Abstract

Two novel bandwidth efficient pump-dithering Stimulated Brillouin Scattering (SBS) suppression techniques are introduced. The techniques employ a frequency-hopped chirp and an RF noise source to impart phase modulation on the pumps of a two pump Fiber Optical Parametric Amplifier (FOPA). The effectiveness of the introduced techniques is confirmed by measurements of the SBS threshold increase and the associated improvements relative to the current state of the art. Additionally, the effect on the idler signal integrity is presented as measured following amplification from a two pump FOPA employing both techniques. The measured 0.8 dB penalty with pumps dithered by an RF noise source, after accruing 160ps/nm of dispersion with 38 dB conversion gain in a two-pump FOPA is the lowest reported to date.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices, Cambridge University Press, 2007.
  2. T. Torounidis, P. A. Andrekson, and B. E. Olsson, “Fiber-Optical Parametric Amplifier with 70-dB Gain,” IEEE Photon. Technol. Lett. 18(10), 1194–1196 (2006).
    [CrossRef]
  3. J. M. Chavez Boggio, S, Moro, E. Myslivets, J.R. Windmiller, N. Alic, and S. Radic. “Raman-induced gain distortions in double-pumped parametric amplifiers,” in Proc. OFC/NFOEC 2009, paper OMH5, San Diego, CA, 2009.
  4. S. Moro, E. Myslivets, N. Alic, J. M. Chavez Boggio, J. R. Windmiller, J. X. Zhao, A. J. Anderson, and S. Radic, “Synthesis of Equalized Broadband Gain in One-Pump Fiber-Optic Parametric Amplifiers,” in Proc. OFC/NFOEC 2009, paper OMH4, San Diego, CA, 2009.
  5. J. M. Chavez Boggio, S. Moro, B. P. P. Kuo, N. Alic, B. Stroseel, and S. Radic, “Tunable All-Fiber Short-Wavelength-IR Transmitter,” in Postdeadline Papers OFC/NFOEC, paper PDPC9, San Diego, CA, 2009.
  6. C.-S. Bres, A. O. J. Wiberg, B. P.-P. Kuo, J. M. Chavez-Boggio, C. F. Marki, N. Alic, and S. Radic, “Single Gate 320-to-8x40 Gb/s Demultiplexing,” in Proc. OFC/NFOEC 2009, Postdeadline Paper PA4, San Diego, CA 2009.
  7. C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, “Parametric Amplifiers Driven by Two Pump Waves,” IEEE J. Sel. Top. Quantum Electron. 8(3), 538–547 (2002).
    [CrossRef]
  8. D. A. Fishman and J. A. Nagel, “Degradations Due to Stimulated Brillouin Scattering in Multigigabit Intensity-Modulated Fiber- Optic Systems,” J. Lightwave Technol. 11(11), 1721–1728 (1993).
    [CrossRef]
  9. J. Hansryd, F. Dross, M. Westlund, P. A. Andrekson, and S. N. Knudsen, “Increase of the SBS Threshold in a Short Highly Nonlinear Fiber by Applying a Temperature Distribution,” J. Lightwave Technol. 19(11), 1691–1697 (2001).
    [CrossRef]
  10. R. Engelbrecht, M. Mueller, and B. Schmauss, “SBS shaping and suppression by arbitrary strain distributions realized by a fiber coiling machine,” in Proc. IEEE/LEOS Winter Topicals, paper WC1.3, pp.248–249, 2009.
  11. J. M. C. Boggio, J. D. Marconi, and H. L. Fragnito, “Experimental and numerical investigation of the SBS-threshold increase in an optical fiber by applying strain distributions,” J. Lightwave Technol. 23(11), 3808–3814 (2005).
    [CrossRef]
  12. K. Shiraki, M. Ohashi, and M. Tateda, “SBS Threshold of a Fiber with a Brillouin Frequency Shift Distribution,” J. Lightwave Technol. 14(1), 50–57 (1996).
    [CrossRef]
  13. Y. Aoki, K. Tajima, and I. Mito, “Input Power Limits of Single-Mode Optical Fibers due to Stimulated Brillouin Scattering in Optical Communication Systems,” J. Lightwave Technol. 6(5), 710–719 (1988).
    [CrossRef]
  14. S. K. Korotky, P. B. Hansen, L. Eskildsen, and J. J. Veselka, “Efficient Phase Modulation Scheme for Suppressing Stimulated Brillouin Scattering,” in Tech. Dig. Int. Conf. Integrated Optics and Optical Fiber Comm., vol. 1, paper WD2–1, pp. 110–111, Hong Kong, 1995.
  15. S. Radic and C. J. McKinstrie, “Two-Pump Fiber Parametric Amplifiers,” Opt. Fiber Technol. 9(1), 7–23 (2003).
    [CrossRef]
  16. J. M. Chavez Boggio, F. A. Callegari, A. Guimaraes, J. D. Marconi, and H. L. Fragnito, “Q Penalties due to Pump Phase Modulation in FOPAs,” in Proc. OFC/NFOEC 2005, paper OWN4, Anaheim, CA, 2005.
  17. N. Alic, J. R. Windmiller, J. B. Coles, S. Moro, E. Myslivets, R. E. Saperstein, J. M. Chavez Boggio, C. S. Bres, and S. Radic, “105-ns continuously tunable delay of 10-Gb/s optical signal,” IEEE Photon. Technol. Lett.(2008).
  18. J. B. Coles, Advanced Phase Modulation Techniques for Stimulated Brillouin Scattering Suppression in Fiber Optic Parametric Amplifiers. M.S. Thesis, University of California, San Diego, 2009.
  19. A. Mussot, M. Le Parquier, and P. Szriftgiser, “Thermal noise for SBS suppression in fiber optical parametric amplifiers,” Opt. Commun. 283(12), 2607–2610 (2010).
    [CrossRef]
  20. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. San Diego, CA: Academic, 2001.
  21. P. Kylemark, P. O. Hedekvist, H. Sunnerud, M. Karlsson, and P. A. Andrekson, “Noise Characteristics of Fiber Optical Parametric Amplifiers,” J. Lightwave Technol. 22(2), 409–416 (2004).
    [CrossRef]

