Abstract

We report on the design, fabrication and optical characterization of a slow light waveguide created using a linear array of coupled resonators in a large cross-section rib waveguide. Structures with as many as 25 high aspect ratio resonators are experimentally investigated. The measured propagation loss, group velocity, and delay-bandwidth product (DBP) are presented. The metric DBP/unit loss is also introduced, with a value 38/dB. Finally we discuss a method for further reducing loss in the slow-light rib waveguide.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Chen and S. Blair, “Nonlinearity enhancement in finite coupled-resonator slow-light waveguides,” Opt. Express 12(15), 3353–3366 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=OE-12-15-3353 .
    [CrossRef] [PubMed]
  2. J. B. Khurgin, “Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis,” J. Opt. Soc. Am. B 22(5), 1062–1074 (2005).
    [CrossRef]
  3. M. Soljačić, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19(9), 2052–2059 (2002).
    [CrossRef]
  4. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
    [CrossRef] [PubMed]
  5. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
    [CrossRef]
  6. J. F. McMillan, X. Yang, N. C. Panoiu, R. M. Osgood, and C. W. Wong, “Enhanced stimulated Raman scattering in slow-light photonic crystal waveguides,” Opt. Lett. 31(9), 1235–1237 (2006).
    [CrossRef] [PubMed]
  7. M. Ebnali-Heidari, C. Monat, C. Grillet, and M. K. Moravvej-Farshi, “A proposal for enhancing four-wave mixing in slow light engineered photonic crystal waveguides and its application to optical regeneration,” Opt. Express 17 18340–18353 (2009).
    [CrossRef] [PubMed]
  8. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24(11), 711–713 (1999).
    [CrossRef]
  9. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
    [CrossRef]
  10. M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2(12), 741–747 (2008).
    [CrossRef]
  11. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys. 40(9), 2666–2670 (2007).
    [CrossRef]
  12. S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94(3), 033903 (2005).
    [CrossRef] [PubMed]
  13. R. J. P. Engelen, D. Mori, T. Baba, and L. Kuipers, “Two regimes of slow-light losses revealed by adiabatic reduction of group velocity,” Phys. Rev. Lett. 101(10), 103901 (2008).
    [CrossRef] [PubMed]
  14. M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, “Integrated waveguide Fabry-Perot microcavities with silicon/air Bragg mirrors,” Opt. Lett. 32(5), 533–535 (2007).
    [CrossRef] [PubMed]
  15. T. F. Krauss and R. M. De La Rue, “Optical characterization of waveguide based photonic microstructures,” Appl. Phys. Lett. 68(12), 1613–1615 (1996).
    [CrossRef]
  16. J. Goeckeritz and S. Blair, “One-dimensional photonic crystal rib waveguides,” J. Lightwave Technol. 25(9), 2435–2439 (2007).
    [CrossRef]
  17. J. Lousteau, D. Furniss, A. B. Seddon, T. M. Benson, A. Vukovic, and P. Sewell, “The single-mode condition for silicon-on-insulator optical rib waveguides with large cross section,” J. Lightwave Technol. 22(8), 1923–1929 (2004).
    [CrossRef]
  18. R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27(8), 1971–1974 (1991).
    [CrossRef]
  19. C. Jamois, R. B. Wehrspohn, L. C. Andreani, C. Hermann, O. Hess, and U. Gosele, “Silicon-based two-dimensional photonic crystal waveguides,” Photonics Nanostruct. Fundam.Appl. 1(1), 1–13 (2003).
    [CrossRef]
  20. Y. Qian, J. Song, S. Kim, and G. P. Nordin, “Compact 90 ° trench-based splitter for silicon-on-insulator rib waveguides,” Opt. Express 15(25), 16712–16718 (2007), http://www.opticsinfobase.org/abstract.cfm?uri=IPNRA-2007-IMC3 .
    [CrossRef] [PubMed]
  21. U. Fischer, T. Zinke, J.-R. Kropp, F. Arndt, and K. Petermann, “0.1dB/cm waveguide losses in single-mode SOI rib waveguides,” IEEE Photon. Technol. Lett. 8(5), 647–648 (1996).
    [CrossRef]
  22. S. Chakraborty, D. G. Hasko, and R. J. Mears, “Aperiodic lattices in a high refractive index contrast system for photonic bandgap engineering,” Microelectron. Eng. 73–74, 392–396 (2004).
    [CrossRef]
  23. A. S. Jugessur, P. Pottier, and R. M. De La Rue, “Engineering the filter response of photonic crystal microcavity filters,” Opt. Express 12(7), 1304–1312 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-7-1304 .
    [CrossRef] [PubMed]
  24. S. J. Wind, P. D. Greber, and H. Rothuizen, “Accuracy and efficiency in electron beam proximity effect correction,” J. Vac. Sci. Technol. B 16(6), 3262–3268 (1998).
    [CrossRef]
  25. X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d’Yerville, D. Cassagne, and C. Jouanin, “Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes,” Appl. Phys. Lett. 79(15), 2312–2314 (2001).
    [CrossRef]
  26. K. Kiyota, T. Kise, N. Yokouchi, T. Ide, and T. Baba, “Various low group velocity effects in photonic crystal line defect waveguides and their demonstration by laser oscillation,” Appl. Phys. Lett. 88(20), 201904 (2006).
    [CrossRef]
  27. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
    [CrossRef] [PubMed]
  28. J. Jágerská, N. Le Thomas, V. Zabelin, R. Houdré, W. Bogaerts, P. Dumon, and R. Baets, “Experimental observation of slow mode dispersion in photonic crystal coupled-cavity waveguides,” Opt. Lett. 34(3), 359–361 (2009).
    [CrossRef] [PubMed]
  29. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16(9), 6227–6232 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-9-6227 .
    [CrossRef] [PubMed]
  30. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14(20), 9444–9450 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-14-20-9444 .
    [CrossRef] [PubMed]
  31. M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, “Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth,” Opt. Express 15(1), 219–226 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-1-219 .
    [CrossRef] [PubMed]
  32. T. Baba, T. Kawaaski, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16(12), 9245–9253 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-12-9245 .
    [CrossRef] [PubMed]

