Abstract

To understand the reaction mechanisms taking place by growing carbon nanotubes via the catalytic chemical vapor deposition process, a strategy to monitor in situ the gas phase at reaction conditions was developed applying linear Raman spectroscopy. The simultaneous determination of the gas temperature and composition was possible by a new strategy of the evaluation of the Raman spectra. In agreement to the well-known exothermic decomposition of acetylene, a gas temperature increase was quantified when acetylene was added to the incident flow. Information about exhaust gas recirculation and location of the maximal acetylene conversion was derived from the composition measurements.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354(6348), 56–58 (1991).
    [CrossRef]
  2. T. Belin and F. Epron, “Characterization methods of carbon nanotubes: a review,” Mater. Sci. Eng. B 119(2), 105–118 (2005).
    [CrossRef]
  3. K. B. K. Teo, C. Singh, M. Chhowalla, and W. I. Milne, “Catalytic synthesis of carbon nanotubes and nanofibers,” in Encyclopedia of Nanoscience and Nanotechnology (American Scientific Publishers, Stevenson Ranch, CA, USA, 2003), pp. 665–686.
  4. T. C. Schmitt, A. S. Biris, D. W. Miller, A. R. Biris, D. Lupu, S. Trigwell, and Z. U. Rahman, “Analysis of effluent gases during the CCVD growth of multi-wall carbon nanotubes from acetylene,” Carbon 44(10), 2032–2038 (2006).
    [CrossRef]
  5. S. J. Tans, A. R. M. Verschueren, and C. Dekker, “Room-temperature transistor based on a single nanotube,” Nature 393(6680), 49–52 (1998).
    [CrossRef]
  6. C. H. See and A. T. Harris, “A Review of Carbon Nanotube Synthesis via Fluidized-Bed Chemical Vapor Deposition,” Ind. Eng. Chem. Res. 46(4), 997–1012 (2007).
    [CrossRef]
  7. M. Escobar, M. S. Moreno, R. J. Candal, M. C. Marchi, A. Caso, P. I. Polosecki, G. H. Rubiolo, and S. Goyanes, “Synthesis of carbon nanotubes by CVD: Effect of acetylene pressure on nanotubes characteristics,” Appl. Surf. Sci. 254(1), 251–256 (2007).
    [CrossRef]
  8. C. Singh, M. S. P. Shaffer, and A. H. Windle, “Production of controlled architectures of aligned carbon nanotubes by an injection chemical vapour deposition method,” Carbon 41(2), 359–368 (2003).
    [CrossRef]
  9. H. Dai, A. G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, “Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide,” Chem. Phys. Lett. 260(3-4), 471–475 (1996).
    [CrossRef]
  10. S. Esconjauregui, C. M. Whelan, and K. Maex, “The reasons why metals catalyze the nucleation and growth of carbon nanotubes and other carbon nanomorphologies,” Carbon 47(3), 659–669 (2009).
    [CrossRef]
  11. R. T. K. Baker, “Catalytic growth of carbon filaments,” Carbon 27(3), 315–323 (1989).
    [CrossRef]
  12. A.-C. Dupuis, “The catalyst in the CCVD of carbon nanotubes–a review,” Prog. Mater. Sci. 50(8), 929–961 (2005).
    [CrossRef]
  13. G. G. Tibbetts, “Why are carbon filaments tubular?” J. Cryst. Growth 66(3), 632–638 (1984).
    [CrossRef]
  14. K. Liu, K. Jiang, C. Feng, Z. Chen, and S. Fan, “A growth mark method for studying growth mechanism of carbon nanotube arrays,” Carbon 43(14), 2850–2856 (2005).
    [CrossRef]
  15. A. Braeuer, S. R. Engel, R. F. Hankel, and A. Leipertz, “Gas mixing analysis by simultaneous Raman imaging and particle image velocimetry,” Opt. Lett. 34(20), 3122–3124 (2009).
    [CrossRef] [PubMed]
  16. J. Kojima and Q. V. Nguyen, “Laser pulse-stretching with multiple optical ring cavities,” Appl. Opt. 41(30), 6360–6370 (2002).
    [CrossRef] [PubMed]
  17. D. A. Long, Raman Spectroscopy (London, 1977).
  18. B. Schrader, Infrared and Raman Spectroscopy (Weinheim, 1995).
  19. A. Braeuer and A. Leipertz, “Two-dimensional Raman mole-fraction and temperature measurements for hydrogen-nitrogen mixture analysis,” Appl. Opt. 48(4), B57–B64 (2009).
    [CrossRef] [PubMed]
  20. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Cambridge, MA, 1988).
  21. R. T. K. Baker, M. A. Barber, P. S. Harris, F. S. Feates, and R. J. Waite, “Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene,” J. Catal. 26(1), 51–62 (1972).
    [CrossRef]
  22. T. Tanzawa and W. C. Gardiner., “Reaction mechanism of the homogeneous thermal decomposition of acetylene,” J. Phys. Chem. 84(3), 236–239 (1980).
    [CrossRef]