2010 (1)

A. Mussot, M. Le Parquier, and P. Szriftgiser, “Thermal noise for SBS suppression in fiber optical parametric amplifiers,” Opt. Commun. 283(12), 2607–2610 (2010).
[CrossRef]

2006 (1)

T. Torounidis, P. A. Andrekson, and B. E. Olsson, “Fiber-Optical Parametric Amplifier with 70-dB Gain,” IEEE Photon. Technol. Lett. 18(10), 1194–1196 (2006).
[CrossRef]

2005 (1)

2004 (1)

2003 (1)

S. Radic and C. J. McKinstrie, “Two-Pump Fiber Parametric Amplifiers,” Opt. Fiber Technol. 9(1), 7–23 (2003).
[CrossRef]

2002 (1)

C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, “Parametric Amplifiers Driven by Two Pump Waves,” IEEE J. Sel. Top. Quantum Electron. 8(3), 538–547 (2002).
[CrossRef]

2001 (1)

1996 (1)

K. Shiraki, M. Ohashi, and M. Tateda, “SBS Threshold of a Fiber with a Brillouin Frequency Shift Distribution,” J. Lightwave Technol. 14(1), 50–57 (1996).
[CrossRef]

1993 (1)

D. A. Fishman and J. A. Nagel, “Degradations Due to Stimulated Brillouin Scattering in Multigigabit Intensity-Modulated Fiber- Optic Systems,” J. Lightwave Technol. 11(11), 1721–1728 (1993).
[CrossRef]

1988 (1)

Y. Aoki, K. Tajima, and I. Mito, “Input Power Limits of Single-Mode Optical Fibers due to Stimulated Brillouin Scattering in Optical Communication Systems,” J. Lightwave Technol. 6(5), 710–719 (1988).
[CrossRef]

Andrekson, P. A.

Aoki, Y.

Y. Aoki, K. Tajima, and I. Mito, “Input Power Limits of Single-Mode Optical Fibers due to Stimulated Brillouin Scattering in Optical Communication Systems,” J. Lightwave Technol. 6(5), 710–719 (1988).
[CrossRef]

Boggio, J. M. C.

Chraplyvy, A. R.