2009 (3)

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

M. Ebnali-Heidari, C. Monat, C. Grillet, and M. K. Moravvej-Farshi, “A proposal for enhancing four-wave mixing in slow light engineered photonic crystal waveguides and its application to optical regeneration,” Opt. Express 17 18340–18353 (2009).
[CrossRef] [PubMed]

J. Jágerská, N. Le Thomas, V. Zabelin, R. Houdré, W. Bogaerts, P. Dumon, and R. Baets, “Experimental observation of slow mode dispersion in photonic crystal coupled-cavity waveguides,” Opt. Lett. 34(3), 359–361 (2009).
[CrossRef] [PubMed]

2008 (4)

2007 (6)

2006 (3)

2005 (3)

J. B. Khurgin, “Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis,” J. Opt. Soc. Am. B 22(5), 1062–1074 (2005).
[CrossRef]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94(3), 033903 (2005).
[CrossRef] [PubMed]

2004 (4)

2003 (1)

C. Jamois, R. B. Wehrspohn, L. C. Andreani, C. Hermann, O. Hess, and U. Gosele, “Silicon-based two-dimensional photonic crystal waveguides,” Photonics Nanostruct. Fundam.Appl. 1(1), 1–13 (2003).
[CrossRef]

2002 (1)

2001 (2)

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d’Yerville, D. Cassagne, and C. Jouanin, “Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes,” Appl. Phys. Lett. 79(15), 2312–2314 (2001).
[CrossRef]

1999 (1)

1998 (1)

S. J. Wind, P. D. Greber, and H. Rothuizen, “Accuracy and efficiency in electron beam proximity effect correction,” J. Vac. Sci. Technol. B 16(6), 3262–3268 (1998).
[CrossRef]