2009 (3)

2007 (2)

C. H. See and A. T. Harris, “A Review of Carbon Nanotube Synthesis via Fluidized-Bed Chemical Vapor Deposition,” Ind. Eng. Chem. Res. 46(4), 997–1012 (2007).
[CrossRef]

M. Escobar, M. S. Moreno, R. J. Candal, M. C. Marchi, A. Caso, P. I. Polosecki, G. H. Rubiolo, and S. Goyanes, “Synthesis of carbon nanotubes by CVD: Effect of acetylene pressure on nanotubes characteristics,” Appl. Surf. Sci. 254(1), 251–256 (2007).
[CrossRef]

2006 (1)

T. C. Schmitt, A. S. Biris, D. W. Miller, A. R. Biris, D. Lupu, S. Trigwell, and Z. U. Rahman, “Analysis of effluent gases during the CCVD growth of multi-wall carbon nanotubes from acetylene,” Carbon 44(10), 2032–2038 (2006).
[CrossRef]

2005 (3)

T. Belin and F. Epron, “Characterization methods of carbon nanotubes: a review,” Mater. Sci. Eng. B 119(2), 105–118 (2005).
[CrossRef]

A.-C. Dupuis, “The catalyst in the CCVD of carbon nanotubes–a review,” Prog. Mater. Sci. 50(8), 929–961 (2005).
[CrossRef]

K. Liu, K. Jiang, C. Feng, Z. Chen, and S. Fan, “A growth mark method for studying growth mechanism of carbon nanotube arrays,” Carbon 43(14), 2850–2856 (2005).
[CrossRef]

2003 (1)

C. Singh, M. S. P. Shaffer, and A. H. Windle, “Production of controlled architectures of aligned carbon nanotubes by an injection chemical vapour deposition method,” Carbon 41(2), 359–368 (2003).
[CrossRef]

2002 (1)

1998 (1)

S. J. Tans, A. R. M. Verschueren, and C. Dekker, “Room-temperature transistor based on a single nanotube,” Nature 393(6680), 49–52 (1998).
[CrossRef]

1996 (1)

H. Dai, A. G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, “Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide,” Chem. Phys. Lett. 260(3-4), 471–475 (1996).
[CrossRef]

1991 (1)

S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354(6348), 56–58 (1991).
[CrossRef]

1989 (1)

R. T. K. Baker, “Catalytic growth of carbon filaments,” Carbon 27(3), 315–323 (1989).
[CrossRef]

1984 (1)

G. G. Tibbetts, “Why are carbon filaments tubular?” J. Cryst. Growth 66(3), 632–638 (1984).
[CrossRef]

1980 (1)

T. Tanzawa and W. C. Gardiner., “Reaction mechanism of the homogeneous thermal decomposition of acetylene,” J. Phys. Chem. 84(3), 236–239 (1980).
[CrossRef]

1972 (1)

R. T. K. Baker, M. A. Barber, P. S. Harris, F. S. Feates, and R. J. Waite, “Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene,” J. Catal. 26(1), 51–62 (1972).
[CrossRef]

Baker, R. T. K.

R. T. K. Baker, “Catalytic growth of carbon filaments,” Carbon 27(3), 315–323 (1989).
[CrossRef]

R. T. K. Baker, M. A. Barber, P. S. Harris, F. S. Feates, and R. J. Waite, “Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene,” J. Catal. 26(1), 51–62 (1972).
[CrossRef]

Barber, M. A.

R. T. K. Baker, M. A. Barber, P. S. Harris, F. S. Feates, and R. J. Waite, “Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene,” J. Catal. 26(1), 51–62 (1972).
[CrossRef]

Belin, T.