C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, “Parametric Amplifiers Driven by Two Pump Waves,” IEEE J. Sel. Top. Quantum Electron. 8(3), 538–547 (2002).
[CrossRef]

Dross, F.

Fishman, D. A.

D. A. Fishman and J. A. Nagel, “Degradations Due to Stimulated Brillouin Scattering in Multigigabit Intensity-Modulated Fiber- Optic Systems,” J. Lightwave Technol. 11(11), 1721–1728 (1993).
[CrossRef]

Fragnito, H. L.

Hansryd, J.

Hedekvist, P. O.

Karlsson, M.

Knudsen, S. N.

Kylemark, P.

Le Parquier, M.

A. Mussot, M. Le Parquier, and P. Szriftgiser, “Thermal noise for SBS suppression in fiber optical parametric amplifiers,” Opt. Commun. 283(12), 2607–2610 (2010).
[CrossRef]

Marconi, J. D.

McKinstrie, C. J.

S. Radic and C. J. McKinstrie, “Two-Pump Fiber Parametric Amplifiers,” Opt. Fiber Technol. 9(1), 7–23 (2003).
[CrossRef]

C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, “Parametric Amplifiers Driven by Two Pump Waves,” IEEE J. Sel. Top. Quantum Electron. 8(3), 538–547 (2002).
[CrossRef]

Mito, I.

Y. Aoki, K. Tajima, and I. Mito, “Input Power Limits of Single-Mode Optical Fibers due to Stimulated Brillouin Scattering in Optical Communication Systems,” J. Lightwave Technol. 6(5), 710–719 (1988).
[CrossRef]

Mussot, A.

A. Mussot, M. Le Parquier, and P. Szriftgiser, “Thermal noise for SBS suppression in fiber optical parametric amplifiers,” Opt. Commun. 283(12), 2607–2610 (2010).
[CrossRef]

Nagel, J. A.

D. A. Fishman and J. A. Nagel, “Degradations Due to Stimulated Brillouin Scattering in Multigigabit Intensity-Modulated Fiber- Optic Systems,” J. Lightwave Technol. 11(11), 1721–1728 (1993).
[CrossRef]

Ohashi, M.

K. Shiraki, M. Ohashi, and M. Tateda, “SBS Threshold of a Fiber with a Brillouin Frequency Shift Distribution,” J. Lightwave Technol. 14(1), 50–57 (1996).
[CrossRef]

Olsson, B. E.

T. Torounidis, P. A. Andrekson, and B. E. Olsson, “Fiber-Optical Parametric Amplifier with 70-dB Gain,” IEEE Photon. Technol. Lett. 18(10), 1194–1196 (2006).
[CrossRef]

Radic, S.

S. Radic and C. J. McKinstrie, “Two-Pump Fiber Parametric Amplifiers,” Opt. Fiber Technol. 9(1), 7–23 (2003).
[CrossRef]

C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, “Parametric Amplifiers Driven by Two Pump Waves,” IEEE J. Sel. Top. Quantum Electron. 8(3), 538–547 (2002).
[CrossRef]

Shiraki, K.

K. Shiraki, M. Ohashi, and M. Tateda, “SBS Threshold of a Fiber with a Brillouin Frequency Shift Distribution,” J. Lightwave Technol. 14(1), 50–57 (1996).
[CrossRef]

Sunnerud, H.

Szriftgiser, P.

A. Mussot, M. Le Parquier, and P. Szriftgiser, “Thermal noise for SBS suppression in fiber optical parametric amplifiers,” Opt. Commun. 283(12), 2607–2610 (2010).
[CrossRef]

Tajima, K.

Y. Aoki, K. Tajima, and I. Mito, “Input Power Limits of Single-Mode Optical Fibers due to Stimulated Brillouin Scattering in Optical Communication Systems,” J. Lightwave Technol. 6(5), 710–719 (1988).
[CrossRef]

Tateda, M.

K. Shiraki, M. Ohashi, and M. Tateda, “SBS Threshold of a Fiber with a Brillouin Frequency Shift Distribution,” J. Lightwave Technol. 14(1), 50–57 (1996).
[CrossRef]

Torounidis, T.

