Abstract

The need for cost effective and reliable biosensors in e.g. medical applications is an ever growing and everlasting one. Not only do we strive to increase sensitivity and detection limit of such sensors; ease of fabrication or implementation are equally important. In this work, we propose a novel, photonic crystal based biosensor that is able to operate at a single frequency, contrary to resonance based sensors. In a certain frequency range, guided photonic crystal modes can couple to free space modes resulting in a Lorentzian shape in the angular spectrum. This Lorentzian can shift due to refractive index changes and simulations have shown sensitivities of 65° per refractive index unit and more.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Huang, A. A. Yanik, T.-Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Opt. Express 17, 24224–24233 (2009).
    [CrossRef]
  2. A. Densmore, M. Vachon, D.-X. Xu, S. Janz, R. Ma, Y.-H. Li, G. Lopinski, A. Delâge, J. Lapointe, C. C. Luebbert, Q. Y. Liu, P. Cheben, and J. H. Schmid, “Silicon photonic wire biosensor array for multiplexed real-time and label-free molecular detection,” Opt. Lett. 34, 3598–3600 (2009).
    [CrossRef] [PubMed]
  3. P. Debackere, R. Baets, and P. Bienstman, “Bulk sensing experiments using a surface-plasmon interferometer,” Opt. Lett. 34, 2858–2860 (2009).
    [CrossRef] [PubMed]
  4. K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photon. J. 1, 225–235 (2009).
    [CrossRef]
  5. T. Claes, J. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot waveguide-based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
    [CrossRef]
  6. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
    [CrossRef] [PubMed]
  7. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2008), 2nd ed.
  8. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29, 1093–1095 (2004).
    [CrossRef] [PubMed]
  9. S. Xiao, and N. A. Mortensen, “Highly dispersive photonic band-gap-edge optofluidic biosensors,” J. Europ. Opt. Soc. Rap. Public. 1, 06026 (2006).
    [CrossRef]
  10. J. H. Schmid, W. Sinclair, J. García, S. Janz, J. Lapointe, D. Poitras, Y. Li, T. Mischki, G. Lopinski, P. Cheben, A. Delâge, A. Densmore, P. Waldron, and D.-X. Xu, “Silicon-on-insulator guided mode resonant grating for evanescent field molecular sensing,” Opt. Express 17, 18371–18380 (2009).
    [CrossRef] [PubMed]
  11. S. Fan, and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
    [CrossRef]
  12. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
    [CrossRef]
  13. A. Hessel, and A. A. Oliner, “A new theory of wood’s anomalies on optical gratings,” Appl. Opt. 4, 1275–1297 (1965).
    [CrossRef]
  14. A. A. Yanik, M. Huang, A. Artar, T.-Y. Chang, and H. Altug, “Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes,” Appl. Phys. Lett. 96, 021101 (2010).
    [CrossRef]
  15. N. L. Thomas, R. Houdré, M. V. Kotlyar, D. O’Brien, and T. F. Krauss, “Exploring light propagating in photonic crystals with Fourier optics,” J. Opt. Soc. Am. B 24, 2964–2971 (2007).
    [CrossRef]
  16. T. Kan, K. Matsumoto, and I. Shimoyama, “Nano-pillar structure for sensitivity enhancement of spr sensor,” in “Solid-State Sensors, Actuators and Microsystems Conference, 2009. TRANSDUCERS 2009. International,” (2009), pp. 1481–1484.

2010 (2)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

A. A. Yanik, M. Huang, A. Artar, T.-Y. Chang, and H. Altug, “Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes,” Appl. Phys. Lett. 96, 021101 (2010).
[CrossRef]

2009 (6)

2008 (1)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef] [PubMed]

2007 (1)

2006 (1)

S. Xiao, and N. A. Mortensen, “Highly dispersive photonic band-gap-edge optofluidic biosensors,” J. Europ. Opt. Soc. Rap. Public. 1, 06026 (2006).
[CrossRef]

2004 (1)

2002 (1)

S. Fan, and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
[CrossRef]

1965 (1)

Altug, H.

A. A. Yanik, M. Huang, A. Artar, T.-Y. Chang, and H. Altug, “Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes,” Appl. Phys. Lett. 96, 021101 (2010).
[CrossRef]

M. Huang, A. A. Yanik, T.-Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Opt. Express 17, 24224–24233 (2009).
[CrossRef]

Artar, A.

A. A. Yanik, M. Huang, A. Artar, T.-Y. Chang, and H. Altug, “Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes,” Appl. Phys. Lett. 96, 021101 (2010).
[CrossRef]

Baets, R.

P. Debackere, R. Baets, and P. Bienstman, “Bulk sensing experiments using a surface-plasmon interferometer,” Opt. Lett. 34, 2858–2860 (2009).
[CrossRef] [PubMed]

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photon. J. 1, 225–235 (2009).
[CrossRef]

T. Claes, J. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot waveguide-based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
[CrossRef]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Bienstman, P.

T. Claes, J. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot waveguide-based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
[CrossRef]

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photon. J. 1, 225–235 (2009).
[CrossRef]

P. Debackere, R. Baets, and P. Bienstman, “Bulk sensing experiments using a surface-plasmon interferometer,” Opt. Lett. 34, 2858–2860 (2009).
[CrossRef] [PubMed]

Chang, T.-Y.

A. A. Yanik, M. Huang, A. Artar, T.-Y. Chang, and H. Altug, “Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes,” Appl. Phys. Lett. 96, 021101 (2010).
[CrossRef]

M. Huang, A. A. Yanik, T.-Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Opt. Express 17, 24224–24233 (2009).
[CrossRef]

Cheben, P.

Chow, E.

Claes, T.