T. Belin and F. Epron, “Characterization methods of carbon nanotubes: a review,” Mater. Sci. Eng. B 119(2), 105–118 (2005).
[CrossRef]

Biris, A. R.

T. C. Schmitt, A. S. Biris, D. W. Miller, A. R. Biris, D. Lupu, S. Trigwell, and Z. U. Rahman, “Analysis of effluent gases during the CCVD growth of multi-wall carbon nanotubes from acetylene,” Carbon 44(10), 2032–2038 (2006).
[CrossRef]

Biris, A. S.

T. C. Schmitt, A. S. Biris, D. W. Miller, A. R. Biris, D. Lupu, S. Trigwell, and Z. U. Rahman, “Analysis of effluent gases during the CCVD growth of multi-wall carbon nanotubes from acetylene,” Carbon 44(10), 2032–2038 (2006).
[CrossRef]

Braeuer, A.

Candal, R. J.

M. Escobar, M. S. Moreno, R. J. Candal, M. C. Marchi, A. Caso, P. I. Polosecki, G. H. Rubiolo, and S. Goyanes, “Synthesis of carbon nanotubes by CVD: Effect of acetylene pressure on nanotubes characteristics,” Appl. Surf. Sci. 254(1), 251–256 (2007).
[CrossRef]

Caso, A.

M. Escobar, M. S. Moreno, R. J. Candal, M. C. Marchi, A. Caso, P. I. Polosecki, G. H. Rubiolo, and S. Goyanes, “Synthesis of carbon nanotubes by CVD: Effect of acetylene pressure on nanotubes characteristics,” Appl. Surf. Sci. 254(1), 251–256 (2007).
[CrossRef]

Chen, Z.

K. Liu, K. Jiang, C. Feng, Z. Chen, and S. Fan, “A growth mark method for studying growth mechanism of carbon nanotube arrays,” Carbon 43(14), 2850–2856 (2005).
[CrossRef]

Colbert, D. T.

H. Dai, A. G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, “Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide,” Chem. Phys. Lett. 260(3-4), 471–475 (1996).
[CrossRef]

Dai, H.

H. Dai, A. G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, “Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide,” Chem. Phys. Lett. 260(3-4), 471–475 (1996).
[CrossRef]

Dekker, C.

S. J. Tans, A. R. M. Verschueren, and C. Dekker, “Room-temperature transistor based on a single nanotube,” Nature 393(6680), 49–52 (1998).
[CrossRef]

Dupuis, A.-C.

A.-C. Dupuis, “The catalyst in the CCVD of carbon nanotubes–a review,” Prog. Mater. Sci. 50(8), 929–961 (2005).
[CrossRef]

Engel, S. R.

Epron, F.

T. Belin and F. Epron, “Characterization methods of carbon nanotubes: a review,” Mater. Sci. Eng. B 119(2), 105–118 (2005).
[CrossRef]

Escobar, M.

M. Escobar, M. S. Moreno, R. J. Candal, M. C. Marchi, A. Caso, P. I. Polosecki, G. H. Rubiolo, and S. Goyanes, “Synthesis of carbon nanotubes by CVD: Effect of acetylene pressure on nanotubes characteristics,” Appl. Surf. Sci. 254(1), 251–256 (2007).
[CrossRef]

Esconjauregui, S.

S. Esconjauregui, C. M. Whelan, and K. Maex, “The reasons why metals catalyze the nucleation and growth of carbon nanotubes and other carbon nanomorphologies,” Carbon 47(3), 659–669 (2009).
[CrossRef]

Fan, S.

K. Liu, K. Jiang, C. Feng, Z. Chen, and S. Fan, “A growth mark method for studying growth mechanism of carbon nanotube arrays,” Carbon 43(14), 2850–2856 (2005).
[CrossRef]

Feates, F. S.

R. T. K. Baker, M. A. Barber, P. S. Harris, F. S. Feates, and R. J. Waite, “Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene,” J. Catal. 26(1), 51–62 (1972).
[CrossRef]

Feng, C.

K. Liu, K. Jiang, C. Feng, Z. Chen, and S. Fan, “A growth mark method for studying growth mechanism of carbon nanotube arrays,” Carbon 43(14), 2850–2856 (2005).
[CrossRef]

Gardiner, W. C.