T. Torounidis, P. A. Andrekson, and B. E. Olsson, “Fiber-Optical Parametric Amplifier with 70-dB Gain,” IEEE Photon. Technol. Lett. 18(10), 1194–1196 (2006).
[CrossRef]

Westlund, M.

IEEE J. Sel. Top. Quantum Electron. (1)

C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, “Parametric Amplifiers Driven by Two Pump Waves,” IEEE J. Sel. Top. Quantum Electron. 8(3), 538–547 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. Torounidis, P. A. Andrekson, and B. E. Olsson, “Fiber-Optical Parametric Amplifier with 70-dB Gain,” IEEE Photon. Technol. Lett. 18(10), 1194–1196 (2006).
[CrossRef]

J. Lightwave Technol. (6)

D. A. Fishman and J. A. Nagel, “Degradations Due to Stimulated Brillouin Scattering in Multigigabit Intensity-Modulated Fiber- Optic Systems,” J. Lightwave Technol. 11(11), 1721–1728 (1993).
[CrossRef]

J. Hansryd, F. Dross, M. Westlund, P. A. Andrekson, and S. N. Knudsen, “Increase of the SBS Threshold in a Short Highly Nonlinear Fiber by Applying a Temperature Distribution,” J. Lightwave Technol. 19(11), 1691–1697 (2001).
[CrossRef]

J. M. C. Boggio, J. D. Marconi, and H. L. Fragnito, “Experimental and numerical investigation of the SBS-threshold increase in an optical fiber by applying strain distributions,” J. Lightwave Technol. 23(11), 3808–3814 (2005).
[CrossRef]

K. Shiraki, M. Ohashi, and M. Tateda, “SBS Threshold of a Fiber with a Brillouin Frequency Shift Distribution,” J. Lightwave Technol. 14(1), 50–57 (1996).
[CrossRef]

Y. Aoki, K. Tajima, and I. Mito, “Input Power Limits of Single-Mode Optical Fibers due to Stimulated Brillouin Scattering in Optical Communication Systems,” J. Lightwave Technol. 6(5), 710–719 (1988).
[CrossRef]

P. Kylemark, P. O. Hedekvist, H. Sunnerud, M. Karlsson, and P. A. Andrekson, “Noise Characteristics of Fiber Optical Parametric Amplifiers,” J. Lightwave Technol. 22(2), 409–416 (2004).
[CrossRef]

Opt. Commun. (1)

A. Mussot, M. Le Parquier, and P. Szriftgiser, “Thermal noise for SBS suppression in fiber optical parametric amplifiers,” Opt. Commun. 283(12), 2607–2610 (2010).
[CrossRef]

Opt. Fiber Technol. (1)

S. Radic and C. J. McKinstrie, “Two-Pump Fiber Parametric Amplifiers,” Opt. Fiber Technol. 9(1), 7–23 (2003).
[CrossRef]

Other (11)

J. M. Chavez Boggio, F. A. Callegari, A. Guimaraes, J. D. Marconi, and H. L. Fragnito, “Q Penalties due to Pump Phase Modulation in FOPAs,” in Proc. OFC/NFOEC 2005, paper OWN4, Anaheim, CA, 2005.

N. Alic, J. R. Windmiller, J. B. Coles, S. Moro, E. Myslivets, R. E. Saperstein, J. M. Chavez Boggio, C. S. Bres, and S. Radic, “105-ns continuously tunable delay of 10-Gb/s optical signal,” IEEE Photon. Technol. Lett.(2008).

J. B. Coles, Advanced Phase Modulation Techniques for Stimulated Brillouin Scattering Suppression in Fiber Optic Parametric Amplifiers. M.S. Thesis, University of California, San Diego, 2009.

S. K. Korotky, P. B. Hansen, L. Eskildsen, and J. J. Veselka, “Efficient Phase Modulation Scheme for Suppressing Stimulated Brillouin Scattering,” in Tech. Dig. Int. Conf. Integrated Optics and Optical Fiber Comm., vol. 1, paper WD2–1, pp. 110–111, Hong Kong, 1995.

R. Engelbrecht, M. Mueller, and B. Schmauss, “SBS shaping and suppression by arbitrary strain distributions realized by a fiber coiling machine,” in Proc. IEEE/LEOS Winter Topicals, paper WC1.3, pp.248–249, 2009.