1996 (2)

U. Fischer, T. Zinke, J.-R. Kropp, F. Arndt, and K. Petermann, “0.1dB/cm waveguide losses in single-mode SOI rib waveguides,” IEEE Photon. Technol. Lett. 8(5), 647–648 (1996).
[CrossRef]

T. F. Krauss and R. M. De La Rue, “Optical characterization of waveguide based photonic microstructures,” Appl. Phys. Lett. 68(12), 1613–1615 (1996).
[CrossRef]

1991 (1)

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27(8), 1971–1974 (1991).
[CrossRef]

Adachi, J.

Andreani, L. C.

C. Jamois, R. B. Wehrspohn, L. C. Andreani, C. Hermann, O. Hess, and U. Gosele, “Silicon-based two-dimensional photonic crystal waveguides,” Photonics Nanostruct. Fundam.Appl. 1(1), 1–13 (2003).
[CrossRef]

Arndt, F.

U. Fischer, T. Zinke, J.-R. Kropp, F. Arndt, and K. Petermann, “0.1dB/cm waveguide losses in single-mode SOI rib waveguides,” IEEE Photon. Technol. Lett. 8(5), 647–648 (1996).
[CrossRef]

Baba, T.

T. Baba, T. Kawaaski, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16(12), 9245–9253 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-12-9245 .
[CrossRef] [PubMed]

R. J. P. Engelen, D. Mori, T. Baba, and L. Kuipers, “Two regimes of slow-light losses revealed by adiabatic reduction of group velocity,” Phys. Rev. Lett. 101(10), 103901 (2008).
[CrossRef] [PubMed]

K. Kiyota, T. Kise, N. Yokouchi, T. Ide, and T. Baba, “Various low group velocity effects in photonic crystal line defect waveguides and their demonstration by laser oscillation,” Appl. Phys. Lett. 88(20), 201904 (2006).
[CrossRef]

Baets, R.

Benson, T. M.

Blair, S.

Bogaerts, W.

Borel, P. I.

Cassagne, D.

X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d’Yerville, D. Cassagne, and C. Jouanin, “Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes,” Appl. Phys. Lett. 79(15), 2312–2314 (2001).
[CrossRef]

Chakraborty, S.

S. Chakraborty, D. G. Hasko, and R. J. Mears, “Aperiodic lattices in a high refractive index contrast system for photonic bandgap engineering,” Microelectron. Eng. 73–74, 392–396 (2004).
[CrossRef]

Chen, Y.

Corcoran, B.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

De La Rue, R. M.

Dumon, P.

Ebnali-Heidari, M.

M. Ebnali-Heidari, C. Monat, C. Grillet, and M. K. Moravvej-Farshi, “A proposal for enhancing four-wave mixing in slow light engineered photonic crystal waveguides and its application to optical regeneration,” Opt. Express 17 18340–18353 (2009).
[CrossRef] [PubMed]

Eggleton, B. J.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

Engelen, R. J. P.

Fage-Pedersen, J.

Fan, S.

Fischer, U.

U. Fischer, T. Zinke, J.-R. Kropp, F. Arndt, and K. Petermann, “0.1dB/cm waveguide losses in single-mode SOI rib waveguides,” IEEE Photon. Technol. Lett. 8(5), 647–648 (1996).
[CrossRef]

Frandsen, L. H.

Furniss, D.

Goeckeritz, J.

Gomez-Iglesias, A.

Gosele, U.

C. Jamois, R. B. Wehrspohn, L. C. Andreani, C. Hermann, O. Hess, and U. Gosele, “Silicon-based two-dimensional photonic crystal waveguides,” Photonics Nanostruct. Fundam.Appl. 1(1), 1–13 (2003).
[CrossRef]

Greber, P. D.

