Abstract

We describe a simple method for enhancing the efficiency of coupling from a free-space transverse-magnetic (TM) plane-wave mode into a surface-plasmon-polariton (SPP) mode. The coupling structure consists a metal film with a dielectric-filled slit and a planar, dielectric layer on the slit-exit side of the metal film. By varying the dielectric layer thickness, the wavevector of the SPP mode on the metal surface can be tuned to match the wavevector magnitude of the modes emanating from the slit exit, enabling high-efficiency radiation coupling into the SPP mode at the slit exit. An optimal dielectric layer thickness ≃ 100nm yields a visible-frequency SPP coupling efficiency ≃ 4 times greater than the SPP coupling efficiency without the dielectric layer. Commensurate coupling enhancement is observed spanning the regime 400nm ≤ λ 0 ≤ 700nm. We map the dependence of the SPP coupling efficiency on the slit width, the dielectric-layer thickness, and the incident wavelength to fully characterize this SPP coupling methodology.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics –a route to nanoscale optical devices,” Adv. Mater. (Deerfield Beach Fla.) 13, 1501–1505 (2001).
    [CrossRef]
  2. T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668–670 (2003).
    [CrossRef]
  3. R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express 13, 977–984 (2005).
    [CrossRef] [PubMed]
  4. J. Slavik, and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuators B Chem. 123, 10–12 (2007).
    [CrossRef]
  5. H. Raether, Surface Plasmonics on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
  6. A.-L. Baudrion, F. de León-Pérez, O. Mahboub, A. Hohenau, H. Ditlbacher, F. J. García-Vidal, J. Dintinger, T. W. Ebbesen, L. Martín-Moreno, and J. R. Krenn, “Coupling efficiency of light to surface plasmon polariton for single subwavelength holes in a gold film,” Opt. Express 16, 3420–3429 (2008).
    [CrossRef] [PubMed]
  7. Y. Xie, A. Zakharian, J. Moloney, and M. Mansuripur, “Transmission of light through slit apertures in metallic films,” Opt. Express 12, 6106–6121 (2004).
    [CrossRef] [PubMed]
  8. H. J. Lezec, and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12, 3629–3651 (2004).
    [CrossRef] [PubMed]
  9. P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95, 263902 (2005).
    [CrossRef]
  10. J. Wuenschell, and H. K. Kim, “Surface plasmon dynamics in an isolated metallic nanoslit,” Opt. Express 14, 10000–10013 (2006).
    [CrossRef] [PubMed]
  11. L. Aigouy, P. Lalanne, H. Liu, G. Juli, V. Mathet, and M. Mortier, “Near-field scattered by a single nanoslit in a metal film,” Appl. Opt. 46, 8573–8577 (2007).
    [CrossRef] [PubMed]
  12. H. W. Kim, K. G. Lee, D. S. Kim, J. H. Kang, and Q.-H. Park, “Control of surface plasmon generation efficiency by slit-width tuning,” Appl. Phys. Lett. 92, 051115 (2008).
    [CrossRef]
  13. B. Wang, L. Aigouy, E. Bourhis, J. Gierak, J. P. Hugonin, and P. Lalanne, “Efficient generation of surface plasmon by single-nanoslit illumination under highly oblique incidence,” Appl. Phys. Lett. 94, 011114 (2009).
    [CrossRef]
  14. M. W. Kowarz, “Homogeneous and evanescent contributions in scalar near-field diffraction,” Appl. Opt. 34, 3055–3063 (1995).
    [CrossRef] [PubMed]
  15. E. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1998).