J. M. Chavez Boggio, S, Moro, E. Myslivets, J.R. Windmiller, N. Alic, and S. Radic. “Raman-induced gain distortions in double-pumped parametric amplifiers,” in Proc. OFC/NFOEC 2009, paper OMH5, San Diego, CA, 2009.

S. Moro, E. Myslivets, N. Alic, J. M. Chavez Boggio, J. R. Windmiller, J. X. Zhao, A. J. Anderson, and S. Radic, “Synthesis of Equalized Broadband Gain in One-Pump Fiber-Optic Parametric Amplifiers,” in Proc. OFC/NFOEC 2009, paper OMH4, San Diego, CA, 2009.

J. M. Chavez Boggio, S. Moro, B. P. P. Kuo, N. Alic, B. Stroseel, and S. Radic, “Tunable All-Fiber Short-Wavelength-IR Transmitter,” in Postdeadline Papers OFC/NFOEC, paper PDPC9, San Diego, CA, 2009.

C.-S. Bres, A. O. J. Wiberg, B. P.-P. Kuo, J. M. Chavez-Boggio, C. F. Marki, N. Alic, and S. Radic, “Single Gate 320-to-8x40 Gb/s Demultiplexing,” in Proc. OFC/NFOEC 2009, Postdeadline Paper PA4, San Diego, CA 2009.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. San Diego, CA: Academic, 2001.

M. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices, Cambridge University Press, 2007.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for SBS Threshold measurement. PC – Polarization controller, RF – Radio Frequency Tones, PM – Phase Modulator, EDFA – Erbium Doped Fiber Amplifier, VOA – Variable Optical Attenuator, SMR – Single Mode Fiber.

Fig. 2
Fig. 2

(a) SBS threshold chirp bandwidth and (b) Drive voltage dependence with associated PM spectra. The insets show the corresponding qualitative optical spectra.

Fig. 3
Fig. 3

Noise Source bandwidth effects on SBS threshold increase with associated optical spectrum.

Fig. 4
Fig. 4

Transmitter (TX): PC - Polarization Controller, PRBS – Pseudo-random Bit Sequence Data, AM - Amplitude Modulator, EDFA - Erbium Doped Fiber Amplifier, VOA - Variable Optical Attenuator, OSA - Optical Spectrum Analyzer. Two pump FOPA: PC - Polarization Controller, RF – Radio Frequency Waveform, PM - Phase Modulator, EDFA - Erbium Doped Fiber Amplifier, WDM - Wavelength Division Multiplexer, OSA - Optical Spectrum Analyzer, HNLF – Highly Nonlinear Fiber. Reciever(RX). EDFA - Erbium Doped Fiber Amplifier, OSA - Optical Spectrum Analyzer, VOA - Variable Optical Attenuator, SMF - Single Mode Fiber

Fig. 5
Fig. 5

(a) Bit Error Rate curves for back to back versus the DDS chirp, VCO tones, noise source, and the overdriven DDS Chirp with no gain. Inset – DDS Chirp example eye diagram. (b) Bit error rate curves for back to back versus the DDS chirp, VCO tones, noise source, and the overdriven DDS Chirp with no gain after passing through 10 km of SMF. Inset - DDS Chirp example eye diagram.

Fig. 6
Fig. 6

(a) Bit error rate curves with gain for back to back versus the DDS chirp (G = 15 dB), VCO tones (G = 18.5 dB), noise source (G = 38 dB), and the overdriven DDS Chirp (G = 18.5 dB). Inset – DDS Chirp example eye diagram. (b) Bit error rate curves with gain for back to back versus the DDS chirp (G = 15dB), VCO tones (G = 18.5dB), noise source (G = 38 dB), and the overdriven DDS Chirp (G = 18.5 dB) after propagation through 10 km of SMF. Inset – DDS Chirp example eye diagram.

Tables (1)

Tables Icon

Table 1 Results summary

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P t h   ~   21 k A eff g o L eff ( Δ ν B Δ ν P Δ ν B ) ,
u ( t ) = exp [ i C ( t ) ] = exp { i A c o s [ 2 π ( ν o + k t ) t ] }

Metrics