S. J. Wind, P. D. Greber, and H. Rothuizen, “Accuracy and efficiency in electron beam proximity effect correction,” J. Vac. Sci. Technol. B 16(6), 3262–3268 (1998).
[CrossRef]

Grillet, C.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

M. Ebnali-Heidari, C. Monat, C. Grillet, and M. K. Moravvej-Farshi, “A proposal for enhancing four-wave mixing in slow light engineered photonic crystal waveguides and its application to optical regeneration,” Opt. Express 17 18340–18353 (2009).
[CrossRef] [PubMed]

X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d’Yerville, D. Cassagne, and C. Jouanin, “Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes,” Appl. Phys. Lett. 79(15), 2312–2314 (2001).
[CrossRef]

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Hasko, D. G.

S. Chakraborty, D. G. Hasko, and R. J. Mears, “Aperiodic lattices in a high refractive index contrast system for photonic bandgap engineering,” Microelectron. Eng. 73–74, 392–396 (2004).
[CrossRef]

Hermann, C.

C. Jamois, R. B. Wehrspohn, L. C. Andreani, C. Hermann, O. Hess, and U. Gosele, “Silicon-based two-dimensional photonic crystal waveguides,” Photonics Nanostruct. Fundam.Appl. 1(1), 1–13 (2003).
[CrossRef]

Hess, O.

C. Jamois, R. B. Wehrspohn, L. C. Andreani, C. Hermann, O. Hess, and U. Gosele, “Silicon-based two-dimensional photonic crystal waveguides,” Photonics Nanostruct. Fundam.Appl. 1(1), 1–13 (2003).
[CrossRef]

Houdré, R.

Hughes, S.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94(3), 033903 (2005).
[CrossRef] [PubMed]

Ibanescu, M.

Ide, T.

K. Kiyota, T. Kise, N. Yokouchi, T. Ide, and T. Baba, “Various low group velocity effects in photonic crystal line defect waveguides and their demonstration by laser oscillation,” Appl. Phys. Lett. 88(20), 201904 (2006).
[CrossRef]

Ippen, E.

Jágerská, J.

Jamois, C.

C. Jamois, R. B. Wehrspohn, L. C. Andreani, C. Hermann, O. Hess, and U. Gosele, “Silicon-based two-dimensional photonic crystal waveguides,” Photonics Nanostruct. Fundam.Appl. 1(1), 1–13 (2003).
[CrossRef]

Joannopoulos, J. D.

Johnson, S. G.

Jouanin, C.

X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d’Yerville, D. Cassagne, and C. Jouanin, “Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes,” Appl. Phys. Lett. 79(15), 2312–2314 (2001).
[CrossRef]

Jugessur, A. S.

Kawaaski, T.

Khurgin, J. B.

Kim, S.

Kise, T.

K. Kiyota, T. Kise, N. Yokouchi, T. Ide, and T. Baba, “Various low group velocity effects in photonic crystal line defect waveguides and their demonstration by laser oscillation,” Appl. Phys. Lett. 88(20), 201904 (2006).
[CrossRef]

Kiyota, K.

K. Kiyota, T. Kise, N. Yokouchi, T. Ide, and T. Baba, “Various low group velocity effects in photonic crystal line defect waveguides and their demonstration by laser oscillation,” Appl. Phys. Lett. 88(20), 201904 (2006).
[CrossRef]

Krauss, T. F.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16(9), 6227–6232 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-9-6227 .
[CrossRef] [PubMed]

M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, “Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth,” Opt. Express 15(1), 219–226 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-1-219 .
[CrossRef] [PubMed]

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys. 40(9), 2666–2670 (2007).
[CrossRef]

T. F. Krauss and R. M. De La Rue, “Optical characterization of waveguide based photonic microstructures,” Appl. Phys. Lett. 68(12), 1613–1615 (1996).
[CrossRef]

Kropp, J.-R.

U. Fischer, T. Zinke, J.-R. Kropp, F. Arndt, and K. Petermann, “0.1dB/cm waveguide losses in single-mode SOI rib waveguides,” IEEE Photon. Technol. Lett. 8(5), 647–648 (1996).
[CrossRef]

Kuipers, L.