T. Tanzawa and W. C. Gardiner., “Reaction mechanism of the homogeneous thermal decomposition of acetylene,” J. Phys. Chem. 84(3), 236–239 (1980).
[CrossRef]

Goyanes, S.

M. Escobar, M. S. Moreno, R. J. Candal, M. C. Marchi, A. Caso, P. I. Polosecki, G. H. Rubiolo, and S. Goyanes, “Synthesis of carbon nanotubes by CVD: Effect of acetylene pressure on nanotubes characteristics,” Appl. Surf. Sci. 254(1), 251–256 (2007).
[CrossRef]

Hankel, R. F.

Harris, A. T.

C. H. See and A. T. Harris, “A Review of Carbon Nanotube Synthesis via Fluidized-Bed Chemical Vapor Deposition,” Ind. Eng. Chem. Res. 46(4), 997–1012 (2007).
[CrossRef]

Harris, P. S.

R. T. K. Baker, M. A. Barber, P. S. Harris, F. S. Feates, and R. J. Waite, “Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene,” J. Catal. 26(1), 51–62 (1972).
[CrossRef]

Iijima, S.

S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354(6348), 56–58 (1991).
[CrossRef]

Jiang, K.

K. Liu, K. Jiang, C. Feng, Z. Chen, and S. Fan, “A growth mark method for studying growth mechanism of carbon nanotube arrays,” Carbon 43(14), 2850–2856 (2005).
[CrossRef]

Kojima, J.

Leipertz, A.

Liu, K.

K. Liu, K. Jiang, C. Feng, Z. Chen, and S. Fan, “A growth mark method for studying growth mechanism of carbon nanotube arrays,” Carbon 43(14), 2850–2856 (2005).
[CrossRef]

Lupu, D.

T. C. Schmitt, A. S. Biris, D. W. Miller, A. R. Biris, D. Lupu, S. Trigwell, and Z. U. Rahman, “Analysis of effluent gases during the CCVD growth of multi-wall carbon nanotubes from acetylene,” Carbon 44(10), 2032–2038 (2006).
[CrossRef]

Maex, K.

S. Esconjauregui, C. M. Whelan, and K. Maex, “The reasons why metals catalyze the nucleation and growth of carbon nanotubes and other carbon nanomorphologies,” Carbon 47(3), 659–669 (2009).
[CrossRef]

Marchi, M. C.

M. Escobar, M. S. Moreno, R. J. Candal, M. C. Marchi, A. Caso, P. I. Polosecki, G. H. Rubiolo, and S. Goyanes, “Synthesis of carbon nanotubes by CVD: Effect of acetylene pressure on nanotubes characteristics,” Appl. Surf. Sci. 254(1), 251–256 (2007).
[CrossRef]

Miller, D. W.

T. C. Schmitt, A. S. Biris, D. W. Miller, A. R. Biris, D. Lupu, S. Trigwell, and Z. U. Rahman, “Analysis of effluent gases during the CCVD growth of multi-wall carbon nanotubes from acetylene,” Carbon 44(10), 2032–2038 (2006).
[CrossRef]

Moreno, M. S.

M. Escobar, M. S. Moreno, R. J. Candal, M. C. Marchi, A. Caso, P. I. Polosecki, G. H. Rubiolo, and S. Goyanes, “Synthesis of carbon nanotubes by CVD: Effect of acetylene pressure on nanotubes characteristics,” Appl. Surf. Sci. 254(1), 251–256 (2007).
[CrossRef]

Nguyen, Q. V.

Nikolaev, P.

H. Dai, A. G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, “Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide,” Chem. Phys. Lett. 260(3-4), 471–475 (1996).
[CrossRef]

Polosecki, P. I.

M. Escobar, M. S. Moreno, R. J. Candal, M. C. Marchi, A. Caso, P. I. Polosecki, G. H. Rubiolo, and S. Goyanes, “Synthesis of carbon nanotubes by CVD: Effect of acetylene pressure on nanotubes characteristics,” Appl. Surf. Sci. 254(1), 251–256 (2007).
[CrossRef]

Rahman, Z. U.

T. C. Schmitt, A. S. Biris, D. W. Miller, A. R. Biris, D. Lupu, S. Trigwell, and Z. U. Rahman, “Analysis of effluent gases during the CCVD growth of multi-wall carbon nanotubes from acetylene,” Carbon 44(10), 2032–2038 (2006).
[CrossRef]

Rinzler, A. G.