2009

B. Wang, L. Aigouy, E. Bourhis, J. Gierak, J. P. Hugonin, and P. Lalanne, “Efficient generation of surface plasmon by single-nanoslit illumination under highly oblique incidence,” Appl. Phys. Lett. 94, 011114 (2009).
[CrossRef]

2008

2007

L. Aigouy, P. Lalanne, H. Liu, G. Juli, V. Mathet, and M. Mortier, “Near-field scattered by a single nanoslit in a metal film,” Appl. Opt. 46, 8573–8577 (2007).
[CrossRef] [PubMed]

J. Slavik, and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuators B Chem. 123, 10–12 (2007).
[CrossRef]

2006

2005

R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express 13, 977–984 (2005).
[CrossRef] [PubMed]

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95, 263902 (2005).
[CrossRef]

2004

2003

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668–670 (2003).
[CrossRef]

2001

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics –a route to nanoscale optical devices,” Adv. Mater. (Deerfield Beach Fla.) 13, 1501–1505 (2001).
[CrossRef]

1995

Aigouy, L.

B. Wang, L. Aigouy, E. Bourhis, J. Gierak, J. P. Hugonin, and P. Lalanne, “Efficient generation of surface plasmon by single-nanoslit illumination under highly oblique incidence,” Appl. Phys. Lett. 94, 011114 (2009).
[CrossRef]

L. Aigouy, P. Lalanne, H. Liu, G. Juli, V. Mathet, and M. Mortier, “Near-field scattered by a single nanoslit in a metal film,” Appl. Opt. 46, 8573–8577 (2007).
[CrossRef] [PubMed]

Atwater, H. A.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics –a route to nanoscale optical devices,” Adv. Mater. (Deerfield Beach Fla.) 13, 1501–1505 (2001).
[CrossRef]

Baudrion, A.-L.

Berini, P.

Bourhis, E.

B. Wang, L. Aigouy, E. Bourhis, J. Gierak, J. P. Hugonin, and P. Lalanne, “Efficient generation of surface plasmon by single-nanoslit illumination under highly oblique incidence,” Appl. Phys. Lett. 94, 011114 (2009).
[CrossRef]

Bozhevolnyi, S. I.

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668–670 (2003).
[CrossRef]

Brongersma, M. L.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics –a route to nanoscale optical devices,” Adv. Mater. (Deerfield Beach Fla.) 13, 1501–1505 (2001).
[CrossRef]

Charbonneau, R.

de León-Pérez, F.

Dintinger, J.

Ditlbacher, H.

Ebbesen, T. W.

García-Vidal, F. J.

Gierak, J.

B. Wang, L. Aigouy, E. Bourhis, J. Gierak, J. P. Hugonin, and P. Lalanne, “Efficient generation of surface plasmon by single-nanoslit illumination under highly oblique incidence,” Appl. Phys. Lett. 94, 011114 (2009).
[CrossRef]

Hohenau, A.

Homola, J.

J. Slavik, and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuators B Chem. 123, 10–12 (2007).
[CrossRef]

Hugonin, J. P.

B. Wang, L. Aigouy, E. Bourhis, J. Gierak, J. P. Hugonin, and P. Lalanne, “Efficient generation of surface plasmon by single-nanoslit illumination under highly oblique incidence,” Appl. Phys. Lett. 94, 011114 (2009).
[CrossRef]

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95, 263902 (2005).
[CrossRef]

Juli, G.

Kang, J. H.

H. W. Kim, K. G. Lee, D. S. Kim, J. H. Kang, and Q.-H. Park, “Control of surface plasmon generation efficiency by slit-width tuning,” Appl. Phys. Lett. 92, 051115 (2008).
[CrossRef]

Kik, P. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics –a route to nanoscale optical devices,” Adv. Mater. (Deerfield Beach Fla.) 13, 1501–1505 (2001).
[CrossRef]

Kim, D. S.

H. W. Kim, K. G. Lee, D. S. Kim, J. H. Kang, and Q.-H. Park, “Control of surface plasmon generation efficiency by slit-width tuning,” Appl. Phys. Lett. 92, 051115 (2008).
[CrossRef]

Kim, H. K.

Kim, H. W.

H. W. Kim, K. G. Lee, D. S. Kim, J. H. Kang, and Q.-H. Park, “Control of surface plasmon generation efficiency by slit-width tuning,” Appl. Phys. Lett. 92, 051115 (2008).
[CrossRef]

Kowarz, M. W.

Krenn, J. R.

Lahoud, N.

Lalanne, P.