Kuramochi, E.

M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2(12), 741–747 (2008).
[CrossRef]

Lavrinenko, A. V.

Le Thomas, N.

Le Vassor d’Yerville, M.

X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d’Yerville, D. Cassagne, and C. Jouanin, “Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes,” Appl. Phys. Lett. 79(15), 2312–2314 (2001).
[CrossRef]

Lee, R. K.

Letartre, X.

X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d’Yerville, D. Cassagne, and C. Jouanin, “Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes,” Appl. Phys. Lett. 79(15), 2312–2314 (2001).
[CrossRef]

Li, J.

Lousteau, J.

McMillan, J. F.

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Mears, R. J.

S. Chakraborty, D. G. Hasko, and R. J. Mears, “Aperiodic lattices in a high refractive index contrast system for photonic bandgap engineering,” Microelectron. Eng. 73–74, 392–396 (2004).
[CrossRef]

Michaeli, A.

Monat, C.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

M. Ebnali-Heidari, C. Monat, C. Grillet, and M. K. Moravvej-Farshi, “A proposal for enhancing four-wave mixing in slow light engineered photonic crystal waveguides and its application to optical regeneration,” Opt. Express 17 18340–18353 (2009).
[CrossRef] [PubMed]

Moravvej-Farshi, M. K.

M. Ebnali-Heidari, C. Monat, C. Grillet, and M. K. Moravvej-Farshi, “A proposal for enhancing four-wave mixing in slow light engineered photonic crystal waveguides and its application to optical regeneration,” Opt. Express 17 18340–18353 (2009).
[CrossRef] [PubMed]

Mori, D.

Moss, D. J.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

Nordin, G. P.

Notomi, M.

M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2(12), 741–747 (2008).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

O’Faolain, L.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16(9), 6227–6232 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-9-6227 .
[CrossRef] [PubMed]

Osgood, R. M.

Panoiu, N. C.

Petermann, K.

U. Fischer, T. Zinke, J.-R. Kropp, F. Arndt, and K. Petermann, “0.1dB/cm waveguide losses in single-mode SOI rib waveguides,” IEEE Photon. Technol. Lett. 8(5), 647–648 (1996).
[CrossRef]

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27(8), 1971–1974 (1991).
[CrossRef]

Pottier, P.

Pruessner, M. W.

Qian, Y.

Rabinovich, W. S.

Ramunno, L.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94(3), 033903 (2005).
[CrossRef] [PubMed]

Rojo-Romeo, P.

X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d’Yerville, D. Cassagne, and C. Jouanin, “Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes,” Appl. Phys. Lett. 79(15), 2312–2314 (2001).
[CrossRef]

Rothuizen, H.

S. J. Wind, P. D. Greber, and H. Rothuizen, “Accuracy and efficiency in electron beam proximity effect correction,” J. Vac. Sci. Technol. B 16(6), 3262–3268 (1998).
[CrossRef]

Salib, M.

Sasaki, H.

Scherer, A.

Schmidtchen, J.

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27(8), 1971–1974 (1991).
[CrossRef]

Seassal, C.

X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d’Yerville, D. Cassagne, and C. Jouanin, “Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes,” Appl. Phys. Lett. 79(15), 2312–2314 (2001).
[CrossRef]

Seddon, A. B.

Sekaric, L.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Settle, M. D.

Sewell, P.

Shinya, A.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

Sipe, J. E.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94(3), 033903 (2005).
[CrossRef] [PubMed]

Soljacic, M.

Song, J.

Soref, R. A.

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27(8), 1971–1974 (1991).
[CrossRef]

Stievater, T. H.

Takahashi, C.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

Takahashi, J.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

Tanabe, T.

M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2(12), 741–747 (2008).
[CrossRef]

Viktorovitch, P.

X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d’Yerville, D. Cassagne, and C. Jouanin, “Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes,” Appl. Phys. Lett. 79(15), 2312–2314 (2001).
[CrossRef]

Vlasov, Y.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Vlasov, Y. A.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Vukovic, A.