H. Dai, A. G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, “Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide,” Chem. Phys. Lett. 260(3-4), 471–475 (1996).
[CrossRef]

Rubiolo, G. H.

M. Escobar, M. S. Moreno, R. J. Candal, M. C. Marchi, A. Caso, P. I. Polosecki, G. H. Rubiolo, and S. Goyanes, “Synthesis of carbon nanotubes by CVD: Effect of acetylene pressure on nanotubes characteristics,” Appl. Surf. Sci. 254(1), 251–256 (2007).
[CrossRef]

Schmitt, T. C.

T. C. Schmitt, A. S. Biris, D. W. Miller, A. R. Biris, D. Lupu, S. Trigwell, and Z. U. Rahman, “Analysis of effluent gases during the CCVD growth of multi-wall carbon nanotubes from acetylene,” Carbon 44(10), 2032–2038 (2006).
[CrossRef]

See, C. H.

C. H. See and A. T. Harris, “A Review of Carbon Nanotube Synthesis via Fluidized-Bed Chemical Vapor Deposition,” Ind. Eng. Chem. Res. 46(4), 997–1012 (2007).
[CrossRef]

Shaffer, M. S. P.

C. Singh, M. S. P. Shaffer, and A. H. Windle, “Production of controlled architectures of aligned carbon nanotubes by an injection chemical vapour deposition method,” Carbon 41(2), 359–368 (2003).
[CrossRef]

Singh, C.

C. Singh, M. S. P. Shaffer, and A. H. Windle, “Production of controlled architectures of aligned carbon nanotubes by an injection chemical vapour deposition method,” Carbon 41(2), 359–368 (2003).
[CrossRef]

Smalley, R. E.

H. Dai, A. G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, “Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide,” Chem. Phys. Lett. 260(3-4), 471–475 (1996).
[CrossRef]

Tans, S. J.

S. J. Tans, A. R. M. Verschueren, and C. Dekker, “Room-temperature transistor based on a single nanotube,” Nature 393(6680), 49–52 (1998).
[CrossRef]

Tanzawa, T.

T. Tanzawa and W. C. Gardiner., “Reaction mechanism of the homogeneous thermal decomposition of acetylene,” J. Phys. Chem. 84(3), 236–239 (1980).
[CrossRef]

Thess, A.

H. Dai, A. G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, “Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide,” Chem. Phys. Lett. 260(3-4), 471–475 (1996).
[CrossRef]

Tibbetts, G. G.

G. G. Tibbetts, “Why are carbon filaments tubular?” J. Cryst. Growth 66(3), 632–638 (1984).
[CrossRef]

Trigwell, S.

T. C. Schmitt, A. S. Biris, D. W. Miller, A. R. Biris, D. Lupu, S. Trigwell, and Z. U. Rahman, “Analysis of effluent gases during the CCVD growth of multi-wall carbon nanotubes from acetylene,” Carbon 44(10), 2032–2038 (2006).
[CrossRef]

Verschueren, A. R. M.

S. J. Tans, A. R. M. Verschueren, and C. Dekker, “Room-temperature transistor based on a single nanotube,” Nature 393(6680), 49–52 (1998).
[CrossRef]

Waite, R. J.

R. T. K. Baker, M. A. Barber, P. S. Harris, F. S. Feates, and R. J. Waite, “Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene,” J. Catal. 26(1), 51–62 (1972).
[CrossRef]

Whelan, C. M.

S. Esconjauregui, C. M. Whelan, and K. Maex, “The reasons why metals catalyze the nucleation and growth of carbon nanotubes and other carbon nanomorphologies,” Carbon 47(3), 659–669 (2009).
[CrossRef]

Windle, A. H.

