 ( ω ) sin δ ( ω ) ) }

Metrics