Wehrspohn, R. B.

C. Jamois, R. B. Wehrspohn, L. C. Andreani, C. Hermann, O. Hess, and U. Gosele, “Silicon-based two-dimensional photonic crystal waveguides,” Photonics Nanostruct. Fundam.Appl. 1(1), 1–13 (2003).
[CrossRef]

White, T. P.

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16(9), 6227–6232 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-9-6227 .
[CrossRef] [PubMed]

Wind, S. J.

S. J. Wind, P. D. Greber, and H. Rothuizen, “Accuracy and efficiency in electron beam proximity effect correction,” J. Vac. Sci. Technol. B 16(6), 3262–3268 (1998).
[CrossRef]

Wong, C. W.

Xia, F.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

Xu, Y.

Yamada, K.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

Yang, X.

Yariv, A.

Yokohama, I.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

Yokouchi, N.

K. Kiyota, T. Kise, N. Yokouchi, T. Ide, and T. Baba, “Various low group velocity effects in photonic crystal line defect waveguides and their demonstration by laser oscillation,” Appl. Phys. Lett. 88(20), 201904 (2006).
[CrossRef]

Young, J. F.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94(3), 033903 (2005).
[CrossRef] [PubMed]

Zabelin, V.

Zinke, T.

U. Fischer, T. Zinke, J.-R. Kropp, F. Arndt, and K. Petermann, “0.1dB/cm waveguide losses in single-mode SOI rib waveguides,” IEEE Photon. Technol. Lett. 8(5), 647–648 (1996).
[CrossRef]

Appl. Phys. Lett. (3)

T. F. Krauss and R. M. De La Rue, “Optical characterization of waveguide based photonic microstructures,” Appl. Phys. Lett. 68(12), 1613–1615 (1996).
[CrossRef]

X. Letartre, C. Seassal, C. Grillet, P. Rojo-Romeo, P. Viktorovitch, M. Le Vassor d’Yerville, D. Cassagne, and C. Jouanin, “Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes,” Appl. Phys. Lett. 79(15), 2312–2314 (2001).
[CrossRef]

K. Kiyota, T. Kise, N. Yokouchi, T. Ide, and T. Baba, “Various low group velocity effects in photonic crystal line defect waveguides and their demonstration by laser oscillation,” Appl. Phys. Lett. 88(20), 201904 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27(8), 1971–1974 (1991).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

U. Fischer, T. Zinke, J.-R. Kropp, F. Arndt, and K. Petermann, “0.1dB/cm waveguide losses in single-mode SOI rib waveguides,” IEEE Photon. Technol. Lett. 8(5), 647–648 (1996).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (2)

J. Phys. D Appl. Phys. (1)

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys. 40(9), 2666–2670 (2007).
[CrossRef]

J. Vac. Sci. Technol. B (1)

S. J. Wind, P. D. Greber, and H. Rothuizen, “Accuracy and efficiency in electron beam proximity effect correction,” J. Vac. Sci. Technol. B 16(6), 3262–3268 (1998).
[CrossRef]

Microelectron. Eng. (1)

S. Chakraborty, D. G. Hasko, and R. J. Mears, “Aperiodic lattices in a high refractive index contrast system for photonic bandgap engineering,” Microelectron. Eng. 73–74, 392–396 (2004).
[CrossRef]

Nat. Photonics (3)

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2(12), 741–747 (2008).
[CrossRef]

Nature (1)

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Opt. Express (8)

M. Ebnali-Heidari, C. Monat, C. Grillet, and M. K. Moravvej-Farshi, “A proposal for enhancing four-wave mixing in slow light engineered photonic crystal waveguides and its application to optical regeneration,” Opt. Express 17 18340–18353 (2009).
[CrossRef] [PubMed]