C. Singh, M. S. P. Shaffer, and A. H. Windle, “Production of controlled architectures of aligned carbon nanotubes by an injection chemical vapour deposition method,” Carbon 41(2), 359–368 (2003).
[CrossRef]

Appl. Opt. (2)

Appl. Surf. Sci. (1)

M. Escobar, M. S. Moreno, R. J. Candal, M. C. Marchi, A. Caso, P. I. Polosecki, G. H. Rubiolo, and S. Goyanes, “Synthesis of carbon nanotubes by CVD: Effect of acetylene pressure on nanotubes characteristics,” Appl. Surf. Sci. 254(1), 251–256 (2007).
[CrossRef]

Carbon (5)

C. Singh, M. S. P. Shaffer, and A. H. Windle, “Production of controlled architectures of aligned carbon nanotubes by an injection chemical vapour deposition method,” Carbon 41(2), 359–368 (2003).
[CrossRef]

T. C. Schmitt, A. S. Biris, D. W. Miller, A. R. Biris, D. Lupu, S. Trigwell, and Z. U. Rahman, “Analysis of effluent gases during the CCVD growth of multi-wall carbon nanotubes from acetylene,” Carbon 44(10), 2032–2038 (2006).
[CrossRef]

K. Liu, K. Jiang, C. Feng, Z. Chen, and S. Fan, “A growth mark method for studying growth mechanism of carbon nanotube arrays,” Carbon 43(14), 2850–2856 (2005).
[CrossRef]

S. Esconjauregui, C. M. Whelan, and K. Maex, “The reasons why metals catalyze the nucleation and growth of carbon nanotubes and other carbon nanomorphologies,” Carbon 47(3), 659–669 (2009).
[CrossRef]

R. T. K. Baker, “Catalytic growth of carbon filaments,” Carbon 27(3), 315–323 (1989).
[CrossRef]

Chem. Phys. Lett. (1)

H. Dai, A. G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, “Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide,” Chem. Phys. Lett. 260(3-4), 471–475 (1996).
[CrossRef]

Ind. Eng. Chem. Res. (1)

C. H. See and A. T. Harris, “A Review of Carbon Nanotube Synthesis via Fluidized-Bed Chemical Vapor Deposition,” Ind. Eng. Chem. Res. 46(4), 997–1012 (2007).
[CrossRef]

J. Catal. (1)

R. T. K. Baker, M. A. Barber, P. S. Harris, F. S. Feates, and R. J. Waite, “Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene,” J. Catal. 26(1), 51–62 (1972).
[CrossRef]

J. Cryst. Growth (1)

G. G. Tibbetts, “Why are carbon filaments tubular?” J. Cryst. Growth 66(3), 632–638 (1984).
[CrossRef]

J. Phys. Chem. (1)

T. Tanzawa and W. C. Gardiner., “Reaction mechanism of the homogeneous thermal decomposition of acetylene,” J. Phys. Chem. 84(3), 236–239 (1980).
[CrossRef]

Mater. Sci. Eng. B (1)

T. Belin and F. Epron, “Characterization methods of carbon nanotubes: a review,” Mater. Sci. Eng. B 119(2), 105–118 (2005).
[CrossRef]

Nature (2)

S. J. Tans, A. R. M. Verschueren, and C. Dekker, “Room-temperature transistor based on a single nanotube,” Nature 393(6680), 49–52 (1998).
[CrossRef]

S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354(6348), 56–58 (1991).
[CrossRef]

Opt. Lett. (1)

Prog. Mater. Sci. (1)

A.-C. Dupuis, “The catalyst in the CCVD of carbon nanotubes–a review,” Prog. Mater. Sci. 50(8), 929–961 (2005).
[CrossRef]

Other (4)

D. A. Long, Raman Spectroscopy (London, 1977).

B. Schrader, Infrared and Raman Spectroscopy (Weinheim, 1995).

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Cambridge, MA, 1988).

K. B. K. Teo, C. Singh, M. Chhowalla, and W. I. Milne, “Catalytic synthesis of carbon nanotubes and nanofibers,” in Encyclopedia of Nanoscience and Nanotechnology (American Scientific Publishers, Stevenson Ranch, CA, USA, 2003), pp. 665–686.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the optically accessible cold wall flow reactor and location of the measurement positions A, B and C.

Fig. 2
Fig. 2

Schematic of the Raman setup for in situ gas composition and temperature measurements.

Fig. 3
Fig. 3

Raman spectra for the determination of the gas temperature and composition. Acquired under CCVD operation conditions at location A (see Fig. 1). Overall volumetric flowrate = 85 SCCM. (a) Complete spectral range. (b) Zoom-out of the rotational lines J1, J2 and J3 of hydrogen.

Tables (1)

Tables Icon

Table 1 Measured gas temperature and acetylene conversion XC2H2 at locations A, B and C before and after C2H2 (acetylene) addition into the incident flow

Metrics