T. Claes, J. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot waveguide-based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
[CrossRef]

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photon. J. 1, 225–235 (2009).
[CrossRef]

De Koninck, Y.

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photon. J. 1, 225–235 (2009).
[CrossRef]

De Vos, K.

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photon. J. 1, 225–235 (2009).
[CrossRef]

T. Claes, J. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot waveguide-based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
[CrossRef]

Debackere, P.

Delâge, A.

Densmore, A.

Fan, S.

S. Fan, and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
[CrossRef]

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef] [PubMed]

García, J.

Girolami, G.

Girones, J.

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photon. J. 1, 225–235 (2009).
[CrossRef]

Grot, A.

Hessel, A.

Houdré, R.

Huang, M.

A. A. Yanik, M. Huang, A. Artar, T.-Y. Chang, and H. Altug, “Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes,” Appl. Phys. Lett. 96, 021101 (2010).
[CrossRef]

M. Huang, A. A. Yanik, T.-Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Opt. Express 17, 24224–24233 (2009).
[CrossRef]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Janz, S.

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

S. Fan, and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
[CrossRef]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Kotlyar, M. V.

Krauss, T. F.

Lapointe, J.

Li, Y.

Li, Y.-H.

Liu, Q. Y.

Lopinski, G.

Luebbert, C. C.

Ma, R.

Mirkarimi, L. W.

Mischki, T.

Molera, J.

T. Claes, J. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot waveguide-based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
[CrossRef]

Mortensen, N. A.

S. Xiao, and N. A. Mortensen, “Highly dispersive photonic band-gap-edge optofluidic biosensors,” J. Europ. Opt. Soc. Rap. Public. 1, 06026 (2006).
[CrossRef]

O’Brien, D.

Oliner, A. A.

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Poitras, D.

Popelka, S.

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photon. J. 1, 225–235 (2009).
[CrossRef]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Schacht, E.

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photon. J. 1, 225–235 (2009).
[CrossRef]

T. Claes, J. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot waveguide-based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
[CrossRef]

Schmid, J. H.

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef] [PubMed]

Sigalas, M.

Sinclair, W.

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef] [PubMed]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef] [PubMed]

Thomas, N. L.

Vachon, M.

Waldron, P.

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef] [PubMed]

Xiao, S.

S. Xiao, and N. A. Mortensen, “Highly dispersive photonic band-gap-edge optofluidic biosensors,” J. Europ. Opt. Soc. Rap. Public. 1, 06026 (2006).
[CrossRef]

Xu, D.-X.

Yanik, A. A.

A. A. Yanik, M. Huang, A. Artar, T.-Y. Chang, and H. Altug, “Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes,” Appl. Phys. Lett. 96, 021101 (2010).
[CrossRef]

M. Huang, A. A. Yanik, T.-Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Opt. Express 17, 24224–24233 (2009).
[CrossRef]

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef] [PubMed]

Anal. Chim. Acta (1)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. A. Yanik, M. Huang, A. Artar, T.-Y. Chang, and H. Altug, “Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes,” Appl. Phys. Lett. 96, 021101 (2010).
[CrossRef]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

IEEE Photon. J. (2)

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photon. J. 1, 225–235 (2009).
[CrossRef]

T. Claes, J. Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot waveguide-based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
[CrossRef]

J. Europ. Opt. Soc. Rap. Public. (1)

S. Xiao, and N. A. Mortensen, “Highly dispersive photonic band-gap-edge optofluidic biosensors,” J. Europ. Opt. Soc. Rap. Public. 1, 06026 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. B (1)

S. Fan, and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002).
[CrossRef]

Other (2)

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2008), 2nd ed.

T. Kan, K. Matsumoto, and I. Shimoyama, “Nano-pillar structure for sensitivity enhancement of spr sensor,” in “Solid-State Sensors, Actuators and Microsystems Conference, 2009. TRANSDUCERS 2009. International,” (2009), pp. 1481–1484.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Light enters the PhC biosensor by means of a waveguide and is coupled to free space as a beam with inclination θ and azimuth ϕ (left). The simulated structure used for FDTD simulations is shown in the right figure. All sizes are normalized to the lattice constant a. The grid resolution used is 56 pixels per unit of distance.

Fig. 2.
Fig. 2.

In a certain frequency region, above the light line, guided modes can couple to free space modes. The fluxes shown in this figure are calculated for a triangular silicon PhC slab with hole diameter 0.8a, thickness 0.3a, excited in the ΓM direction. The radiation flux represents either the down- or upward direction since the structure is symmetric.

Fig. 3.
Fig. 3.

The angular spectrum (left) and cross-section at ϕ=0° (right) of the vertically projected Poynting vector of the proposed structure with a symmetric cladding (i.e. refractive index above and below PhC slab equals that of the holes) at normalized frequency 0.53488. A Lorentzian resonance shape is clearly visible.

Fig. 4.
Fig. 4.

As expected, the shift for the symmetric cladding configuration is the highest in both approaches (left: monitoring angular shift at a fixed frequency; right: measuring frequency shift at a fixed angle).

Fig. 5.
Fig. 5.

The angular spectrum at normalized frequency 0.53488 (left) and cross-section at ϕ=0° and normalized frequency 0.569 (right) of the proposed structure with a symmetric cladding. A portion of the light is scattered under an angle ϕ=90° and the Lorentzian shape is distorted (this is more clearly visible in the right figure).

Fig. 6.
Fig. 6.

Adding noise in Monte Carlo simulations delivers the spread σ on correct peak detection (left). The width of the peak, which is in itself dependent on the angle θ, is directly related to this σ. Using this information, we can calculate (right) the detection limit (considering the worst case/largest σ of the shifted peaks). The detection limit is smallest at a high frequency as this is where the peak width is smallest.

Metrics