B. Wang, L. Aigouy, E. Bourhis, J. Gierak, J. P. Hugonin, and P. Lalanne, “Efficient generation of surface plasmon by single-nanoslit illumination under highly oblique incidence,” Appl. Phys. Lett. 94, 011114 (2009).
[CrossRef]

L. Aigouy, P. Lalanne, H. Liu, G. Juli, V. Mathet, and M. Mortier, “Near-field scattered by a single nanoslit in a metal film,” Appl. Opt. 46, 8573–8577 (2007).
[CrossRef] [PubMed]

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95, 263902 (2005).
[CrossRef]

Lee, K. G.

H. W. Kim, K. G. Lee, D. S. Kim, J. H. Kang, and Q.-H. Park, “Control of surface plasmon generation efficiency by slit-width tuning,” Appl. Phys. Lett. 92, 051115 (2008).
[CrossRef]

Leosson, K.

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668–670 (2003).
[CrossRef]

Lezec, H. J.

Liu, H.

Mahboub, O.

Maier, S. A.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics –a route to nanoscale optical devices,” Adv. Mater. (Deerfield Beach Fla.) 13, 1501–1505 (2001).
[CrossRef]

Mansuripur, M.

Martín-Moreno, L.

Mathet, V.

Mattiussi, G.

Meltzer, S.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics –a route to nanoscale optical devices,” Adv. Mater. (Deerfield Beach Fla.) 13, 1501–1505 (2001).
[CrossRef]

Moloney, J.

Mortier, M.

Nikolajsen, T.

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668–670 (2003).
[CrossRef]

Park, Q.-H.

H. W. Kim, K. G. Lee, D. S. Kim, J. H. Kang, and Q.-H. Park, “Control of surface plasmon generation efficiency by slit-width tuning,” Appl. Phys. Lett. 92, 051115 (2008).
[CrossRef]

Requicha, A. A. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics –a route to nanoscale optical devices,” Adv. Mater. (Deerfield Beach Fla.) 13, 1501–1505 (2001).
[CrossRef]

Rodier, J. C.

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95, 263902 (2005).
[CrossRef]

Salakhutdinov, I.

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668–670 (2003).
[CrossRef]

Slavik, J.

J. Slavik, and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuators B Chem. 123, 10–12 (2007).
[CrossRef]

Thio, T.

Wang, B.

B. Wang, L. Aigouy, E. Bourhis, J. Gierak, J. P. Hugonin, and P. Lalanne, “Efficient generation of surface plasmon by single-nanoslit illumination under highly oblique incidence,” Appl. Phys. Lett. 94, 011114 (2009).
[CrossRef]

Wuenschell, J.

Xie, Y.

Zakharian, A.

Adv. Mater. (Deerfield Beach Fla.)

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics –a route to nanoscale optical devices,” Adv. Mater. (Deerfield Beach Fla.) 13, 1501–1505 (2001).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

H. W. Kim, K. G. Lee, D. S. Kim, J. H. Kang, and Q.-H. Park, “Control of surface plasmon generation efficiency by slit-width tuning,” Appl. Phys. Lett. 92, 051115 (2008).
[CrossRef]

B. Wang, L. Aigouy, E. Bourhis, J. Gierak, J. P. Hugonin, and P. Lalanne, “Efficient generation of surface plasmon by single-nanoslit illumination under highly oblique incidence,” Appl. Phys. Lett. 94, 011114 (2009).
[CrossRef]

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668–670 (2003).
[CrossRef]

Opt. Express

Phys. Rev. Lett.

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95, 263902 (2005).
[CrossRef]

Sens. Actuators B Chem.

J. Slavik, and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuators B Chem. 123, 10–12 (2007).
[CrossRef]

Other

H. Raether, Surface Plasmonics on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).

E. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a) Real-space (left) and k-space (right) depictions of the modes scattering from the exit of a slit in a metal film when the metal film is completely immersed in a dielectric. (b) Real-space (left) and k-space (right) depictions of the modes scattering from the exit of a slit in a metal film when the slit is filled with a dielectric and the metal film is coated with a dielectric layer.