Y. Chen and S. Blair, “Nonlinearity enhancement in finite coupled-resonator slow-light waveguides,” Opt. Express 12(15), 3353–3366 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=OE-12-15-3353 .
[CrossRef] [PubMed]

A. S. Jugessur, P. Pottier, and R. M. De La Rue, “Engineering the filter response of photonic crystal microcavity filters,” Opt. Express 12(7), 1304–1312 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-7-1304 .
[CrossRef] [PubMed]

Y. Qian, J. Song, S. Kim, and G. P. Nordin, “Compact 90 ° trench-based splitter for silicon-on-insulator rib waveguides,” Opt. Express 15(25), 16712–16718 (2007), http://www.opticsinfobase.org/abstract.cfm?uri=IPNRA-2007-IMC3 .
[CrossRef] [PubMed]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16(9), 6227–6232 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-9-6227 .
[CrossRef] [PubMed]

L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14(20), 9444–9450 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-14-20-9444 .
[CrossRef] [PubMed]

M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, “Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth,” Opt. Express 15(1), 219–226 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-1-219 .
[CrossRef] [PubMed]

T. Baba, T. Kawaaski, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16(12), 9245–9253 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-12-9245 .
[CrossRef] [PubMed]

Opt. Lett. (4)

Photonics Nanostruct. Fundam.Appl. (1)

C. Jamois, R. B. Wehrspohn, L. C. Andreani, C. Hermann, O. Hess, and U. Gosele, “Silicon-based two-dimensional photonic crystal waveguides,” Photonics Nanostruct. Fundam.Appl. 1(1), 1–13 (2003).
[CrossRef]

Phys. Rev. Lett. (3)

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94(3), 033903 (2005).
[CrossRef] [PubMed]

R. J. P. Engelen, D. Mori, T. Baba, and L. Kuipers, “Two regimes of slow-light losses revealed by adiabatic reduction of group velocity,” Phys. Rev. Lett. 101(10), 103901 (2008).
[CrossRef] [PubMed]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Micrographs of the slow light waveguide. a) Cross section of a rib waveguide showing the top and bottom SiO2 claddings. The rib waveguide has a height of H, a rib width of w and a slab height of h. b) A magnified view of the surface of the high aspect ratio trenches. Three trenches are used to separate each resonator. c) The trenches shown are etched through the rib waveguide. d) A structure with 25 coupled resonators. The input and output rib waveguide can be seen leading to the CROW.

Fig. 2
Fig. 2

Process steps used to fabricate the waveguides. a) An SOI wafer is processed starting with b) an optical lithography step using a positive photoresist (Shipley 1813) and c) dry etching using RIE. d) A layer of Cr is sputtered on the wafer surface followed by e) a spin-on layer of e-beam resist. The resist is then patterned and f) the Cr is etched using RIE. The Cr mask is then used as a mask during g) etching of the trenches. h) Another optical lithography step is used to create an etch mask for the rib waveguide, which is i) etched using a short DRIE step.

Fig. 3
Fig. 3

High aspect ratio trenches etched into a) the silicon device layer and b) back filled via wet oxidation. At the center of the trenches in b), an interface boundary can be seen where the oxide growth meets. The boundary is estimated to be less than 5 nm. Note the difference between ti and tf is equal to the amount of Si consumed during oxidation.

Fig. 4
Fig. 4

Normalized transmission spectra for the slow light rib waveguides with a) 5, b) 10, and c) 25 resonators. The inset in each plot shows a micrograph of the corresponding structure.

Fig. 5
Fig. 5

A close-up plot of the output power for the CROW with 25 resonators. The fringes are caused by the FP cavities formed by the input rib waveguide, CROW, and output rib waveguide. A beating pattern can be seen due to the rib waveguides which are similar in length.

Fig. 6
Fig. 6

The wavelength dependence of the group index calculated for a 25 resonator structure. The open circle points are the values of ng calculated from measurements and the solid line is a fit-line for an infinite structure.

Tables (1)

Tables Icon

Table 1 Comparison of slow light waveguides from the literature.

Metrics