Fig. 2.
Fig. 2.

Simulation geometry used to study SPP coupling from an illuminated slit. The detectors D 1 and D 2 capture the SPP modes, and the detector D 3 captures the radiating modes.

Fig. 3.
Fig. 3.

Image of the FDTD-calculated instantaneous ∣Hy 2 distribution for a slit of width w=150nm illuminated by a quasi-plane-wave of wavelength λ 0 =500nm. The simulation geometry is depicted by the above graphic. Lines indicating the position of detectors D 1, D 2, and D 3 have been superimposed on the image.

Fig. 4.
Fig. 4.

Principle of dispersion engineering to enhance slit-coupling to SPP modes. (a) Dispersion curve of nSPP as a function of λ 0 for various d calculated from the roots of the eigenvalue equation for the SPP mode on an asymmetric, three-layer silver-glass-air waveguide. (b) nSPP as a function of d for λ 0 = 500nm. The dotted gray line corresponds to the refractive index of a plane-wave mode in glass, ε d .

Fig. 5.
Fig. 5.

Image of the FDTD-calculated instantaneous ∣Hy 2 distribution for a slit of width w = 150nm illuminated by a quasi-plane-wave of wavelength λ 0 = 500nm when a dielectric layer of thickness (a) 100nm and (b) 500nm is placed on the metal film. The simulation geometry is depicted by the above graphic.

Fig. 6.
Fig. 6.

(a) The time-averaged SPP intensity, ISPP (blue squares), and time-averaged radiated intensity, Ir (red circles), and (b) the corresponding SPP coupling efficiency, η, as a function of d. The error bars describe the uncertainties in the measurement of ISPP and Ir due to, respectively, the finite amount of Ir captured by D 1 and D 2 and the finite amount of ISPP captured by D 3.

Fig. 7.
Fig. 7.

SPP wavelength measured from the FDTD simulations (blue squares) and predicted from the mode solver (red line) as a function of dielectric layer thickness d. The dotted gray line indicates the value of λ i = λ 0 ε d . The error bars describe the uncertainty in the measurement of λSPP from the FDTD simulations due to variation in λSPP as a function of distance from the slit exit.

Fig. 8.
Fig. 8.

Image of the FDTD-calculated instantaneous ∣Hy 2 distribution for a slit illuminated by a quasi-plane-wave of wavelength λ 0 = 500nm when the slit width is (a) 150nm and (b) 300nm. The dielectric layer thickness d = 100nm is held constant. The simulation geometry is depicted by the above graphic.

Fig. 9.
Fig. 9.

a) The time-averaged SPP intensity, ISPP (blue squares), and time-averaged radiated intensity, Ir (red circles), and (b) the corresponding SPP coupling efficiency, η, as a function of w. The error bars describe the uncertainties in the measurement of ISPP and Ir due to, respectively, the finite amount of Ir captured by D 1 and D 2 and the finite amount of ISPP captured by D 3.

Tables (1)

Tables Icon

Table 1. Control simulation geometries and results. Fixed parameters include w = 150nm, d = 100nm, t = 300nm, and λ0 = 500nm

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

k SPP = k 0 ( ε m ε d ε m + ε d ) 1 2 .
E ( x , 0 ) = { E i x < w 2 0 x > w 2
A ( k x ) = E i π sin ( k x w 2 ) k x .
k z = ( k i 2 k x 2 ) 1 2 ,
k z = i ( k x 2 k i 2 ) 1 2 ,
I r = 4 E i 2 π kw 2 0 k i sin 2 ( kw 2 ) k 2 dk
I e = 4 E i 2 π kw 2 k i sin 2 ( kw 2 ) k 2 e 2 k x 2 k i 2 z dk .
η = I SPP I r + I SPP ,
k SPP = k 0 ( ε m ε d ε m + ε d ) 1 2
k SPP = k 0 ( ε m ε m + 1 ) 1 2 ,
I SPP = D 1 H y 2 d + D 2 H y 2 d
I r = D 3 H y 2 d

Metrics